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Out-of-equilibrium finite-size scaling in generalized Kibble-Zurek protocols crossing quantum
phase transitions in the presence of symmetry-breaking perturbations
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We study the effects of symmetry-breaking perturbations in the out-of-equilibrium quantum dynamics of
many-body systems slowly driven by a time-dependent symmetry-preserving parameter, across the quan-
tum critical regime associated with a continuous quantum transition (CQT). For this purpose, we analyze
the out-of-equilibrium dynamics arising from generalized Kibble-Zurek (KZ) protocols, within a dynamic
renormalization-group framework allowing for finite-size systems. We show that the time dependence of generic
observables develops an out-of-equilibrium finite-size scaling (FSS) behavior, arising from the interplay between
the timescale ts of the parameter variations in the KZ protocol, the size L of the system, and the strength h of
the symmetry-breaking perturbation, in the limit of large ts and L. Moreover, scaling arguments based on the
first-order adiabatic approximation of slow variations in quantum systems allow us to characterize the approach
to the adiabatic regimes for some limits of the model parameters (for example, when we take ts → ∞ before
L → ∞), predicting asymptotic power-law suppressions of the nonadiabatic behaviors in the adiabatic limits.
This out-of-equilibrium FSS is supported by numerical analyses for the paradigmatic quantum Ising chain along
generalized KZ protocols, with a time-dependent transverse field crossing its CQT, in the presence of a static
longitudinal field breaking the Z2 symmetry.
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I. INTRODUCTION

Out-of-equilibrium phenomena are generally observed in
many-body systems when they are driven across phase tran-
sitions, where large-scale modes are not able to equilibrate
even in the limit of very slow changes of the system parame-
ters. We mention hysteresis, aging, out-of-equilibrium defect
production, etc., which have been addressed both theoretically
and experimentally, at classical and quantum phase transitions
(see, e.g., Refs. [1–19] and references therein). Many-body
systems develop out-of-equilibrium scaling behaviors when
slowly crossing a phase transition, in the limit of a large
timescale ts of the parameter variations driving the dynamics.
They generally depend on the nature of the transition, whether
it is driven by thermal or quantum fluctuations, whether it is
first-order or continuous, and in the latter case on some global
properties determining the universality class of the critical
behavior, see, e.g., Refs. [1,4,7,8,10,20–39].

In this paper, we analyze the out-of-equilibrium scaling
behaviors emerging when one time-dependent symmetry-
preserving parameter drives a quantum many-body system
across the quantum critical regime associated with a con-
tinuous quantum transition (CQT) in the presence of a
time-independent symmetry-breaking perturbation. For this
purpose, we consider generalized Kibble-Zurek (KZ) pro-
tocols [30], analyzing the dynamics arising from variations
of one symmetry-preserving model parameter w(t ) (de-
fined so wc = 0 is the critical point in the absence of the

symmetry-breaking perturbation) in the presence of a nonzero
symmetry-breaking perturbation, with a linear time depen-
dence w(t ) = t/ts and a large timescale ts, starting from the
ground state associated with the initial value w(ti). Analo-
gous protocols have been generally considered to discuss the
so-called KZ problem related to the defect production when
crossing continuous transitions from disorder to order phases,
see, e.g., Refs. [1,4,7,8,11,20–22,26,30–33,38,40–43].

As already noted in Ref. [30], the dynamic scenario
arising from KZ protocols slowly crossing critical regimes
is substantially affected by the presence of a nonzero
symmetry-breaking external field h corresponding to a rel-
evant renormalization group (RG) perturbation at the CQT.
Typically, when h �= 0, the correlation length ξ remains fi-
nite also at the critical value wc of the symmetry-preserving
Hamiltonian parameter w driving the CQT. However, at
the critical point w = wc, the correlation length ξ becomes
large for small values of h, diverging as ξ ∼ h−1/yh for
h → 0, where yh > 0 is an appropriate critical exponent,
see later. Therefore, for sufficiently small values of h the
quantum critical regime persists, and we can define an out-
of-equilibrium finite-size scaling (FSS) limit, which allows
us to get information on the universal effects of a small
symmetry-breaking perturbation within the quantum critical
region. Within this scaling regime, the symmetry-breaking
perturbation gives rise to a universal distortion of the KZ scal-
ing behavior observed in the absence of symmetry-breaking
terms.
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We investigate this issue within RG scaling frameworks
at CQTs [10,44–46], which allow us to develop an out-of-
equilibrium FSS theory [10,36,39] describing the intricate
interplay among the Hamiltonian parameters, the timescale
ts of the KZ protocol and the lattice size L, in the limits of
large ts and large L, allowing for the effects of a further (suf-
ficiently small) symmetry-breaking perturbation. The effects
of symmetry-breaking perturbations within KZ protocols have
been also addressed in Ref. [30], where the scaling behaviors
in the infinite-volume (thermodynamic) limit were analyzed.
Here we extend the characterization of the out-of-equilibrium
scaling behavior to finite systems in an appropriate out-of-
equilibrium FSS limit.

As a paradigmatic model where to test the out-of-
equilibrium FSS framework, we consider the quantum Ising
chain. We analyze the out-of-equilibrium FSS associated with
generalized KZ protocols and provide numerical results that
support it. In particular, we analyze the approach to the adi-
abatic regimes that can be realized for some limits of the
parameters, involving the timescale ts, the size of the sys-
tem, and the strength of the symmetry-breaking perturbation.
Within the same theoretical framework, we also discuss more
general KZ protocols in which both symmetry-preserving
and symmetry-breaking terms are time dependent and driven
across the transition point.

We remark that equilibrium and out-of-equilibrium FSS
frameworks generally simplify the study of the universal fea-
tures of critical behaviors. This is essentially related to the
fact that the general requirement of a large length scale ξ of
the critical correlations is not subject to further conditions on
the system size L. Indeed ξ ∼ L for FSS, while critical behav-
iors in the thermodynamic limit requires ξ � L. Therefore,
much larger systems are necessary to probe analogous length
scales ξ in the thermodynamic limit. The FSS scenarios are
often observed for systems of moderately large size, see, e.g.,
Refs. [10,28,36,39]. Therefore, FSS behaviors may be more
easily accessed by experiments where the coherent quantum
dynamics of only a limited number of particles or spins can be
effectively realized, such as experiments with quantum simu-
lators in laboratories, e.g., by means of trapped ions [47,48],
ultracold atoms [49,50], or superconducting qubits [51,52].

