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Calculating spin-lattice interactions in ferro- and antiferromagnets:
The role of symmetry, dimension, and frustration
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Recently, the interplay between spin and lattice degrees of freedom has gained a lot of attention due
to its importance for various fundamental phenomena as well as for spintronic and magnonic applications.
Examples are ultrafast angular momentum transfer between the spin and lattice subsystems during ultrafast
demagnetization, frustration driven by structural distortions in transition-metal oxides, or in acoustically driven
spin-wave resonances. In this work, we provide a systematic analysis of spin-lattice interactions for ferro- and
antiferromagnetic materials and focus on the role of lattice symmetries and dimensions, magnetic order, and the
relevance of spin-lattice interactions for angular momentum transfer as well as magnetic frustration. For this
purpose, we use a recently developed scheme, which allows an efficient calculation of spin-lattice interaction
tensors from first principles. In addition to that, we provide a more accurate and self-consistent scheme to
calculate ab initio spin-lattice interactions by using embedded clusters, which allows us to benchmark the
performance of the scheme introduced previously.
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I. INTRODUCTION

The interplay of the magnetic and lattice degrees of free-
dom is crucial for a number of phenomena observed for
magnetic materials. Consequently, the investigation of spin-
lattice interactions is of great importance as it gives access
to the understanding of a variety of phenomena observed in
magnetic materials, as for instance frustration-driven struc-
tural distortions in different transition-metal oxides [1–3] and
dichalcogenides [4,5], or mutual modifications of the magnon
and phonon spectra in the magnetically ordered state [6–9].
Such a modification of the phonon spectra can be seen for
example by making use of Raman spectroscopy. This was
indeed demonstrated for multilayered CrI3, for which the
modification of the Raman spectrum is associated with the
corresponding change of the phonon modes induced by ma-
nipulating the interlayer alignment of magnetic moments in
the presence of a magnetic field [10]. In addition, a significant
role of the Dzyaloshinskii-Moriya interactions (DMI) in this
material even without taking into account lattice vibrations
has been demonstrated theoretically, with a strong impact
of the DMI on the magnon spectrum [11,12]. Moreover, a
crucial role of pronounced DMI-like spin-lattice interactions
for the existence of topological magnons was also discussed
on the basis of first-principles calculations in Ref. [13]. Inter-
estingly, this phenomenon may be used for ultrafast optical
control of magnetism as discussed in the literature [14,15].
Furthermore, recent experimental and theoretical works show
that spin-lattice interactions play a crucial role for the an-
gular momentum transfer during ultrafast demagnetization
[16,17]. Apart from that, spin-lattice coupling has attracted
increased attention during last decade in view of its potential

exploitation in spintronics and magnonics, seen as a way to
control magnetic properties. This can be done, for example,
by means of acoustic wave excitations, or via the application
of external mechanical forces. In particular, spin-lattice inter-
actions can be used for the control of the domain wall motion
by optically generated magnetoelastic waves [18], for spin
current generation by surface acoustic waves in ferromagnetic
layers via magnon-phonon coupling (inverse Edelstein effect
[19]), or for the control of the spin wave resonance frequency
by means of surface acoustic waves [20].

In this context the need for reliable schemes to investigate
spin-lattice interactions as well as their dependence on the
material under consideration emerges [21–24]. This field of
research is only at its beginning and to our knowledge no
systematic investigation of the role of spin-lattice coupling
for a series of materials has been done yet. A promising
way to gain insight in spin-lattice phenomena are atomistic
simulations that simultaneously model the time evolution of
both spin and lattice degrees of freedom [25–28]. This ap-
proach obviously requires a corresponding extension of the
underlying model Hamiltonian to account for the coupling
between them [29–31]. Accordingly, in order to perform such
simulations, besides spin-spin exchange coupling (SSC) ten-
sors also spin-lattice exchange coupling (SLC) tensors are
needed as an input. Recent works have provided first schemes
to calculate these tensors based on supercell and perturbative
SLC approaches [13,30,31].

In this work, an accurate and efficient method based on
embedded cluster calculations is presented and compared to
the existing schemes. Furthermore, we calculate the SLC
tensors for ferro- and antiferromagnetic materials with differ-
ent magnetic order, lattice structure and dimensionality using
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the Korringa-Kohn-Rostoker (KKR) Green’s function method
[32] and systematically investigate the symmetry of the SLC
tensors with respect to the crystal symmetry as well as the
physical relevance of SLC to angular momentum transfer and
magnetoelastic transitions in frustrated antiferromagnets such
as metal dichalcogenides and oxides.

To describe the coupling of spin and spatial degrees of
freedom we adopt the atomistic spin-lattice Hamiltonian as
proposed by Hellsvik et al. [30] and Mankovsky et al. [31],
i.e.,

Hsl = −
∑

i, j,α,β

Jαβ
i j eα

i eβ
j −

∑
i, j,α,β

∑
k,μ

J αβ,μ

i j,k eα
i eβ

j uμ

k + . . . ,

(1)

with the spin-orientation vectors ei, atomic displacement vec-
tors uk , spin-spin coupling (SSC) tensor elements Jαβ

i j , and

spin-lattice coupling (SLC) tensor elements Jαβ,μ

i j,k = ∂Jαβ
i j

∂uμ

k
.

Equation (1) can be extended further to spin-lattice interac-
tions of any order. Note that we focus on magnetic interactions
and hence omit pure lattice terms in Eq. (1) that involve
real-space force constants.

It should be mentioned that the mutual influence of spin
and lattice dynamical properties have already been inves-
tigated previously using various approaches. A prominent
example for this is the consideration of local spin-phonon
interactions induced by a crystal field modulated due to a
local lattice distortion [33–35]. Another approach based on
ab initio total energy calculations treats the coupling param-
eters as fitting parameters [29,36] as done within the often
used Conolly-Williams approach [37]. In this case, ab initio
electronic structure calculations have to be performed for a
set of configurations large enough to fix all parameters for
the chosen form of the Hamiltonian. Including the lattice in
addition to the spin degrees of freedom obviously will make
the fitting procedure much more demanding than considering
a plain spin Hamiltonian.

On the other hand, the so-called Liechtenstein formula [38]
is a well-established approach for ab initio calculations of the
isotropic spin-spin coupling parameters, with extensions to
account for the full tensorial form of the interaction param-
eters [39,40] and a multisite expansion [41]. In contrast, the
calculation of spin-lattice interaction parameters has received
interest only recently. References [13,30] have suggested to
calculate the corresponding spin-lattice exchange coupling
parameters from first principles by using supercells and calcu-
lating the SLC as the modification of the SSC when displacing
an atom in each supercell. This method becomes accurate for
sufficiently large supercells but is restricted to a small number
of interacting atoms and relatively small supercells due to its
high computational costs. Recently, Mankovsky et al. [31]
have derived closed expressions to calculate the spin-lattice
coupling tensors in a fully relativistic way by treating the
modifications in spin and lattice configurations on the same,
perturbative level. It was shown that this method enables the
calculation of fully relativistic SLC tensors, which are in sat-
isfying agreement with SLC tensors obtained by the supercell
method.

The present paper is organized as follows. In the first two
sections, we briefly review the spin-lattice coupling methods
presented in Ref. [31], i.e., the supercell and perturbative
method, and compare the results for bcc Fe to a new method
based on embedded clusters, which enables a more effi-
cient and accurate calculation of the SLC than the supercell
method. Consequently we consider it as a more appropriate
method to benchmark the perturbative SLC method presented
in Ref. [31], enabling a robust way of calculating spin-lattice
interactions up to any order of displacements and spin tiltings.
Comparing these results for all methods we find good agree-
ment, which allows us to use the perturbative SLC method
to systematically investigate spin-lattice coupling. In a first
step, we consider the symmetry of the SLC tensors with
respect to the crystal structure of the considered material
and find that the symmetry of the lattice (in combination
with spin-orbit coupling) gives rise to specific nonvanishing
SLC contributions, e.g., Dzyaloshinskii-Moriya-like interac-
tions. In a second step, we calculate the SLC tensors for
various materials with different lattice configurations and
magnetic structures and consider the role of the dimension-
ality by calculating the SLC for freestanding monolayers and
two-dimensional (2D) deposited magnetic films. Lastly, we
investigate the SLC contribution to magnetoelastic transitions
in frustrated antiferromagnets.

II. THEORETICAL BACKGROUND

The field of spin-lattice coupling is still at its beginning.
The first ones to calculate ab initio spin-lattice interaction pa-
rameters for the nonrelativistic case were Hellsvik et al. [30],
who suggested to calculate the elements of the corresponding
spin-lattice exchange coupling tensor from the modification
of the spin-spin exchange coupling Jαβ

i j (uk ) due to a dis-
placement uμ

k . Focusing here on the spin-lattice interaction
term in the Hamiltonian, ∂

∂uμ

k
Jαβ

i j (uk ) uμ

k , linear with respect

to displacement uμ

k , the corresponding coupling parameters
Jαβ,μ

i j,k can be delivered by calculating the derivative of Jαβ
i j (uk )

numerically as follows:

Jαβ,μ

i j,k = ∂

∂uμ

k

Jαβ
i j (uk ) ≈ Jαβ

i j

(
uμ

k

) − Jαβ
i j (0)

uμ

k

(2)

considering the displacement uμ

k in the limit of uμ

k → 0.
As suggested by Hellsvik et al. [30], the ordinary exchange

coupling parameters Jαβ
i j (uk ) can be calculated by making

use of a scheme introduced by Liechtenstein and coworkers
leading to the so-called Liechtenstein or LKAG formula [38].
This approach that makes use of the magnetic force theorem
implies the evaluation of the free energy change due to a
perturbation of the system, which can be written within the
multiple-scattering formalism [32] as follows:

�F = − 1

π
Im Tr

∫ EF

dE (ln τ (E ) − ln τ 0(E )), (3)

with the scattering path operator of the unperturbed reference
system

τ (0)(E ) = [m(0)(E ) − G(E )]−1, (4)
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and of the perturbed system

τ (E ) = [m(E ) − G(E )]−1, (5)

with G(E ) the structural Green’s function and m(0)(E ) =
[t (0)(E )]−1 the inverse of the site-diagonal single-site scatter-
ing matrix t (0)(E ), and double underlines indicating matrices
with respect to site and spin-angular momentum indices.

According to the LKAG scheme, the expression for the
exchange coupling parameter Ji j is derived accounting for
the perturbations due to a spin tilting δêα

i( j) on sites i and j.
As this perturbation leads to a corresponding change of the
inversed single-site scattering matrix �s

αmi = mi(δêα
i ) − m0

i ,
the change of the free energy in Eq. (3) can be evaluated using
the expression

ln τ − ln τ 0 = − ln
(
1 + τ

[
�s

αmi + �s
βm j + . . .

])
. (6)

With the change of the inversed single-site scattering matrix
represented in terms of so-called torque operator T μ

i by the
expression

�s
μmi = δêα

i T α
i , (7)

linear with respect to spin tilting, one obtains a direct access
to the exchange coupling parameters determined as the free
energy derivative ∂2F

∂eα
i ∂eβ

j

[40]:

Jαβ
i j = − 1

π
� Tr

∫
dE T α

i τ i j T β
i τ ji. (8)

To get access to the full exchange coupling tensor Eq. (8)
has to be evaluated within a fully relativistic framework
[39,40] with the multiple-scattering representation for the
electronic Green’s function G(r, r ′, E ) in real space, given by
the expression [42]

G(r, r ′, E ) =
∑
	1	2

Zi
	1

(r, E )τ i j
	1	2

(E )Z j×
	2

(r ′, E )

−
∑
	1

[
Zi

	1
(r, E )Ji×

	1
(r ′, E )
(r′ − r)

× Ji
	1

(r, E )Zi×
	1

(r ′, E )
(r − r′)
]
δi j , (9)

with the four-component wave functions Zn
	(r, E ) (Jn

	(r, E ))
are regular (irregular) solutions to the single-site Dirac equa-
tion [43,44]. The elements of the matrix T μ

i in Eq. (7) are
given by the expression

T α
i,		′ =

∫
�i

d3r Zi×
	 (r, E )

[
βσαBi

xc(r)
]

Zi
	′ (r, E ) , (10)

with Bi
xc(r) being the spin-dependent part of the exchange-

correlation potential, σα the Pauli matrix and β the standard
Dirac matrix [45].

A. Supercell approach

As demonstrated by Hellsvik et al. [30] and Mankovsky
et al. [31], Eq. (8) can be used straightforwardly to calculate
the exchange coupling parameter Jαβ

i j (uk ) in the presence of
an atomic displacement on site k. Such calculations can be
easily done also on the basis of the recently reported approach

based on Green’s functions constructed using Wannier func-
tions as a local basis set [46], that gives access to an alternative
way for the calculation of SLC parameters. When performing
these calculations using the multiple scattering formalism the
scattering path operator τ (uk ) is determined self-consistently
for a supercell, big enough to minimize the impact on the
exchange coupling tensor Ji j of the displacement periodically
repeated in the neighboring cells. Note that self-consistent
calculations have a crucial impact on the accuracy of the
results, as in this case a relaxation of the charge density around
a displaced atom is taken into account. On the other hand,
an important disadvantage of supercell calculations is their
computational cost in the case of larger cells, or the other
way around, they lead to the increasing inaccuracy when the
supercell size is too small.

B. Embedded cluster approach

The disadvantages of the supercell approach, high numer-
ical costs and a possible influence of neighboring supercells,
can be avoided by making use of the Dyson equation for the
Green’s function

G = G0 + G0 �V G, (11)

where G0 is the Green’s function of a suitable reference sys-
tem, while G accounts for the perturbation �V .

To get access to the exchange parameter Jαβ
i j (uk ) between

site i and j for site k displaced by uk one considers an atomic
cluster centered on site k and big enough to include all sites i
and j of interest. In a first step the Green’s function G for this
embedded cluster is calculated self-consistently using Eq. (11)
with �V accounting for the displacement of site k and its
range given by the size of the embedded cluster. Using the
real space representation G(r, r ′, E ) of the electronic Green’s
function given by Eq. (9) allows us to replace the Dyson equa-
tion (11) by the corresponding equivalent matrix equation for
the scattering path operators [32]:

τ
k
(E ) = [(t

k
(E ))−1 − (t

0
(E ))−1 − (τ

0
(E ))−1]−1. (12)

Here the second underline indicates matrices with respect
to to the site indices numbering the sites within the cluster.
Accordingly, the scattering path operator matrices τ

0
(E ) and

τ
k
(E ) represent the unperturbed system in the regime of the

cluster and the embedded cluster with atom k displaced by uk ,
respectively. Finally, the single-site matrices t

0
(E ) and t

k
(E )

are site diagonal and represent the cluster atoms in case of the
unperturbed system and the embedded cluster, respectively.

Having solved the embedding problem charge self-
consistently the exchange coupling parameter Jαβ

i j (uk ) can be
obtained from Eq. (8) using the corresponding blocks τ i j (E )
and τ ji(E ) of the supermatrix τ

k
(E ).

C. Perturbative approach

Mankovsky et al. [31] suggested a perturbative scheme
to get direct access to the SLC parameter Jαβ,μ

i j,k without the
numerical differentiation indicated by Eq. (2) and to avoid
this way high numerical effort and any spurious intercell ef-
fects. The central idea is to extend the scheme underlying the
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Liechtenstein formula by accounting simultaneously for the
impact of a distorted spin configuration {δêi} and of atomic
displacements {uk}. As a result, the change in the free energy
with respect to an unperturbed reference state is given in terms
of the scattering path operator the expression

ln τ − ln τ 0 = − ln
(
1 + τ

[
�s

αmi + �s
βm j + �u

μmk + . . .
])

,

(13)

where �u
μmk = mk (uμ

k ) − m0
k is a change of the inverse single-

site scattering matrix due to atomic displacement on site k.
A linear approximation applied to �u

μmk representing it in
terms of the so-called displacement operator Uμ

k [47,48] by
the expression

�u
μmk = uμ

k U
μ

k (14)

allows us to work out explicit expression for the SLC param-
eters Jαβ,μ

i j,k as

Jαβ,μ

i j,k = − ∂3F
∂eα

i ∂eβ
j ∂uμ

k

= − 1

2π
Im Tr

∫ EF

dE

× [
T α

i τ i jT
β
j τ jkU

μ

k τ ki + T α
i τ ikU

μ

k τ k jT
β
j τ ji

]
.

(15)

The displacement operator in Eq. (14) is given by the expres-
sion [31]

Uμ

k = Ū
(
û μ

k

)
mk + mk Ū

(−û μ

k

)
, (16)

where

ŪLL′ (ûk ) = κ
4π

3
il+1−l ′

1∑
m=−1

CLL′1m Y1m(ûk )

and κ =
√

2mE/h̄2. The prefactor 1/2 occurs to avoid double
counting of the identical terms upon summations in Eq. (1)
over indices i and j. In a similar way, higher-order terms
can be expressed. The Fourier transforms of these parameters
give access to the investigations of the impact of spin-lattice
interactions on magnon and phonon modes (see Appendix B).
Note however, that the SLC parameters given by Eq. (15) do
not account for the impact of screening of the atomic dis-
placement due to the charge redistribution. To make sure that
this contribution can be neglected with a reasonable accuracy
of the results, additional calculations discussed in Sec. II B
have been performed to calculate the Ji j parameters for the
distorted lattice.