The paper is organized as follows. In Sec. II, we describe
generalized KZ protocols in the presence of a further static
symmetry-breaking perturbation. We also present paradig-
matic d-dimensional quantum Ising models and, in particular,
quantum Ising chains, which provide a theoretical laboratory
to address the out-of-equilibrium dynamics along generalized
KZ protocols. In Sec. III, we derive the out-of-equilibrium
FSS laws emerging along the generalized KZ protocols in
the presence of a static symmetry-breaking perturbation,
which are supposed to apply to generic CQTs. This scaling
framework is supported by numerical results for the quan-
tum Ising chain, based on exact diagonalization up to size
L ≈ 20. In Sec. IV, we discuss the approach to adiabatic
regimes, which are always possible in finite-size systems,
and/or in the presence of a further external relevant pertur-
bation, for a sufficiently large timescale ts of the parameter
variations. Section V presents a brief discussion of the more
general case in which the KZ protocol is further extended
to the case in which both the symmetry-preserving and the

symmetry-breaking parameters are time dependent. Finally, in
Sec. VI we summarize and draw our conclusions.

II. THE MODELS AND DYNAMIC PROTOCOLS

A. Kibble-Zurek protocols

We consider quantum many-body systems whose Hamilto-
nian can be written as

Ĥ (w, h) = Ĥc + w Ĥw + hĤh, (1)

where Ĥc is a critical Hamiltonian (i.e., with its parameters
tuned to their critical values), w is associated with a rele-
vant RG perturbation Ĥw preserving the symmetry, and the
parameter h is another parameter associated with a symmetry-
breaking term Ĥh, which gives rise to a further relevant RG
perturbation at the CQT. Both Hamiltonian parameters w and
h vanish at the critical point, i.e., wc = hc = 0. We assume
that for h = 0 the critical point wc = 0 separates disordered
(w < 0) and ordered (w > 0) phases. On the other hand,
nonzero values of the parameter h gives always rise to a
gapped phase.

For sufficiently small values of h (we will make this condi-
tion more precise below), quasiadiabatic passages through the
quantum critical regime associated with a CQT are obtained
by slowly varying w across wc = 0, following, e.g., the KZ
protocol:

(i) The quantum evolution of finite systems of size L starts
at the time ti from the ground state |�0(wi, h)〉 associated with
the initial value wi < 0 corresponding to the disordered phase.

(ii) Then the system evolves unitarily according to the
Schrödinger equation (we set the Planck’s constant h̄ = 1)

d |�(t )〉
dt

= −i Ĥ [w(t ), h] |�(t )〉,
|�(t = 0)〉 = |�0(wi, h)〉, (2)

with a linear time dependence of w(t ),

w(t ) = t/ts, (3)

up to a final value w f > 0, corresponding to parameter values
within the ordered phase. Thus we have ti = ts wi < 0 and
t f = ts w f > 0. The parameter ts of the KZ protocol represents
the timescale of the time dependence of the Hamiltonian pa-
rameter w.

Across a phase transition, in particular, in the absence of
further relevant perturbations, i.e., h = 0, the growth of an
out-of-equilibrium dynamics is inevitable in the thermody-
namic limit (i.e., L → ∞ before taking the critical limit) even
for very slow changes of the parameter w, because large-scale
modes are unable to equilibrate the long-distance critical cor-
relations emerging at the transition point. As a consequence,
when starting from equilibrium states at the initial value wi,
the system cannot pass through equilibrium states associated
with the values of w(t ) across the transition point, thus de-
parting from an adiabatic dynamics. Such a departure from
equilibrium develops peculiar out-of-equilibrium scaling phe-
nomena in the limit of large timescale ts of the time variation
of w(t ).

This out-of-equilibrium scenario substantially changes
in the presence of a finite nonzero symmetry-breaking
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perturbation, i.e., Hamiltonian Eq. (1) with h �= 0. This is es-
sentially due to the fact that the gap � does not generally close
when h �= 0. Indeed, at the critical point w = wc, � remains
finite in the large-L limit, behaving as � ∼ |h|ε (ε > 0) for
small h (standard RG arguments show that ε = z/yh, where
z and yh are appropriate critical exponents associated with
the universality class of the CQT [45]; see below). Therefore,
the adiabatic evolution through the ground states associated
with the instantaneous values of w(t ) can be always real-
ized for sufficiently large timescale ts. In the presence of
the symmetry-breaking perturbation h, a nontrivial out-of-
equilibrium FSS limit can be still defined by appropriately
rescaling h in the large-L limit, providing information for
sufficiently small values of h. This issue will be addressed
in the next sections within a general out-of-equilibrium FSS
framework for quantum many-body systems driven across
CQTs, see, e.g., Ref. [10].

It is worth mentioning that a related issue is the so-called
KZ problem, i.e., the scaling behavior of the amount of final
defects after slow passages through continuous transitions,
from the disorder phase to the order phase [1,4,7,8,10,11,20–
22,26,31–33,38–43]. The general features of the KZ scaling
and, in particular, the KZ predictions for the abundance of
residual defects, have been confirmed by several analytical
and numerical studies, see, e.g., Refs. [7,8,10,26,33,43] and
citing references, and by experiments for various physically
interesting systems, see, e.g., Refs. [15–18,53–65].

B. The quantum Ising models

As paradigmatic quantum many-body systems, we con-
sider the d-dimensional quantum Ising models in the presence
of transverse and longitudinal fields, described by the Hamil-
tonian

Ĥ (g, h) = −J
∑
〈xy〉

σ̂
(1)
x σ̂ (1)

y − g
∑

x

σ̂ (3)
x − h

∑
x

σ̂ (1)
x (4)

defined on a cubiclike lattice, where σ̂ (k)
x are the Pauli matrices

on the site x (k = 1, 2, 3 labels the three spatial directions),
and the first sum runs on the bonds 〈xy〉 of the lattice. In the
following, we consider quantum Ising systems of size L with
periodic boundary conditions (PBCs). We assume ferromag-
netic nearest-neighbor interactions with J = 1.