Note that here we focus on the three-site exchangelike
contributions to Eq. (1), while a detailed discussion and
benchmarking of the three-site approximation is presented
in a complementary work [49]. This includes in particular
technical details of higher-order extensions to Eq. (1). More-
over, an expression for the SLC parameters that describe
a modification of the magnetocrystalline anisotropy due to
atomic displacements is presented and discussed together with
corresponding numerical results.

FIG. 1. Geometry for the calculation of the spin-lattice exchange
coupling using the embedded cluster method (here for i = k).

III. RESULTS FOR THE EMBEDDED
CLUSTER APPROACH

In this section the properties of the SLC parameters ob-
tained via the perturbative SLC method of Mankovsky et al.
[31] and via the new method based on embedded cluster (EC)
calculations are presented for bcc Fe. As for the supercell
method the SLC Jαβ,μ

i j,k are obtained by the modification of the

SSC Jαβ
i j in the presence of a vanishingly small displacement

uμ

k [30] [see Fig. 1 and Eq. (2)] after a self-consistent (SCF)
calculation of the potential for this distorted geometry has
been done.

As mentioned above the cluster method has the advantage
that it is accurate for finite cluster sizes, as long as the cluster
is large enough to take into account the relaxation effects. This
is already the case for relatively small system sizes, as can
be seen in Table I, which shows that the results for diago-
nal and off-diagonal SLC parameters obtained from clusters
consisting of 16 and 51 atoms are in very good agreement.
In contrast, the top of Table I shows that this is not the case
for supercells consisting of 16 and 54 atoms. The supercell ap-
proach is in principle only accurate for infinite supercells since
for finite sizes not only a single displaced atom is considered,
but a periodic displacement for one atom in each supercell.

Figures 2 and 3 as well as Table I compare the results
for nearest neighbors and i = k obtained from supercell,
cluster and perturbative SLC methods. More results for next-
nearest neighbors and other SLC components are presented
in Appendix A. In Fig. 3 the modification of the cluster
SSC occurring in Eq. (2), i.e., �Jαβ

i j (uμ

k ) = Jαβ
i j (uμ

k ) − Jαβ
i j (0)

is compared to the perturbative SLC result Jαβ,μ

i j,k · uμ

k for
α = β = μ = x. For small displacements, both results are
in good agreement. The average value of the diagonal com-
ponents Jdiag−s,x

i j,i = 1
2 (Jxx,x

i j,i + Jyy,x
i j,i ) is presented in Table I.

Again, we find a good agreement between cluster and pertur-
bative SLC results: The average absolute value for the large
(small) cluster and nearest neighbors is 8.30 ± 0.22 meV/a.u.

(8.28 ± 0.22 meV/a.u.), compared to 9.80 meV/a.u. from
the perturbative SLC method. The supercell results for
the diagonal SLC are smaller with 7.02 ± 0.42 meV/a.u.
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TABLE I. Average absolute value of the diagonal SLC parameters Jdiag,x
i j,i = 1

2 (Jxx,x
i j,i + Jyy,x

i j,i ) (top) and Joff,x
i j,i = 1

2 (Jxy,x
i j,i + Jyx,x

i j,i ) (bottom) in
meV/a.u. for nearest neighbors, i = k and a displacement in x direction in bcc Fe obtained by the supercell method for supercells with 16 and
54 atoms, by the embedded cluster (EC) method for clusters with 27 and 51 atoms and for the closed SLC expressions. For the EC calculations
ux

i = 0.005 alat was used.

supercells clusters

Jdiag,x
i j,i 16 atoms 54 atoms 27 atoms 51 atoms PA( − 1

2 , − 1
2 , ± 1

2

)
6.432 6.37 7.80 7.83 9.80( − 1

2 , 1
2 , ± 1

2

)
6.432 6.37 7.82 7.84 9.80(

1
2 , − 1

2 , ± 1
2

) −7.397 −7.67 −8.76 −8.77 9.80(
1
2 , 1

2 , ± 1
2

) −7.397 −7.67 −8.74 −8.76 −9.80

Joff,x
i j,i( − 1

2 , − 1
2 , ± 1

2

)
0.23 0.21 0.26 0.25 0.20( − 1

2 , 1
2 , ± 1

2

) −0.23 −0.21 −0.22 −0.22 −0.20(
1
2 , − 1

2 , ± 1
2

)
0.21 0.19 0.21 0.21 0.20(

1
2 , 1

2 , ± 1
2

) −0.21 −0.19 −0.24 −0.24 −0.20

(6.91 ± 0.23 meV/a.u.) for large (small) supercells. Simi-
larly, the off-diagonal elements are in good agreement for all
methods.

The different values for different neighbors j for both
diagonal and off-diagonal components result primarily from
higher-order contributions taken into account by modifica-
tions of the electronic structure due to the displacements
in clusters and supercells, but not in the perturbative ap-
proach. The results for the second neighbor shell are given
in Appendix A. One can see a larger discrepancy between
the cluster and PA results, which can be associated with the
important role of the screening effects in the exchange in-
teractions at bigger distances indicating a long-range charge
density redistribution around displaced atom.

0.00 0.01 0.02 0.03

displacement ux
i (units of alat)

-0.050

-0.025

0.000

0.025

0.050

Δ
J

x
y

ij
(u

x i
)

an
d

J
x
y
,x

ij
,i

·u
x i

(m
eV

)

/

/

EC

PA

FIG. 2. Comparison of the off-diagonal exchange coupling mod-
ification of nearest neighbors for embedded clusters (EC) with 27
atoms �Jxy

i j (ux
i ) = Jxy

i j (ux
i ) − Jxy

i j (0) (dotted lines) and the perturba-
tive approach (PA) Jxy,x

i j,i · ux
i (solid lines), for a displacement of atom

i in x direction for nearest neighbors i j in bcc Fe. The color code for
the atoms j is visualized in the inset figure: Dark red circles denote
neighbors with ri j = a(−0.5, −0.5, ±0.5), light red squares ri j =
a(0.5, −0.5, ±0.5), dark blue diamonds ri j = a(−0.5, 0.5, ±0.5)
and light blue crosses ri j = a(0.5, 0.5, ±0.5).

To conclude, the embedded cluster method enables a
very accurate calculation of the SLC parameters that can
be used to benchmark the perturbative approach. We have
shown that the results for bcc Fe agree well for both
approaches.

IV. ANALYSIS OF RELATIVISTIC SPIN-LATTICE
EXCHANGE COUPLING TENSORS

In this section, we will evaluate the connection of the spin-
lattice exchange coupling tensors with respect to the crystal
symmetry and dipole-dipole contributions based on analytical
arguments, before discussing the numerical results in the next
section.

0.00 0.01 0.02 0.03

displacement ux
i (units of alat)

-2.000

-1.000

0.000

1.000

2.000

Δ
J

x
x

ij
(u

x i
)

an
d

J
x
x
,x

ij
,i

·u
x i

(m
eV

)

/

/

EC

PA

FIG. 3. Comparison of the diagonal exchange coupling modi-
fication of nearest neighbors for embedded clusters (EC) with 27
atoms �Jxx

i j (ux
i ) = Jxx

i j (ux
i ) − Jxx

i j (0) (dotted lines) and the perturba-
tive approach (PA) Jxx,x

i j,i · ux
i (solid lines), for a displacement of atom

i in x direction for nearest neighbors i j in bcc Fe. The color code of
the atoms j is visualized in the inset figure: Red circles correspond
to neighbors with ri j = a(−0.5, ±(∓)0.5,±0.5) and blue diamonds
to ri j = a(0.5, ±(∓)0.5,±0.5).
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A. Symmetry of the SLC parameters

The qualitative features of the SLC parameters are deter-
mined by the symmetry of the system under investigation.
Accordingly, we start our analysis of the spin-lattice exchange
coupling tensors by linking their symmetry to the space group
of the considered material.

The SLC tensor elements are connected by the relation

Jαβ,μ

i j,k =
∑

α′β ′,μ′
Jα′β ′,μ′

i′ j′,k′ D(R)α′αD(R)β ′βD(R)μ′μ (17)

for unitary and antiunitary symmetry transformations of the
crystal, u = {R, p} and a = T {R, p}, respectively, with R de-
noting a rotation operation, p a primitive translation operation,
T the time inversion operation, and D(R) the 3 × 3 matrix rep-
resentation of R. The original and transformed site positions
ri and ri′ are related by ri′ = Rri + p. Eq. (17) can explain
many of the SLC properties observed in the previous section.
As an example, we focus on next-nearest neighbors in bcc Fe,
with the SLC presented in Appendix A since they lie in x, y, z
directions in space and not in the diagonal directions like the
nearest neighbors. For example, for R being a fourfold rotation
around the z axis the matrix representation is given by

D(R) =
⎛
⎝0 −1 0

1 0 0
0 0 1

⎞
⎠.