Transforming the spin operators as σ̂ (1)
x → −σ̂ (1)

x and
σ̂ (3)

x → σ̂ (3)
x , the Hamiltonian Ĥ (g, h) maps into Ĥ (g,−h),

thus Ĥ is Z2 symmetric for h = 0. The quantum Ising models
are always gapped in the presence of a nonzero symmetry-
breaking term, i.e., for h �= 0. They undergo a CQT at g =
gc and h = 0, whose quantum critical behavior belongs to
the (d + 1)-dimensional Ising universality class, due to the
quantum-to-classical mapping, see, e.g., Refs. [10,45]. The
parameters w ≡ gc − g and h are relevant at the CQT, being,
respectively, associated with the leading even (preserving the
global Z2 symmetry) and odd (breaking the Z2 symmetry) RG
perturbations at the (d + 1)-dimensional Ising fixed point.

Several exact results are known for one-dimensional mod-
els, such as the location of the critical point, at gc = 1, and the
RG dimensions of the Hamiltonian parameters w and h, which
are yw = 1/ν = 1 and yh = 15/8, respectively. Accurate es-
timates are available for two-dimensional quantum Ising

systems, see, e.g., Refs. [66–72]; in particular, Ref. [70] re-
ports yw = 1/ν = 1.58737(1) and yh = 2.481852(1). For d =
3, the critical exponents take their mean-field values, yw = 2
and yh = 3, however, the critical singular behavior presents
additional multiplicative logarithmic factors [10,45,66]. The
length scale ξ of the critical modes behaves as ξ ∼ |w|−ν

for h = 0, and ξ ∼ |h|−1/yh at w = wc = 0. The dynamic
exponent z, controlling the vanishing � ∼ ξ−z of the gap at
the transition point, is given by z = 1 in any dimension. We
also recall that the RG dimension of the order-parameter field,
associated with the longitudinal operators σ̂ (1)

x , is given by

yl = d + z − yh, (5)

while that associated with the transverse operators σ̂ (3)
x is

given by yt = d + z − yw.
The KZ protocols outlined in Sec. II A can be implemented

within quantum Ising chains, by identifying the terms of the
generic Hamiltonian Eq. (1) with

Ĥc = −
∑
〈xy〉

σ̂
(1)
x σ̂ (1)

y − gc

∑
x

σ̂ (3)
x ,

w(t ) = gc − g(t ), Ĥw =
∑

x

σ̂ (3)
x ,

Ĥh = −
∑

x

σ̂ (1)
x . (6)

C. Observables monitoring the quantum evolution

The out-of-equilibrium evolution of quantum many-body
systems resulting from the KZ protocol can be monitored
looking at the behavior of some observables and correlations
at fixed time.

To characterize the departure from adiabaticity along the
slow dynamic across the CQT, we monitor the adiabaticity
function

A(t ) = |〈�0[w(t ), h] | �(t ) 〉|, (7)

where | �0[w(t ), h] 〉 is the ground state of the Hamiltonian
Ĥ [w(t ), h], i.e., at the instantaneous value w(t ), while | �(t ) 〉
is the actual time-dependent state evolving according to the
Schrödinger Eqs. (2). The adiabaticity function measures the
overlap of the time-dependent state at a time t with the ground
state of the Hamiltonian at the corresponding w(t ). Since the
KZ protocol starts from the ground state associated with wi =
w(ti ), we have A(ti ) = 1 initially. Of course, the adiabaticity
function for an adiabatic evolution takes the value A(t ) = 1 at
any time t > ti.

In general, for protocols crossing transition points, A(t ) is
expected to depart from the initial value A(ti ) = 1, due to the
impossibility of the system to adiabatically follow the changes
of the function w(t ) across its critical value w = 0. Note,
however, that this is strictly true in the infinite-volume limit.
In systems of finite size L, there is always a sufficiently large
timescale ts, so the system can evolve adiabatically, essentially
because finite-size systems are strictly gapped, although the
gap � at the CQT gets suppressed as � ∼ L−z. The interplay
between size L and timescale ts gives rise to nontrivial out-
of-equilibrium scaling behaviors, which can be studied within
out-of-equilibrium FSS frameworks [10,36,39].
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Another global observable monitoring the departure from
adiabaticity is provided by the surplus energy of the system
with respect to its instantaneous ground state at w(t ), often
called excitation energy in earlier works, i.e.,

Es(t ) = 〈�(t )| Ĥ |�(t )〉 − 〈�0[w(t )]| Ĥ |�0[w(t )]〉. (8)

Since the KZ protocols that we consider start from a ground
state at ti, the excitation energy Es(t ) vanishes along adiabatic
evolutions, while nonzero values Es(t ) > 0 are related to the
degree of out-of-equilibrium of the dynamics across the tran-
sition. One may also consider the corresponding density of
excitation energy:

De(t ) = L−d Es(t ). (9)

To monitor the out-of-equilibrium dynamics of the spin
expectation values and correlations, we consider the evolution
of the local and global average magnetization

mx(t ) ≡ 〈�(t )| σ̂ (1)
x |�(t )〉, M(t ) ≡ 1

Ld

∑
x

mx(t ), (10)

and the fixed-time connected correlation function

G(t, x, y) ≡ 〈�(t )| σ̂ (1)
x σ̂ (1)

y |�(t )〉c. (11)

In the absence of boundaries, such as the case of PBCs,
translation invariance implies mx(t ) = M(t ) and G(t, x, y) ≡
G(t, x − y).

In the following, we outline the out-of-equilibrium FSS
scenario applying to the generalized KZ protocol described in
Sec. II A. We contextualize it within quantum Ising models.
However, most scaling arguments can be straightforwardly
extended to generic CQTs. To support the emerging out-of-
equilibrium FSS behaviors, we also report numerical analyses
for the one-dimensional Ising chain with a time-dependent
transverse field g(t ) and a static longitudinal field h. They are
based on exact-diagonalization methods. The corresponding
Schrödinger equation is solved using afourth-order Runge-
Kutta method. This approach allows us to compute the
out-of-equilibrium dynamics for lattice sizes up to L ≈ 20,
with high accuracy (practically exact). As we shall see, such
moderately large (or relatively small) systems turn out to be
already sufficient to provide a robust evidence of the out-of-
equilibrium FSS outlined in the paper.

III. OUT-OF-EQUILIBRIUM SCALING

We discuss here the out-of-equilibrium scaling behaviors
emerging along the KZ protocol outlined in Sec. II A, within
a dynamic RG framework [10]. Out-of-equilibrium FSS laws
are expected to develop in the limit of a large timescale ts
of the driving parameter w(t ), large size L of the system,
and for sufficiently small values of the symmetry-breaking
parameter h. They describe the interplay of the various scales
of the problem, such as the time t and time scale ts of the KZ
protocol, the size L of the system, the energy scale � ∼ L−z

of the system at the critical point, and the external longitudinal
field h.

A. Homogenous scaling laws

Let us consider observables constructed from a local
operator Ô(x). The general working hypothesis underlying
out-of-equilibrium FSS frameworks is that the expectation
value of Ô(x) and its correlation functions along KZ protocols
obey asymptotic homogeneous scaling laws, [10] such as

O(t, ts,wi, h, L) ≡ 〈�(t )|Ô(x)|�(t )〉
≈ b−yoO(b−zt, bywwi, byww(t ), byh h, L/b), (12)

GO(x, t, ts,wi, h, L) ≡ 〈�(t )|Ô(x1) Ô(x2)|�(t )〉c

≈ b−2yo G(x/b, b−zt, bywwi, byww(t ), byh h, L/b), (13)

where b is an arbitrary (large) length scale, the RG dimension
yo of the local operator Ô, and the RG exponents yw, yh, and
z, are determined by the universality class of the CQT. We as-
sumed translation invariance, i.e., systems without boundaries
such as those with PBCs, so the expectation value O does
not depend on x, and the two-point function depends on the
difference x ≡ x1 − x2 only.

Note that in the above homogenous scaling laws, the dy-
namic features are essentially encoded in the time dependence
of the scaling functions and, in particular, through the time-
dependent Hamiltonian parameter w(t ). The other features
are analogous to those arising from equilibrium FSS at CQTs
[10,46], where the arguments of the scaling functions take
into account the RG dimensions yw and yh of the relevant
parameters w and h at the RG fixed point associated with
the CQT. In this respect, the RG scaling framework for KZ
protocols is obtained by replacing w with w(t ) in the equilib-
rium homogenous scaling laws. The scaling functions O and
GO are expected to be universal, i.e., largely independent of
the microscopic details of the models and the KZ protocols
(apart from a multiplicative factor and normalizations of the
arguments).

We remark that the homogenous scaling laws Eqs. (12)
and (13), which we use as the starting point of our theoretical
framework, are expected to apply to generic CQTs. Analogous
scaling frameworks have been constructed to describe other
out-of-equilibrium phenomena at CQTs, in various situations
such as after sudden quenches of the Hamiltonian parameters
or in the presence of dissipative interactions [10].

By taking the ratio between the arguments b−zt and
byww(t ) of the scaling functions reported in Eqs. (12) and
(13), we obtain the scaling variable b−(yw+z)ts, which tells
us how the timescale ts must be rescaled to observe the
out-of-equilibrium scaling behavior. Then, by exploiting the
arbitrariness of b, we may set

b−(yw+z)ts = 1 (14)

to derive the length scale

λ = t1/ζ
s , ζ = yw + z, (15)

corresponding to the length scale arising from the linear time
dependence w(t ) = t/ts.

Out-of-equilibrium FSS can be straightforwardly derived
by fixing b = L in Eqs. (12) and (13). Then, the asymptotic
out-of-equilibrium FSS limit is obtained by taking ts → ∞
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and L → ∞, while appropriate scaling variables are kept
fixed, such as [10]

ϒ = ts/Lζ = (λ/L)ζ , K = w(t )Lyw ,

� = hLyh , � = h λyh ,


i = wi λ
yw , 
 = w(t ) λyw = t/tκ

s , (16)

where

0 < κ = z/ζ < 1. (17)

We obtain κ = 1/2 for one-dimensional Ising chain, κ ≈
0.386 for d = 2, and κ = 1/3 for d = 3. Note that the above
scaling variables are not all independent. Indeed, one can
easily check that K = ϒκ−1
, � = �ϒyh/ζ , and 
 � 
i.
Moreover, the timescaling variable t �, where � ∼ L−z is
the critical gap of the system, can be straightforwardly re-
lated to 
 and ϒ by t � ∼ 
ϒκ . On the other hand, the
out-of-equilibrium FSS keeping ϒ fixed implies that the KZ
timescale ts is generally much larger that the inverse energy
scale extracted from the energy differences of the lowest levels
at the critical point. Indeed, we have that

ts�(L) ∼ tsL
−z = ϒLyw → ∞. (18)

B. Out-of-equilibrium FSS

We can use the general homogenous scaling laws reported
in Eqs. (12) and (13) to derive an out-of-equilibrium FSS limit
and the behaviors of the observables of the quantum Ising
models in this limit, such as the longitudinal magnetization M
and the correlation function G of the quantum Ising systems,
the adiabaticity function and the excitation energy, defined in
Sec. II C.

By fixing b = L, we write their asymptotic behavior in the
out-of-equilibrium FSS limit in terms of the scaling variables
ϒ , 
, �, and 
i defined in Eqs. (16) as [10]

M(t, ts,wi, h, L) ≈ L−ylMi(ϒ,
,�,
i ), (19)

G(x, t, ts,wi, h, L) ≈ L−2yl Gi(x/L, ϒ,
,�,
i ), (20)

where Mi and Gi are scaling functions, expected to be largely
universal with respect to the details of the model and the KZ
protocol.

Since the KZ protocol runs within the interval ti � t � t f ,
corresponding to the interval wi � w(t ) � w f , the scaling
variable 
 takes values within the interval


i � 
 � 
 f ≡ w f t
1−κ
s > 0. (21)

We omit the dependence on 
 f , because the out-of-
equilibrium FSS limit at fixed 
 < 
 f does not depend on

 f , but only on ϒ and 
i. Of course, if we keep w f fixed in
the large-ts limit, i.e., if we do not scale w f to zero to keep 
 f

fixed, then 
 f → ∞.
With increasing L, the out-of-equilibrium FSS develops

within a smaller and smaller interval δw of values of |w|
around w = 0. In particular, for the most critical case when
h = 0, the time interval of the out-of-equilibrium process
described by the scaling laws scales as tKZ ∼ tκ

s , thus the

relevant interval δw of values of |w|, where a nontrivial out-
of-equilibrium scaling behavior is observed, must shrink as