Equation (17) yields for ri j = (1, 0, 0)T and i = k

Jxy,x
i j,k = Jyx,y

i′ j′,k′ · 1 · (−1) · 1 = −Jyx,y
i′ j′,k′

with ri′ j′ = (0, 1, 0)T . A similar argument holds for Jyx,x
i j,k and

Jyx,y
i j,k , as well as for the off-diagonal components Joff,x

i j,i and

Joff,y
i j,i . This is in agreement with Table VII. Furthermore, the

relation can explain vanishing components in Table VII in
Appendix A, e.g., for ri j = (1, 0, 0)T and i = k, for which a
twofold rotation around the z axis yields Jxx,z

i j,k = Jxx,z
i′ j′,k′ , but

an inversion implies Jxx,z
i j,k = −Jxx,z

i′ j′,k′ for ri′ j′ = (−1, 0, 0)T .
Consequently, Jxx,z

i j,k = Jxx,z
i′ j′,k′ = 0.

In the following, we prove the symmetry relation (17),
starting with the expression for the SLC tensor as given
in (15):

Jαβ,μ

i j,k = 1

2π
Im

∫ EF

dE
[

jαβμ,1
i jk + jαβμ,2

i jk

]
(18)

with

jαβμ,1
i jk = Tr T α

i τi jT β
j τ jkUμ

k τki (19)

and

jαβμ,2
i jk = Tr T α

i τikUμ

k τk jT β
j τ ji. (20)

For an arbitrary (unitary or antiunitary) symmetry operation s
the first part becomes

jαβμ,1
i jk = Tr T̃ α

i τ̃i j T̃ β
j τ̃ jkŨμ

k τ̃ki

with Õα
i = sOα

i s−1. The scattering path operators τ , torque
operators T , and displacement operators U behave under the
different types of symmetry operations as follows.

For a unitary symmetry operation u that transforms site
i( j) to i′( j′) the scattering path operator τ transformations as
uτi ju−1 = τi′ j′ while for an antiunitary symmetry one has [50]
aτi ja−1 = τ

†
j′i′ . As pointed out in Ref. [51], an arbitrary pseu-

dovector transforms under a symmetry operation s = {R, p}
or s = T {R, p} as

sv(r) = ±det(D(R))D(R)v(s−1r)

while a vector transforms like

sv(r) = ±D(R)v(s−1r) .

In these expressions the sign ± is determined by the behavior
of v under time reversal: The positive sign applies for (polar)
vectors and the negative sign for (axial) pseudovectors [51].
As the torque operator T̃ behaves as a pseudovector the sign
± and det(D(R)) = ±1 from the first expression occur twice
in Eq. (20), and hence cancel each other. Consequently, one
finds

T̃ α
i . . . T̃ β

j =
∑
α′β ′

T α
i′ . . . T β

j′ D(R)α′αD(R)β ′β. (21)

For the displacement operator, which is not affected by time
reversal, we have a positive sign and hence

Ũμ

k =
∑
μ′

Uμ′
k′ D(R)μ′μ. (22)

For unitary operations this yields

jαβμ,1
i jk =

∑
α′β ′,μ′

jα
′β ′μ′,1

i′ j′k′ D(R)α′αD(R)β ′βD(R)μ′μ.

For antiunitary operations we find

jαβμ,1
i jk =

∑
α′β ′,μ′

jα
′β ′μ′,2

i′ j′k′ D(R)α′αD(R)β ′βD(R)μ′μ

and

jαβμ,2
i jk =

∑
α′β ′,μ′

jα
′β ′μ′,1

i′ j′k′ D(R)α′αD(R)β ′βD(R)μ′μ .

Hence, the same relation for unitary as well as antiunitary
symmetry operations holds.

B. Dipole-dipole contribution to SLC

In order to have a complete picture of the spin-lattice inter-
actions in magnetic materials the contribution to the SSC and
SLC tensors from the dipole-dipole interaction is considered.
Although the dipole-dipole interaction is treated on a classical
level, represented by the Hamiltonian

Hdip = − μ0

4π |ri j |3 [3 (mi · r̂i j )(m j · r̂i j ) − mi · m j], (23)

for two magnetic moments mi and m j at sites i and j sep-
arated by a distance vector ri j , its contribution arises from
the (quantum-electrodynamical) Breit interaction [52]. Con-
sequently, it can be considered as a consistent addition to the
exchange coupling tensors presented in the previous sections.
For a ferromagnetic reference system with mi ‖ ez the SSC

115176-6



CALCULATING SPIN-LATTICE INTERACTIONS IN … PHYSICAL REVIEW B 107, 115176 (2023)

TABLE II. Maximal dipole-dipole contributions for SSC (top)
and SLC (bottom) exchange couplings of different materials: Bulk
Fe, MnGe for Mn atoms at sites i and j (ri j = 0.61) and three layers
of gold on iron (Au on Fe) for Fe atoms at sites i and j (ri j = 0.71).
For the dipole-dipole interactions we use for the antisymmetric off-
diagonal elements the same notation as for DMI-like parameters, i.e.,
Di j(i),dip. From Eq. (23) it directly follows that the antisymmetric off-
diagonal elements of both tensors (and hence the DMI and SLC-
DMI) vanish for all materials.

Fe (ri j = 0.87) Fe (ri j = 1) MnGe Au on Fe

SSC Jdiag−s
i j 18.051 10.090 18.187 21.414

Jdiag−a
i j 0.0 0.015 0.009 0.0091

Joff−s,x
i j 0.013 0.0 0.012 0.079
|Dx

i j | 0.0 0.0 0.151 0.272

Jdiag−s
i j,dip 0.0 0.013 0.004 0.006

Jdiag−a
i j,dip 0.00 0.039 0.006 0.008

Joff−s,x
i j,dip 0.040 0.0 0.008 0.015

|Dx
i j,dip| 0.0 0.0 0.0 0.0

SLC Jdiag−s
i j,i 9.792 1.858 9.792 7.693

Jdiag−a
i j,i 0.012 0.010 0.010 0.020

Joff−s,x
i j,i 0.019 0.007 0.009 0.013
|Dx

i j | 0.197 0.380 0.618 2.941

Jdiag−s
i j,i,dip 0.023 0.034 0.007 0.011

Jdiag−a
i j,i,dip 0.070 0.102 0.015 0.033

Joff−s,x
i j,i,dip 0.046 0.068 0.013 0.005

|Dx
i j,i,dip| 0.0 0.0 0.0 0.0

contribution is given by

Jxx
i j,dip = − μ0

4π |ri j |3 mz,0
i mz,0

j

[
3
(
r̂x

i j

)2 − 1
]

Jyy
i j,dip = − μ0

4π |ri j |3 mz,0
i mz,0

j

[
3
(
r̂y

i j

)2 − 1
]

Jxy
i j,dip = Jyx

i j,dip = − μ0

4π |ri j |3 mz,0
i mz,0

j 3 r̂x
i j r̂

y
i j

and the SLC contribution, here for a displacement in μ = x
direction, is

Jxxx
i j,i,dip = −3μ0

4π
mz,0

i mz,0
j

3rx
i j

((
ry

i j

)2 + (
rz

i j

)2) − 2
(
rx

i j

)3

|ri j |7

Jyyx
i j,i,dip = −3μ0

4π
mz,0

i mz,0
j

rx
i j

((
rx

i j

)2 − 4
(
ry

i j

)2 + (
rz

i j

)2)
|ri j |7

Jxyx
i j,i,dip = Jyxx

i j,i,dip

= 3μ0

4π
mz,0

i mz,0
j

ry
i j

(
4
(
rx

i j

)2 − (
ry

i j

)2 − (
rz

i j

)2)
|ri j |7 .

The dipole-dipole contribution is normally considered to be
very small and negligible. Exemplary values are shown in
Table II. It can be seen that the dipole-dipole contribution
is even larger than the values obtained from the perturbative
method for some SSC as well as SLC components for some
of the materials considered.

To conclude, we have shown that dipole-dipole interactions
can make, depending on the material under consideration, a
significant contribution to the SLC parameters. This is partic-
ularly interesting for the simulation of these materials, e.g., via
combined spin-lattice molecular dynamics (MD) simulations:
When modeling the combined spin and lattice dynamics, the
largest SLC contributions should be taken into account prefer-
entially. Our results show that one has to carefully consider the
various contributions for each material. In particular, we have
shown that for some materials the dipole-dipole interaction
may even play a leading role, as it has already been assumed
in spin-lattice MD simulations, e.g., by Aßmann et al. [25] or
Strungaru et al. [28].