δw ∼ tKZ/ts ∼ L−yw , (22)

when keeping ϒ fixed. Therefore, assuming that the KZ pro-
tocol starts from a gapped phase, see Sec. II A, and that the
initial wi < 0 is kept fixed (corresponding to 
i → −∞),
the same out-of-equilbrium FSS is expected to hold, irrespec-
tive of the value of wi. Therefore, the out-of-equilibrium FSS
at fixed wi < 0 simplifies to

M(t, ts,wi, h, L) ≈ L−ylM(ϒ,
,�), (23)

G(x, t, ts,wi, h, L) ≈ L−2yl G(x/L, ϒ,
,�), (24)

being independent of wi. The scaling functions M and G are
expected to match the 
i → −∞ limit of the scaling func-
tions depending on 
i (when wi gets appropriately rescaled
to keep 
i fixed), cf. Eqs. (19) and (20). Thus,

M(ϒ,
,�) = Mi(ϒ,
,�,
i → −∞), (25)

and analogously for the correlation function G.
Since the magnetization vanishes for h = 0 for symmetry

reasons, we must have that

M(ϒ,
,� = 0) = 0. (26)

Actually, in finite systems the magnetization, as well as any
other correlation and observables, is expected to be an an-
alytical function of h, thus M ∼ h at small h. Therefore,
when keeping the other scaling argument fixed (in particular,
for ϒ > 0, since ϒ → 0 corresponds to the thermodynamic
limit), we should have that

M(ϒ,
,�) = c � + O(�3), (27)

where the coefficient c depends on the other scaling
variables [an analogous behavior is expected at equilib-
rium, i.e., Meq(K,�) = c(K ) � + O(�3)]. Note also that
M(t, ts,wi, h, L) = −M(t, ts,wi,−h, L), thus

M(ϒ,
,�) = −M(ϒ,
,−�). (28)

The out-of-equilibrium FSS relations can be also written in
alternative ways, using other equivalent sets of scaling vari-
ables, cf. Eqs. (16). As we shall see, some interesting limits,
such as the thermodynamic and adiabatic limits, are defined
for particular choices of the scaling variables. For example,
one may write them in terms of K instead of 
, such as

M(t, ts,wi, h, L) ≈ L−ylM̃(ϒ, K,�), (29)

by replacing 
 = ϒ1−κK in Eq. (23). As we shall see, the
scaling variables ϒ , K , and � are most appropriate to discuss
the adiabatic limit.

An out-of-equilibrium FSS behavior analogous to that in
Eq. (23) is put forward for the adiabaticity function, cf.
Eq. (7),

A(t, ts,wi, h, L) ≈ A(ϒ,
,�) = Ã(ϒ, K,�), (30)

when keeping wi < 0 fixed. Due to the initial condition of
the KZ protocol, cf. Eqs. (2), i.e., the ground state at wi,
we must have A(ti, ts,wi, h, L) = 1, and therefore A(ϒ,
 →
−∞,�) = 1. It is therefore natural to assume that its scaling
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FIG. 1. Some results for the time evolution of quantum Ising
chains along the generalized KZ protocol outlined in Sec. II A,
keeping wi = −3, ϒ ≡ ts/Lζ = 0.01 (we recall that ζ = 2), and
� ≡ hLyh = 1 (yh = 15/8) fixed, versus 
 = t/tκ

s with κ = 1/2.
We show results for the magnetization (top), for which yl = 1/8,
and the adiabaticity function (bottom), up to L = 20 and L = 18,
respectively. Their behaviors nicely agree with the asymptotic out-
of-equilibrium FSS reported in Eqs. (23) and (30). The insets of both
figures report data at fixed 
 versus 1/L. They appear substantially
consistent with an 1/L convergence to the asymptotic FSS.

behavior does not require a power of the size as prefactor,
unlike the magnetization, cf. Eq. (23). Using standard RG
arguments, we may also derive an ansatz for the out-of-
equilibrium FSS behavior of the excitation energy defined in
Eq. (8), which turns out to be

Es(t, ts,wi, h, L) ≈ L−zE (ϒ,
,�) = L−zẼ (ϒ, K,�), (31)

where z = 1 is the RG exponent associated with the energy
differences of the lowest states of the spectrum. Note that the
leading analytic background contributions [10,46], generally
arising at the critical point, get canceled by the difference of
the two terms in the definition of Es, cf. Eq. (8), thus justifying
the scaling ansatz Eq. (31), where the excitation energy is
assumed to scale as the energy gap at the transition point, i.e.,
� ∼ L−z.

The scaling behaviors predicted by the above out-of-
equilibrium FSS theory are strongly supported by numerical
analyses of the quantum Ising chain along the generalized KZ
protocols outlined in Sec. II A. Some results are reported in
in Fig. 1 for the magnetization and the adiabaticity function
as a function of the scaling time 
 = t/tκ

s (where κ = 1/2),
keeping the scaling variables ϒ ≡ ts/Lζ and � ≡ hLyh (where

ζ = 2 and yh = 15/8) and the initial value wi fixed. The evi-
dent collapse of the data with increasing L nicely confirms the
predicted out-of-equilibrium FSS behaviors, i.e., Eq. (23) for
the magnetization and Eq. (30) for the adiabaticity function.
We have also checked that the asymptotic FSS functions do
not depend on the initial wi < 0 (keeping it fixed with increas-
ing L). Analogous results are obtained for other values of the
scaling variables ϒ and �, and other monitoring observables,
such as the excitation energy Eq. (8).

C. Scaling in the thermodynamic limit

The scaling behavior in the infinite-size thermodynamic
limit can be straightforwardly obtained by taking the L → ∞
limit of the FSS equations, therefore in the limit ϒ → 0
keeping 
 and � fixed, cf. Eqs. (16). Equivalently, one may
set b = λ in the homogeneous scaling laws Eqs. (12) and
(13), and then send L/λ → ∞. Thus, taking the large-ts limit
keeping the initial value wi fixed, we expect the asymptotic
out-of-equilibrium scaling behavior

M(t, ts,wi, h, L → ∞) ≈ λ−ylM∞(
,�), (32)

G(x, t, ts,wi, h, L → ∞) ≈ λ−2yl G∞(x/λ,
,�), (33)

where � = h λyh was defined in Eqs. (16). One can easily
derive the relation

M∞(
,�) = lim
ϒ→0

ϒyl /ζM(ϒ,
,ϒ−yh/ζ �), (34)

where M is the scaling function entering Eq. (23). An
analogous relation can be also written for the two-point
function G.