V. NUMERICAL RESULTS

A. SLC tensors for collinear ferro- and antiferromagnets

Here, we will analyze the SLC parameters systematically
for various materials with different magnetic structures, inves-
tigate the role of spin-orbit coupling, and compare the SLC
contributions for bulk geometries and freestanding mono-
layers as well as different substrate materials for deposited
magnetic films. Furthermore, we will shine light on the role of
different elements on the strength of spin-lattice interactions.
Finally, we show that the resulting SLC contributions can be
connected to modifications of the phonon dispersion due to
spin-lattice coupling as proposed by Ref. [31]. If not stated
differently calculations are performed using LDA-DFT with a
k mesh of 2000 points and lmax = 3.

1. Dependence on magnetic structure: FePt vs CrPt

FePt and CrPt have a very similar lattice structure, both be-
ing ordered in the L10 phase. The lattice constants are aFePt

lat =
2.72 Å and aCrPt

lat = 2.67 Å. However, the magnetic properties
of both materials are very different. This can be observed in
Fig. 4: Whereas FePt is ferromagnetic with strong FM near-
est neighbor Fe-Fe interactions, with Jdiag−s

i j = 8.5 meV for
in-plane neighbors, CrPt is strongly antiferromagnetic with
negative nearest Cr neighbor coupling Jdiag−s

i j = −4.4 meV
for in-plane neighbors [53]. The induced magnetic moment
of Pt is rather small and hence also the respective SSC with Pt
at sites i or j are small [54]. Both materials are anisotropic in z
direction with a diagonal antisymmetric part up to |Jdiag−a

i j | =
1
2 |Jxx

i j − Jzz
i j | = 0.32 meV in FePt and |Jdiag−a

i j | = 0.026 meV
in CrPt for out-of-plane neighbors, which is relatively large
compared to the DMI and symmetric off-diagonal contribu-
tions.

In Fig. 5 the SLC parameters for FePt and CrPt are pre-
sented. In the case of FePt the isotropic SLC part decays
exponentially, starting from |Jdiag−s,x

i j, j | = 1
3 |Jxx

i j, j + Jzz
i j, jls| =

12.8 meV/a.u. for neighboring Fe atoms. The same behavior
is observed for CrPt with slightly smaller isotropic parts up
to |Jdiag−s,x

i j, j | = 8.6 meV/a.u. for neighboring Cr atoms. Note

that Jdiag−s,x
i j, j can be positive and negative for ferromagnetic

as well as antiferromagnetic materials, depending on the po-
sition of atom j with respect to the displaced atom i. The
second-largest SLC contributions are the on-site antisymmet-
ric diagonal parts and the DMI contribution (both around 4%
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FIG. 4. SSC contributions in FePt (circles) and CrPt (diamonds)
for atoms i and j being Fe/Cr atoms, compared to the values for
bcc Fe (crosses). FePt is ferromagnetic and hence the isotropic part
Jdiag−s

i j = 1
2 (Jxx

i j + Jzz
i j ) is positive. FePt is anisotropic in z direction,

i.e., the diagonal antisymmetric part Jdiag−a
i j = 1

2 (Jxx
i j − Jzz

i j ) is rela-
tively large. The off-diagonal symmetric part is given by Joff−s

i j =
1
2 (Jxy

i j + Jyx
i j ).

of the isotropic part) for nearest Fe sites in FePt and the DMI
contribution (around 0.6% of the isotropic part) in CrPt for
nearest Cr neighbors. However, there is a relatively large SLC-
DMI contribution for neighbors with ri j = (0, 1.0, 1.4) alat ,
e.g., with |Dx

i j, j | = 1
2 |Jyz

i j, j − Jzy
i j, j | = 0.58 meV/a.u. (|Dx

i j, j | =
0.28 meV/a.u.) compared to |Jdiag−s,x

i j, j | = 0 meV/a.u. for the

same neighbors or |Jdiag−s,x
i j, j | = 0.65 meV/a.u. (|Jdiag−s,x

i j, j | =
0.29 meV/a.u.) for other neighbors with the same distance
from atom i for FePt (CrPt). Compared to Fe, the SLC-
DMI values are in the same order of magnitude, whereas
the anisotropic parts of bcc Fe Jdiag−a

i j and Jdiag−a
i j, j are much

smaller. Note that here we consider the asymmetry of the
diagonal parameters between x and z directions, instead of x
and y considered in Ref. [31]. Hence, it seems that a material
with strong magnetic anisotropy (i.e., large Jdiag−a

i j ) has an
antisymmetric diagonal part which is more affected by the
displacement than for materials with small anisotropy parts.

Since the SPRKKR program [55] used for the present in-
vestigations allows us to scale the strength of the relativistic
spin-orbit correction, it is possible to investigate the role of
the SOC on the atoms, which mediate the SLC interaction.
This is shown in Fig. 6. It presents the effect of the SOC on
the SLC for nearest Fe neighbors (left) and on pairs of Fe
atoms i and j up to ri j � 2 alat for a lattice distortion at a Pt
site k with rik = (0.50, 0.50, 1.41) alat (right). It can be seen
that the SLC-DMI exhibits only a weak dependence on the
strength of the SOC at the Fe sites, but a strong dependence on
the SOC of the Pt atoms: The z component of the SLC-DMI
decreases by almost one order of magnitude when the SOC
on the mediating Pt atom is scaled to zero. This indicates that
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FIG. 5. Maximal SLC contributions for each distance ri j in FePt
(empty circles) and CrPt (filled diamonds) for atoms i and j be-
ing Fe/Cr atoms, compared to the values for bcc Fe presented in
Ref. [41] (crosses). FePt as well as CrPt has a large anisotropy in
z direction, i.e., the antisymmetric part of the diagonal components
Jdiag−a,μ

i j,k = 1
2 (Jxx,μ

i j,k − Jzz,μ
i j,k ) is relatively large.

the mediating atoms play a key role for the influence of the
spin-lattice coupling.

2. Dependence on dimensionality: Bulk iron, freestanding
iron monolayer, and substrates

Here, we compare the SSC and SLC parameters for ma-
terials with different dimensionality. We will compare the
exchange interactions for bulk Fe, freestanding monolayers
with their surface perpendicular to the [001] and [111] direc-
tions, and substrate materials with a Fe layer deposited on a
metal M(111) surface and M = Ir. From Tables III and IV it
can be seen that the dimensionality of the considered material
affects both SSC and SLC significantly: For the SSC, the
isotropic exchange of the two-dimensional freestanding film
is more than twice as large as for the bulk material. Apart
from that, all other contributions vanish or are much smaller

0 0.5 1

SOC

0.0

0.2

0.4

D
z
,μ

=
x

ij
,k

(m
eV

a.
u.

)

scale SOC at Fe

1 0.5 0

SOC

scale SOC at Pt

FIG. 6. Dependence of SLC-DMI Dz,μ=x
i j,k in FePt for all nearest

neighbors on the strength of SOC, scaled at the Fe (left) or Pt (right)
sites, for iron atoms at sites i and j. The displaced atom is a Pt atom
with rik = (0.5, 0.5, 0.5) alat .
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TABLE III. Maximal absolute SSC contributions in meV in bulk
Fe, freestanding monolayers with their surface perpendicular to the
[001] and [111] directions, and a deposited Fe film on Ir with its
surface perpendicular to the [111] direction. Note that the contri-
butions come from different neighbors with different distances, not
necessarily nearest neighbors.

SSC bulk Fe Fe(001) Fe(111) Fe on Ir

Jdiag−s
i j 11.39 25.29 24.02 7.35

Jdiag−a
i j 0.00 0.05 0.03 0.07

Joff−s
i j 0.01 0.00 0.03 0.08

Dz
i j 0.00 0.00 0.00 1.84

than the isotropic part in both materials. In contrast, the SLC
have other significant contributions to the SLC tensor apart
from the isotropic exchange. In both materials the SLC-DMI
Dμ

i j, j is the second largest contribution to the SLC tensor, as
reported for bulk Fe by Ref. [31]. Even when comparing to the
SSC contributions, Dμ

i j, j · uμ
j gives the second largest energy

contribution for a realistic displacement of, e.g., around 2%
of the lattice constant. This term hence can significantly con-
tribute to angular momentum transfer between the spin system
and the lattice. An exception is the SLC-DMI contribution for
an out-of plane displacement Dz

i j, j for Fe(001). Furthermore,

there is a relatively large SLC anisotropic part Jdiag−a,x
i j, j and

Jdiag−a,y
i j, j in the monolayer, but not in the bulk material, which

can also be related to spin-lattice angular momentum transfer.
Note that the contributions in Tables III and IV come from
different neighbors with different distances, not necessarily
nearest neighbors.

For bulk Fe, displacements in x, y and z directions have the
same maximal absolute contributions. Note, however, that this
symmetry is actually broken since the magnetization direction
(here: z direction) is taken into account. This becomes clear
when considering the individual tensor elements, with, e.g.,
Jxy,x

i j, j = 0.22 meV
a.u.

�= Jxy,z
i j, j = 0.02 meV

a.u.
. In the monolayer, where

TABLE IV. Maximal absolute SLC contributions for j = k and
displacement in x direction in meV/a.u. in bulk Fe, freestanding
monolayers with their surface perpendicular to the [001] and [111]
directions, and a deposited Fe film on Ir with its surface perpendicu-
lar to the [111] direction.

SLC μ bulk Fe Fe(001) Fe(111) Fe on Ir

Jdiag−s,μ
i j, j x 9.79 18.90 32.09 10.80

y 9.79 18.90 27.79 10.54
z 9.79 0.09 0.29 9.61

Jdiag−a,μ
i j, j x 0.01 0.22 0.03 0.15

y 0.01 0.27 0.03 0.17
z 0.01 0.03 0.0 0.15

Joff−s,μ
i j, j x 0.02 0.05 0.03 0.14

y 0.02 0.05 0.04 0.12
z 0.02 0.00 0.0 0.15

Dz,μ
i j, j x 0.38 0.47 0.28 2.62

y 0.38 0.47 0.33 2.28
z 0.04 0.00 0.30 0.31
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FIG. 7. Comparison of SLC contributions for a surface layer
system consisting of a Fe monolayer on Ir(111) and a free standing
Fe(111) monolayer. Sites i and j are occupied by a Fe atom.

the magnetization is aligned in the out-of-plane direction, the
asymmetry of x/y directions compared to the z direction is
much larger and can also be observed in the maximal SLC
tensor contributions in Table IV.

The effect of the dimensionality of the considered system
on the SSC and SLC contributions can also be observed when
investigating the transition between 2D monolayers to sub-
strate system consisting of a Fe monolayer with its surface
perpendicular to (111) on three layers of a metal (here Ir).
The respective spin-spin and spin-lattice exchange coupling
contributions for i being a Fe atom and i = k are shown in
Tables III and IV as well as in Fig. 7. Further details on the
calculations can be found in the next section. It can be seen
that the results for the freestanding monolayer and the sub-
strate materials strongly differ in the spin-spin and spin-lattice
case. For the SSC and SLC isotropic parts, the monolayer has
stronger exchange contributions for most configurations of i
and j for the SSC and SLC. In contrast, other contributions
related to anisotropy and angular momentum transfer [31], are
dominated by the substrate material for SSC and SLC and all
distances between atoms i and j. In particular, there is a finite
z component of the SSC-DMI, which is related to the lack
of inversion symmetry in the substrate. For the monolayer,
Dz

i j = 0 as already presented in Table III. Also in the SLC-
DMI case the contributions of the substrate dominate.

3. Dependence on element types: Substrates

So far we focused on the properties of the SLC parame-
ters Ji j,k assuming k = j, characterizing the modification of
the exchange interactions between the atoms on sites i and
j, when one of the atoms is displaced. This, however, does
not imply that an impact of displacements of the atoms on
sites i �= k �= j can be neglected, although the role of these
displacements depends on the material, in particular on the

115176-9



HANNAH LANGE et al. PHYSICAL REVIEW B 107, 115176 (2023)

TABLE V. Absolute values of SLC-DMI in three layers of M =
Ir, Pt, Au on Fe for displacements μ and a Fe atom at sites i and j.

displ. μ M Dx,μ
i j,i Dy,μ

i j,i Dz,μ
i j,i

∣∣Dμ
i j,i

∣∣
x Ir 0.49 0.36 2.62 2.69

Pt 1.23 0.05 0.55 1.35
Au 0.99 0.44 2.76 2.97

y Ir 0.31 0.68 2.25 2.37
Pt 0.60 1.15 0.69 1.46
Au 1.21 0.22 3.07 3.30

z Ir 1.77 4.03 0.31 4.41
Pt 0.11 0.98 0.38 1.06
Au 0.62 3.56 0.04 3.61

origin of the exchange interaction. To discuss this contribution
we consider 2D materials consisting of a Fe monolayer (ML)
deposited on a M(111) surface and investigate the role of
the type of substrate M = Ir, Pt, Au. The elements Ir, Pt,
and Au belong to the sixth period of the periodic table and
to neighboring groups 9, 10, and 11. Their electronic con-
figurations are [Xe]4f145d76s2 (Ir), [Xe]4f145d96s1 (Pt), and
[Xe]4f145d106s1 (Au). We model the system by a 3ML slab,
i.e., calculations were performed for a supercell consisting of
two vacuum layers, one Fe surface layer and three M layers
representing the substrate. Hence, the considered system actu-
ally consists of an infinite stack of substrate layers, separated
by two vacuum layers. The number of separating vacuum
layers between the surface layers is sufficiently large and
the interlayer interactions sufficiently small to consider the
system as an isolated surface layer-substrate system. The max-
imal nearest-neighbor SLC-DMI values for other substrate
materials with substrates M = Ir, Pt, and Au are shown in
Table V. It can be seen that the substrates M = Ir and M = Au
have a SLC-DMI with similar absolute values and the same
largest components for all displacements. For Pt, the results
are in general much smaller, with different largest SLC-DMI
components.

The contribution of SSC and SLC with Ir atoms as one
of the interacting atoms (e.g., atom j in Fig. 7) are zero due
to the vanishing magnetic moment of Ir atoms. However, the
configuration of the Ir atoms can strongly affect the spin-
lattice exchange strength. This is visualized in Fig. 8 for a
specific configuration with an Ir atom (red) located in the
first Ir layer on the Fe layer and displaced in x direction.
Here, the diagonal SLC contributions are not negligible, i.e.,
Jdiag−s

i j,k (r1) = 3.30 meV
a.u.

and Jdiag−s
i j,k (r2) = −0.40 meV

a.u.
. For the z

component of the SLC-DMI we find Dz
i j,k (r1) = 0.16 meV

a.u.
and

Dz
i j,k (r2) = 0.39 meV

a.u.
.

B. Spin-lattice effects in frustrated antiferromagnets

As seen in the previous section, the magnetic properties
determined by the spin-spin exchange interaction tensor Ji j

can change significantly when displacing atoms i and j, or a
third atom k �= i, j. This becomes particularly interesting in
frustrated antiferromagnets where the magnetic configuration
depends extremely sensitively on changes of Ji j for neighbors
j in different directions.
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0.00
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2

FIG. 8. SLC contributions for a surface layer system consisting
of a Fe monolayer on Ir(111). Fe atoms are represented by blue dots
with the central atom being atom i and atoms 1 (2) being j.The red
dot and grey dots represent the displaced and the other Ir atoms in
the first substrate layer.

To discuss this issue, we consider in this section the
spin-lattice interactions for CuCrO2 [6], which belongs to a
family of triangular lattice antiferromagnets (TLA) ACrO2,
exhibiting interesting magnetic and magnetoelectric and
magnetoelastic properties determined by geometrical spin
frustration [4,5,56–58]. This compound is characterized by
a leading AFM nearest-neighbor (NN) Cr-Cr interaction and
weak interactions for an increasing distance between the in-
teracting Cr atoms. As is discussed in the literature, the NN
Cr-Cr interactions in these materials may be treated in terms
of two competing contributions [4,59–63]: (i) direct anti-
ferromagnetic interactions of neighboring Cr atoms and (ii)
indirect ferromagnetic superexchange interactions mediated
by O atoms (since Cr1 − O − Cr2 form an angle of ≈90◦),
indicating that the leading contribution is the direct Cr-Cr
interaction. As a consequence, different SLC parameters can
be contributed by different types of exchange interactions (see
Appendix D).

Considering the diagonal symmetric SLC parameters
Jdiag−s,μ

i j,k = 1
2 (Jxx,μ

i j,k + Jyy,μ
i j,k ), the parameters with k character-

izing the position of an atom O can be associated mainly with
the superexchange mechanism since a displacement of atom
O does not change the Cr-Cr distance. On the other hand, the
Jdiag−s,μ

i j, j parameters are connected first of all with the direct
exchange.