Concerning the excitation-energy density De, cf. Eq. (9),
we expect that in the infinite-volume limit

De(t, ts,wi, h, L → ∞) ≈ λ−(z+d ) E∞(
,�). (35)

This is analogous to the scaling behavior of the excitation-
energy density reported in Ref. [30].

D. Scaling corrections

The out-of-equilibrium FSS limit is expected to be ap-
proached with power-law suppressed corrections. Scaling
corrections to the asymptotic scaling behaviors arises for finite
time scales ts and finite size L, in particular, when they are
moderately large.

The sources of scaling corrections when approaching
the out-of-equilibrium FSS are expected to include those
that are already present at equilibrium. The irrelevant RG
perturbations at the fixed point associated with the (d +
1)-dimensional Ising fixed point are sources of scaling cor-
rections. The contributions of the leading irrelevant RG
perturbation are generally suppressed by a power law, as
ξ−ω (where ξ is the diverging correlation length, or the
KZ length scale λ) [10,66]. These corrections are expected
to be the leading ones in two-dimensional quantum Ising
systems, for which ω ≈ 0.83, see, e.g., Ref. [10] and refer-
ences therein. For one-dimensional quantum Ising systems
where ω = 2 [46,73–77], other contributions may become
more relevant, such as those arising from analytical back-
grounds to the critical behavior [10,66]. Earlier studies of
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out-of-equilibrium behaviors of the Ising chains along stan-
dard KZ protocols [10] found that the leading corrections
are typically O(1/L) or, equivalently, O(1/λ), for the observ-
ables considered in this paper. We therefore expect that the
asymptotic out-of-equilibrium FSS of quantum Ising chains
along the generalized KZ protocol is approached with O(1/L)
corrections.

The numerical results for the Ising chains are in substantial
agreement with the above analysis of the expected scaling
corrections. The approach to the large-ts (or, equivalently,
large-L) asymptotic behavior turns out to be substantially
consistent with an O(1/L) suppression of the corrections, see,
e.g., the results reported in the insets of Fig. 1.

IV. APPROACH TO THE ADIABATIC REGIME

In this section, we focus on the adiabatic limits that can be
obtained within the out-of-equilibrium FSS scenario outlined
in the previous section. Within generalized KZ protocols,
there are essentially two roads to adiabaticity: one is related to
the finite size L and the other one to the symmetry-breaking
perturbation.

In the limit ϒ = ts/Lζ → ∞, the evolution as a function
of w(t ) = t/ts becomes adiabatic, i.e., it passes through the
ground states associated with the instantaneous values w(t )
(when starting from the ground state for the initial value wi).
Indeed, since the finite size L guarantees the presence of a
gap between the lowest states, even at the critical point, the
critical point can be adiabatically crossed if ϒ → ∞, passing
through the ground states of the finite-size system for w(t ).
The adiabatic evolution across the transition point is prevented
only when L → ∞ (before the limit ts → ∞) and h = 0.

Another adiabatic limit is related to the presence of the
longitudinal field h, due to the fact that, in the presence of
a nonvanishing longitudinal field h, the gap never closes;
indeed, at the critical point w = wc it remains finite in the
large-L limit, behaving as � ∼ |h|z/yh for small |h|.

A. The adiabatic limit

Within the FSS framework, the adiabatic limit is achieved
by taking the ϒ → ∞ limit keeping K fixed, cf. Eqs. (16).
Therefore, in the adiabatic limit ϒ → ∞ the scaling functions
must tend to those of the equilibrium FSS. If we consider a
generic observable whose equilibrium FSS behavior is given
by [10,46]

O(w, h, L) ≈ L−yoOeq(wLyw , hLyh ), (36)

then its behavior along the KZ protocol in the limit ϒ → ∞
must be

O(t, ts,wi, h, L) ≈ L−yoOeq(K,�), (37)

with the scaling variables K and � given in Eqs. (16).
The adiabaticity function must behave trivially in the adi-

abatic limit, so the large-ϒ limit of the scaling function Ã
entering Eq. (30) must be

lim
ϒ→∞

Ã(ϒ, K,�) = 1. (38)

This limit is also supported by the numerical analyses within
the quantum Ising chain, see, e.g., Fig. 2, where the scaling

FIG. 2. The adiabaticity function A of the quantum Ising chain
along generalized KZ protocols, versus K = w(t )Lyw at fixed � =
hLyh = 1 and wi = −1, for various values of ϒ and L. The curves for
different values of ϒ appear to follow different asymptotic curves,
which show the expected approach to the adiabatic value A = 1
with increasing ϒ , in agreement with Eq. (38). Note also the non-
monotonic dependence on K for sufficiently large ϒ , likely due to a
nontrivial interplay between effects related to the finite size and the
presence of an external symmetry-breaking longitudinal field.

curves appear to approach the adiabatic limit Eq. (38) with
increasing ϒ . Analogously, the excitation energy must vanish
in the adiabatic limit, by construction, i.e.,

lim
ϒ→∞

Ẽ (ϒ, K,�) = 0. (39)

B. Power-law approach to the adiabatic regime

The power-law approach to the adiabatic limit of the out-
of-equilibrium FSS behaviors, i.e., for large values of ϒ , can
be inferred by exploiting the adiabatic perturbation theory,
see, e.g., Refs. [8,78–80].

By expanding the state |�(t )〉 in terms of the instantaneous
Hamiltonian eigenstates |�n[w(t )]〉 (assuming no degeneracy
and that n = 0 is the lowest eigenstate),

|�(t )〉 =
∑
n�0

an(t )|�n[w(t )]〉, (40)

we can write the overlap with the ground state associated with
the instantaneous value of w(t ) as

|〈�0[w(t )] | �(t ) 〉|2 = 1 −
∑
n>0

|an(t )|2. (41)

We can use the first-order adiabatic approximation to estimate
the amplitudes an(t ). This is essentially justified by the fact
that the out-of-equilibrium FSS limit implies ts � L−z, cf.
Eq. (18). Using the general results, see, e.g., Refs. [24,79,80],
at the time t = 0 corresponding to the critical point when
w = wc = 0, we obtain

|〈�0[w(0)] | �(0) 〉|2 − 1 ≈ t−2
s

∑
n>0

|〈n|Ĥw|0〉|2
(�En)4

, (42)

where �En ≡ En(w = 0) − E0(w = 0) is the energy differ-
ence between the nth level and the ground state at w = 0.
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Then, using the expected scaling behaviors at CQTs [10],

�En ∼ L−z, 〈n|Ĥw|0〉 ∼ Ld−yt , (43)

where yt = d + z − yw, we obtain

A2 − 1 ∼ t−2
s L2(z+yw ) = ϒ−2. (44)

This result is expected to extend to generic values of K
along the out-of-equilibrium evolution (we also checked it nu-
merically, see below). Therefore, the out-of-equilibrium FSS
keeping K and � fixed, cf. Eq. (30), should asymptotically
behave as

Ã(ϒ → ∞, K,�) ≈ 1 − a ϒ−2 (45)

to match the asymptotic Eq. (42), where the coefficient a
generally depends on K and �. Analogously for the excitation
energy Eq. (8), using the first-order adiabatic approximation
one arrives at the asymptotic power-law suppression

Ẽ (ϒ → ∞, K,�) ∼ ϒ−2. (46)

We remark that the O(t−2
s ) behavior in the adiabatic limit

is obtained assuming a discrete spectrum, which is appro-
priate in finite-size systems, and expected to extend to the
out-of-equilibrium FSS limit, in particular, when the out-of-
equilibrium FSS behavior approaches the equilibrium FSS, in
the limit ϒ → ∞, keeping K and � constant.

The above power-law approach to adiabaticity is confirmed
by numerical analyses on the quantum Ising chain. Some
results for the adiabaticity function and the excitation energy
along the KZ protocol are shown in Fig. 3. Analogous results
are obtained for other values of the scaling variables. Their
behaviors clearly confirm the ϒ−2 power-law suppression of
nonadiabaticity in the adiabatic limit ϒ → ∞, cf. Eqs. (45)
and (46).

C. The adiabatic limit due to the longitudinal field

In the presence of an external longitudinal field, adiabatic-
ity is generally recovered in the limit ts → ∞ when keeping
the longitudinal field h �= 0 fixed. Indeed, in the presence of
a longitudinal field h, the gap does not close at the critical
point w = wc, i.e., �(w = wc, h) ∼ |h|z/yh , and therefore the
KZ protocol can follow an adiabatic evolution in the limit of
large time scale ts → ∞, even in the thermodynamic limit.
Therefore, the out-of-equilibrium FSS outlined in Sec. III
must also have a corresponding adiabatic limit, which must be
realized when |�| ≡ |h|Lyh → ∞. Without loss of generality,
we assume h > 0, thus � > 0 and � > 0, in the following.

To study the � → ∞ limit, it is useful to introduce the
length scale associated with the longitudinal field h, i.e.,

λh = h−1/yh = �−1/yh L. (47)

Since � can be written as � = (L/λh)yh , the large-� limit
corresponds to L � λh. Moreover, we introduce the scaling
variable

ϒ̃ = ts λ
−ζ

h = �ζ/yh = ϒ�ζ/yh . (48)

Note that the adiabatic limit ϒ → ∞ is equivalent to ϒ̃ → ∞
when we keep � > 0 constant. However, in the limit � → ∞,
ϒ̃ → ∞ even though ϒ is kept finite.

FIG. 3. Log-log plots of the adiabaticity function (bottom) and
the excitation energy (top) for fixed scaling variables K ≡ w(t )Lyw =
1 and � = hLyh = 1, and fixed wi = −1, versus ϒ−1 = Lζ /ts. The
data for different values of L are hardly distinguishable, demonstrat-
ing a good convergence to the corresponding asymptotic behavior.
The approach to the adiabatic regime for large values of ϒ turns
out to be perfectly consistent with Eqs. (45) and (46), predicting an
asymptotic O(ϒ−2) suppression of the residual nonadiabatic effects
(in both figures, the dashed line shows a linear fit to bϒ−2 of the data
for the largest available values of ϒ). Note that the asymptotic ϒ−2

decay is observed for ϒ � 1.

We expect that the scaling functions for the adiabaticity
function and the excitation energy become trivial for � → ∞,
i.e.,

lim
�→∞

Ã(ϒ, K,�) = 1, lim
�→∞

Ẽ (ϒ, K,�) = 0. (49)

The adiabatic limit of the magnetization is less trivial; indeed,
we expect that in the limit � → ∞,

M̃(ϒ, K,� → ∞) = Meq(K,� → ∞), (50)

where Meq(K,�) is the scaling function entering the equi-
librium FSS [10,46], defined as in Eq. (36) with yo = yl . By
matching its asymptotic behavior for � → ∞ with the power-
law M ∼ h1/δ at the critical point w = wc and for finite h,
one can easily derive the asymptotic behavior Meq(K,� →
∞) ∼ �1/δ . Note that for the Ising chain δ = yh/yl = 15, thus
the O(�1/δ ) divergence turns out to be very slow.

Let us now discuss the approach to the adiabatic limit
arising from the presence of a nonzero h, i.e., for � → ∞ or,
equivalently, ϒ̃ → ∞ when keeping ϒ fixed. We recall that,
in the presence of a nonzero h, the gap is always nonzero, its
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FIG. 4. Log-log plots of the adiabaticity function A (more pre-
cisely of 1 − A, top figure) and the energy excitation Es (actually
the product λz

hEs, bottom figure) for fixed scaling variables K ≡
w(t )Lyw = 0, ϒ = 0.25, fixed wi = −1, versus ϒ̃−1. Data for dif-
ferent values of L show a good convergence with increasing L.
The resulting scaling behaviors in the large ϒ̃ limit agree with
Eqs. (51) and (52), predicting an asymptotic O(ϒ̃−2) suppression of
the residual nonadiabatic contributions (the dashed lines show the
ϒ̃−2 behavior in the log-log plots). Such a power-law approach is ap-
proximately observed for ϒ̃ � 1, with some oscillations of relatively
small amplitude (whose origin is not clear).

minimum at w = wc being � ∼ hz/yh . To discuss the adiabatic
limit arising from a nonzero h, it is convenient to focus on
the adiabaticity function A and the excitation energy Es or the
corresponding density De, in that they have a trivial adiabatic
limit by construction. Using analogous arguments to those
outlined for the adiabatic limit ϒ → ∞ in Sec. IV B and, in
particular, the fact that the adiabaticity violations are gener-
ally O(t−2

s ) within the first-order adiabatic approximation, the
approach to the adiabatic limit is expected to be characterized
by the power law

A(t, ts,wi, h, L) ≈ Ã(ϒ, K,� → ∞) ≈ 1 − aϒ̃−2, (51)

where ϒ̃ = ϒ�ζ/yh → ∞, and the factor a generally depends
on the other scaling variables K and ϒ .