First we will discuss the properties of the SLC parame-
ters Jdiag−s,μ

i j, j = 1
2 (Jxx,μ

i j, j + Jyy,μ
i j, j ) corresponding to k = j. They

characterize the change of the Cr-Cr exchange interaction due
to displacement of one of the interacting Cr atoms, or alterna-
tively, they may be seen as the parameters characterizing the
force f i j, j acting on atom j, induced by spin tiltings on sites

i and j, having the components f μ
i j, j ∼ Jdiag−s,μ

i j, j . It is instruc-
tive to represent the SLC parameters in terms of longitudinal
and transverse displacements, or longitudinal and transverse
induced forces. The longitudinal force on atom j relative to
atom i is oriented along the êi j = ri j/|ri j | direction, that gives

Jdiag−s,lng
i j, j = Jdiag−s,x

i j, j (x̂ · êi j ) + Jdiag−s,y
i j, j (ŷ · êi j ). (24)
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FIG. 9. Longitudinal Jdiag−s,lng
i j, j (left) and transverse Jdiag−s,trans

i j, j

(right) SLC parameters for CuCrO2, defined in Eqs. (24) and (25)
in meV/a.u.

The transverse forces perpendicular to this direction are char-
acterized by corresponding SLC parameters given by

Jdiag−s,trans
i j, j = Jdiag−s,x

i j, j (x̂ · [êi j × ẑ])

+ Jdiag−s,y
i j, j (ŷ · [êi j × ẑ])

= Jdiag−s,x
i j, j (ŷ · êi j ) − Jdiag−s,y

i j, j (x̂ · êi j ). (25)

These nearest-neighbor longitudinal (left) and transverse
(right) SLC parameters for CuCrO2 are shown in Fig. 9. As
one can see, the longitudinal SLC are finite and the same for
all nearest neighbors, while the transverse SLC parameters
are equal to zero. This is a consequence of the symmetry of
the system including a threefold rotation axis as well as σxz

and σyz mirror planes. This implies that the forces on atoms
j in CuCrO2, induced by spin tiltings on nearest-neighbor
Cr sites via J diag−s,μ

i j, j interactions are oriented along the lines
connecting these two atoms.

As a next step, we discuss the three-site SLC parameters
J diag−s,μ

i j,k corresponding to nearest-neighboring Cr atoms in
the positions i and j and the O atom on site k, which originate
from the superexchange mechanism (Appendix D). These
parameters are presented in Fig. 10 for μ = {x, y, z}. Filled
gray circles in the left column correspond to the O layer
below and empty circles in the right column correspond to
the O layer above the Cr layer in CuCrO2. These parameters
have the same order of magnitude as the SLC related to the
displacement of one of the Cr atoms at k = j. Again, one can
observe the impact of the crystal symmetry on the SLC param-
eters, which yields different values for atoms k located above
and below the Cr layer. This contribution may be important
since it represents the impact of the spin-lattice coupling on
the phonon spectra, in addition to the local spin-lattice term
[33,34] describing the interplay of spin degree of freedom
with the displacements of the nonmagnetic atoms.

In summary, we can see comparable values of the SLC pa-
rameters J diag−s,μ

i j,k in the cases of k = j and k �= j, indicating
in general the same significance of both of them for a possible
lattice distortion or phonon modes modification concomitant
to magnetic ordering in the system.

To complete the discussion, we represent also the proper-
ties of the DMI-like SLC parameters for CuCrO2. The Dα,μ

i j,k
components are presented in Table VI for three different
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FIG. 10. Symmetric SLC Jdiag−s,μ
i j,k in CuCrO2 for Cr sites at i and

j and for a displacement in μ = x, y, z directions (first, second, third
row) at a O site k in the layer below (solid dots, left column) and
above (empty dots, right column) the Cr layer (in meV/a.u.).

directions of displacement x, y, z, respectively, for the case
k = j [i.e., k site occupied by Cr (top)] and k �= j [i.e., k site
occupied by O (bottom)]. For convenience, for every pair of
nearest-neighbor Cr atoms i and j, one can consider displace-
ments of the O atom within the corresponding planes, either

TABLE VI. The DMI-like SLC parameters for CuCrO2Dα,μ

i j,k :
with the site k = j, i.e., occupied by Cr (top) and k �= j, i.e., oc-
cupied by O (bottom), for three different directions of displacement
of the nearest-neighbor Cr and O atoms, i.e., x, y, z (see Fig. 10).

x y z
μ Cr Cr Cr

Dx,μ
i j, j −0.35 0 −0.15

Dy,μ
i j, j 0.0 −0.04 0.0

Dz,μ
i j, j −0.08 0.0 −0.79

μ x (a) y (b) z (c)

Otop(l) Obot (r) Otop (l) Obot (r) Otop (l) Obot (r)

Dx,μ
i j,k −0.26 −0.26 0 0 −0.21 −0.21

Dy,μ
i j,k 0 0 0.012 0.012 0 0

Dz,μ
i j,k −0.06 −0.06 0 0 0.64 0.64
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along the Ri j vector or perpendicular to it. Therefore, in both
cases, top and bottom, it is sufficient to see the properties of
the DMI-like parameters between the Cr atoms connected by
vector Ri j = (0, a, 0) (i.e., r̂i j = ŷ). Again, these parameters
can be seen as a measure for the forces on atoms j (top) and
k (bottom), induced by spin tiltings via different components
of DMI-like SLC. As in the case of diagonal symmetric SLC
parameters, one can see that Dα,μ

i j,k are comparable in the cases
of k = j and k �= j, i (where the k site occupied by the O
atom), while the DMI-like parameters are smaller by about
two orders of magnitude.

VI. SUMMARY

To conclude, we have provided a systematic analysis of
spin-lattice interactions in collinear ferromagnets and antifer-
romagnets as well as frustrated AFMs. It was demonstrated
that the crystal structure, the magnetic configuration, and
the dimensionality of the material under consideration de-
termine the strength of the coupling between the spins and
the lattice. Furthermore, relativistic effects give rise to non-
vanishing components of the spin-lattice coupling tensor that
can be connected to a two-site spin-lattice anisotropy and a
spin-lattice Dzyaloshinskii-Moriya interaction. Our results are
particularly interesting for modeling magnetic materials via
combined spin-lattice molecular dynamics simulations since
we show that different contributions to the SLC tensor can be
relevant depending on the material under consideration. For
some materials, even dipole-dipole interactions may have a
significant impact on the SLC parameters.

By calculating the respective spin-lattice interactions for
CuCrO2 compounds, it was demonstrated that the modifica-
tion of the spin-spin counterparts is significantly large during
the structural transition in these systems and hence might
give insights into the magnetic transition that happens simul-
taneously. The results are benchmarked against calculations
performed with embedded clusters, which is so far the most
accurate scheme to calculate spin-lattice interactions from
first principles.
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APPENDIX A: SLC FOR NEXT-NEAREST NEIGHBORS

In this section the results for the change of the diagonal and
off-diagonal components of the exchange coupling tensor are
presented for next-nearest neighbors j of atom i with |ri j | =
1.0 alat . In contrast to the nearest neighbors, the investigation
of the next-nearest neighbors has the feature that they lie in
the x, y, or z directions and not in a diagonal direction. Hence,
the dependence of the modification of Jαβ

i j on the direction of
the distance vector ri j with respect to the displacement can be
accessed directly.

In Table VII the results for the three-site SLC parameters
calculated from 27 an 51 atomic clusters for a displacement of
0.005 alat in the x direction are compared to the perturbative
approach. As for the nearest neighbors, the parameters for

TABLE VII. Average absolute value of the off-diagonal SLC pa-
rameters Jdiag,x

i j,i = 1
2 (Jxx,x

i j,i + Jyy,x
i j,i ) (top) and Joff,x

i j,i = 1
2 (Jxy,x

i j,i + Jyx,x
i j,i )

(bottom) in meV/a.u. for next-nearest neighbors, i = k and a dis-
placement in x direction in bcc Fe obtained by the embedded cluster
(EC) method for clusters with 27 and 51 atoms and for the closed
SLC expressions (averages over the values for the neighbors listed in
each line). For the EC method ux

i = 0.005 alat was used.

27 atoms EC 51 atoms EC PA

(−1, 0, 0) −3.39 −3.36 −1.86
(0, ±1, 0) −0.03 −0.03 0
(0, 0, ±1) −0.03 −0.03 0
(−1, 0, 0) 3.159 3.12 1.86
neighbor
(−1, 0, 0) −0.09 −0.09 0
(0, −1, 0) −0.28 −0.28 0.38
(0, 0, ±1) 0 0 0
(0, −1, 0) 0.28 0.28 0.38
(−1, 0, 0) 0.09 0.09 0

different cluster sizes agree within an accuracy up to the
second digit. However, in contrast to the nearest-neighbor case
we find larger differences in the magnitudes of the embedded
cluster and perturbative parameters. Nevertheless, the results
agree quantitatively and show leading SLC contributions be-
tween the same next-nearest neighbors.

The isotropic part shown in Fig. 11 is mainly determined
by the next-nearest neighbors j with ri j ‖ ui. In contrast,
the off-diagonal contributions have the largest contributions
from ri j ⊥ ui, e.g., for a displacement ux

i in the perpendicular
direction ry

i j . This can be seen in Fig. 12. Furthermore, one
can already observe that Jxy,x

i j,i �= Jyx,x
i j,i (the latter is not shown

here), which gives rise to an anti-symmetric (Dzyaloshinskii-
Moriya) interaction already discussed in Ref. [31].
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FIG. 11. Modification of the diagonal exchange couplings of
next-nearest neighbors for embedded clusters (EC) with 27 atoms
(dotted lines) and the perturbative method (PA, solid lines) for a
displacement in x direction in bcc Fe. The color code of the atoms j
is visualized in the inset figure: Red circles correspond to neighbors
with rx

i j < 0, blue diamonds to rx
i j > 0 and gray hexagons to rx

i j = 0.
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FIG. 12. Modification of the off-diagonal exchange couplings of
next-nearest neighbors for embedded clusters (EC) with 27 atoms
(dotted lines) and the perturbative method (PA, solid lines) for a dis-
placement of one atom in x direction for nearest neighbors in bcc Fe.
The color code of the atoms j is visualized in the inset figure: Dark
red circles correspond to neighbors j with ri j = (0, −1, 0), light red
squares to ri j = (−1, 0, 0), dark blue diamonds to ri j = (0, 1, 0),
light blue crosses to ri j = (1, 0, 0), and gray hexagons to rx

i j = 0.

APPENDIX B: FOURIER TRANSFORMED SLC

Following a similar procedure as, e.g., proposed by
Refs. [23,31,64] the magnetoelastic anisotropy energy due to
DMI will be expressed in terms of spin creation and anni-
hilation operators. Introducing the spin lowering and raising
operators into the DMI part of the SLC Hamiltonian Eq. (1)
yields

HSLC−DMI = 1

S2

∑
i j

∑
k,μ

[
Dμ

i j,k (Ŝi × Ŝ j )
]
uμ

k

= i

2S2

∑
i jk,μ

[
D−μ

i j,k

(
Ŝz

i Ŝ+
j − Ŝ+

i Ŝz
j

)
+ D+μ

i j,k

(
Ŝ−

i Ŝz
j − Ŝz

i Ŝ−
j

)
+ Dzμ

i j,k (Ŝ+
i Ŝ−

j − Ŝ−
i Ŝ+

j )
]
uμ

k ,

where the orientation vectors of the magnetic moments from
the previous sections are replaced by normalized spin opera-
tors Ŝi, j → 1

S Ŝi, j . This can be rewritten in terms of creation
and annihilation operators when using a Holstein-Primakoff
transformation [65] to

HSLC−DMI = i

S

∑
i jk,μ

[
D−μ

i j,k

√
S

2
(b̂ j − b̂i ) + D+μ

i j,k

√
S

2
(b̂†

i − b̂†
j )

+ Dzμ
i j,k (b̂ib̂

†
j − b̂†

i b̂ j )

]
uμ

k .

By applying a Fourier transformation for the bosonic creation
and annihilation operators and lattice distortions one can de-
fine the Fourier transforms of the DMI components as follows:

Dx(y),μ
i,q =

∑
R ji,Rki

Dx(y),μ
i j,k eiq·R ji e−iq·Rki (B1)

and

Dz,μ
i,kk′ =

∑
Rik ,R jk

Dz,μ
i j,ke−ik·Rik eik′·R jk . (B2)

All together this results in

HSLC−DMI = 2i√
2S

∑
μ

∑
q

[
D−μ

q b̂q − D+μ
−q b̂†

−q

]
uμ

q (B3)

− 2i√
NS

∑
k,k′

∑
μ

Dzμ
k,k′ b̂

†
kb̂k′uμ

(k′−k)
+ . . . . (B4)

As discussed by Refs. [22,23,64] the first two terms D−μ
q b̂q

(D+μ
−q b̂†

−q) describe the interaction of a phonon and magnon,
where a magnon is annihilated (created). The last term in
Eq. (B4), Dzμ

k,k′ b̂
†
kb̂k′ , represents the magnon-number conserv-

ing scattering processes since one magnon is annihilated
and one is created [23]. Angular momentum can only be
transferred between spins and lattice by magnon-number non-
conserving processes (i.e., D−μ

q b̂q and D+μ
−q b̂†

−q).
To compare the SLC-DMI to other contributions of the

SLC tensor a similar manipulation including the Fourier trans-
formation of spin orientation vectors and displacements yields

HSLC = 1√
N

∑
kk′,q

∑
αβ,μ

Jαβ,μ

k,k′ eα
k eβ

k′uμ
q δk,k′+q + . . . , (B5)

with

Jαβ,μ

i,kk′ =
∑

Rik ,R jk

Jαβ,μ

i j,k e−ik·Rik eik′ ·R jk . (B6)

Analogously, we find for the on-site parameters with i = j
that k′ = 0 in Eq. (B5) and

Jαβ,μ
i,q =

∑
Rik

Jαβ,μ

ii,k e−iq·Rik . (B7)

In inversion symmetric crystals all contributions D±μ
q , Dzμ

k,k′ ,

Jαβ,μ

k,k′ and Jαβ,μ
q are purely imaginary.

APPENDIX C: CONNECTION TO MAGNON
AND PHONON DISPERSIONS

To investigate the impact of spin-lattice interactions on
magnon and phonon modes the Fourier transformed spin-
lattice contributions can be calculated (for further details see
Ref. [31]). As an example, the results for Fe(001) are shown
in Fig. 13. In the top panel the Fourier transformed SLC-DMI

Dx(y),μ
i,q =

∑
R ji,Rki

Dx(y),μ
i j,k eiq·R ji e−iq·Rki , (C1)

in the middle and bottom panels the Fourier transformed SLC
related to on-site anisotropy

Jαβ,μ
i,q =

∑
Rik

Jαβ,μ

ii,k e−iq·Rik . (C2)

are presented. These quantities represent the modification
of magnon and phonon modes for a hybridization of these
modes. For further details see Appendix B and Ref. [41]. Note
that in contrast to the SLC presented in Table IV the Fourier
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FIG. 13. Imaginary part of SLC-DMI Im Dxμ
q (top), antisym-

metric diagonal elements Im Jdiag−a,μ
q (middle), and symmetric

off-diagonal elements Im Joff−s,μ
q (bottom) of the SLC parameters

in meV/a.u. for a Fe(001) monolayer, with μ = x, y, z, plotted for
q along high-symmetry lines of the Brillouin zone. The real part is
zero in all cases. Neighbors with ri j � 3.0 alat are considered.

transformations include the sum over neighboring atoms up
to a distance of 3.0 alat to atom i and different configurations
of the displaced atom. As discussed by Refs. [22,23,41,64]
the SLC-DMI Dx(y)μ

q describe the interaction strength of a
phonon and magnon, where a magnon is annihilated (created)
and hence contribute to an angular momentum transfer. This
is explained in further detail in Appendix B.

APPENDIX D: SPLITTING OF THE SLC ACCORDING
TO EXCHANGE MECHANISM

Representing the isotropic exchange coupling parameters
explicitly in terms of two contributions due to direct exchange

(de) and superexchange (se), Ji j = Jde
i j + Jse

i j , one can see their
impact also to different SLC parameters, assuming that Jde

i j
depends on the distance |Ri j | and Jse

i j depends on the angle
α[Cr1 − O(S) − Cr2]. Variation of the distance by u = δ|Ri j |
results in the change of the direct contribution

Jde
i j (u) = Jde,0

i j + ∂

∂u
Jde

i j (u)

∣∣∣∣
u=0

u , (D1)

as well as the superexchange contribution (taking into account
that the changes of the angle α due to displacement of Cr
atom)

Jse
i j (α + �α) = Jse,0

i j + ∂Jse
i j (α)

∂α

∣∣∣∣
u=0

∂α

∂u
u , (D2)

In the case of Ri j = (0, a, 0), the derivative ∂
∂u Jde

i j (u) is de-
fined by the SLC parameter J se,y

i j, j .
On the other hand, varying the distance |Rik| with k �= i( j),

e.g., along z direction, only the superexchange contribution
gets a contribution linear with respect to the displacement
vz

k = δRz
ik

Jse
i j (α + �α) = Jse

i j + ∂Jse
i j (α)

∂α

∣∣∣∣
u=0

∂α

∂vz
k

vz
k , (D3)

In this case the derivative ∂
∂vz

k
Jse

i j is defined by the SLC param-

eter J se,z
i j,k .
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