Numerical results for the quantum Ising chain confirm
the above asymptotic behavior in the large-� limit, as, for
example, shown by the data reported in the top Fig. 4, obtained
keeping the scaling variables K and ϒ fixed (in particular, for
K ≡ w(t )Lyw = 0 corresponding to t = 0, and ϒ = 0.25, and
also fixed wi = −1, analogous results have been obtained for

other values of ϒ and K). Again the data for different values of
L show a good convergence to the corresponding asymptotic
large-L scaling behavior, which agrees with the predicted ϒ̃−2

power-law approach to the adiabatic limit A = 1.
To derive the asymptotic behavior of the energy excita-

tion, and consistently perform the large-� limit of the scaling
Eq. (31), we must replace the L−z prefactor on the right-hand
side of Eq. (31) with a corresponding expression in terms of h
and �, such as L−z = λ−z

h �−z/yh , where λh is the length scale
associated with the longitudinal field h, cf. Eq. (47). Then we
expect

λz
hEs(t, ts,wi, h, L) ≈ �−z/yh Ẽ (ϒ, K,�) ≈ cϒ̃−2, (52)

where c generally depends on the scaling variables K and
ϒ . Some numerical results for the quantum Ising chain are
reported on the bottom Fig. 4, where the power-law approach
Eq. (52) to the adiabatic limit of the excitation energy is
clearly observed.

We finally note that the � → ∞ limit can be also seen as
an infinite volume limit in that it corresponds to L/λh → ∞.
Let us consider the energy-excitation density Eq. (9), which
is expected to have a well-defined infinite-volume limit. By
simple manipulations of Eq. (31), one can write its scaling
behavior as

De(t, ts,wi, h, L) ≈ λ
−(z+d )
h Ê (K̃, �, L/λh), (53)

where K̃ = w(t )λyw

h , � = hλyh = (λ/λh)yh = ϒ̃yh/ζ , and λ

and λh are, respectively, the length scales defined in Eq. (15)
and (47). Then we take the limit L/λh → ∞, keeping K̃ and
� fixed. Thus, assuming that such a limit is regular:

De(t, ts,wi, h, L → ∞) ≈ λ
−(z+d )
h Ê∞(K̃, �). (54)

Then, we note that taking the further limit �, ϒ̃ → ∞, keep-
ing K̃ fixed, corresponds to an adiabatic limit, so

lim
�→∞

Ê∞(K̃, �) → 0. (55)

Assuming that the asymptotic behavior Eq. (52) persists in
the infinite-volume limit corresponding to ϒ → 0 (note that
this is possible because ϒ ad ϒ̃ are not anymore related when
� → ∞), we also expect

Ê∞(K̃, � → ∞) ∼ ϒ̃−2, (56)

where ϒ̃ = �ζ/yh = tshζ/yh . One can easily check that this
asymptotic behavior agrees with the results reported in Ref.
[30] for t = 0, corresponding to K̃ = 0. Indeed, we obtain

De ∼ λ
−(z+d )
h ϒ̃−2 = t−2

s h(d−z−2yw )/yh , (57)

corresponding to De ∼ t−2
s h−16/15 for the Ising chain.

V. EXTENDED KZ PROTOCOLS

We now consider a KZ protocol in which both Hamiltonian
parameters w and h are assumed to be time dependent and
cross their critical values with a linear time dependence. More
precisely, we extend the time dependence of the Hamiltonian
Eq. (1) to

Ĥ [w(t ), h(t )] = Ĥc + w(t ) Ĥw + h(t )Ĥh,

w(t ) = t/ts, h(t ) = t/ts,h. (58)
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In this case, we allow for different timescales in the time
dependence of w and h, but both of them take their critical
value at t = 0. We consider a KZ protocol analogous to that
outlined in Sec. II A, but allowing for the time changes of h
too, starting at t = ti < 0 from the ground state associated
with w(ti ) and h(ti ), and then unitarily evolving using the
Hamiltonian Ĥ [w(t ), h(t )].

We first consider the simplest case in which ts,h =
c ts where c is a finite constant. To address the resulting
out-of-equilibrium scaling behavior, one may again exploit
homogenous scaling laws analogous to those reported in
Eqs. (12) and (13), with one scaling variable for each time-
dependent parameter w(t ) and h(t ), i.e., K = w(t )Lyw and
Kh = h(t )Lyh . However, since the RG dimensions of the even
and odd model parameters w and h differ, i.e., yw �= yh, and
their time dependence is controlled by a unique timescale
ts ∼ ts,h, we cannot consistently rescale them to get nontrivial
FSS behaviors keeping K and Kh fixed to any finite nonzero
value. In particular, if we keep K = (t/ts)Lyw fixed in the
simultaneous large ts and L limits, then Kh → ∞ due to the
fact that yh > yw generally. Thus, no asymptotic FSS is ex-
pected to emerge when keeping K fixed. On the other hand, if
we keep Kh = (t/ts,h)Lyh fixed in the FSS limit, then K → 0.
Therefore, the emerging scaling behavior is analogous to that
obtained in KZ protocols keeping w = wc = 0 fixed and vary-
ing only the symmetry-breaking parameter h(t ), see, e.g., Ref.
[39].

In conclusion, we do not expect to observe further interest-
ing out-of-equilibrium scaling phenomena when we allow for
variations of both the even and odd Hamiltonian parameters
w and h. If we insist on varying both parameters, to obtain
a nontrivial scaling behavior we need to assume different
timescales, tuned so ts,h/ts ∼ Lyh−yw , to have K ∼ Kh.

VI. CONCLUSIONS

We have studied the effects of static homogenous
symmetry-breaking perturbations in the out-of-equilibrium
quantum dynamics of many-body systems driven by a time-
dependent symmetry-preserving parameter across the critical
regime associated with a CQT.

The out-of-equilibrium scenario arising from KZ proto-
cols, slowly crossing critical regimes, substantially changes
in the presence of symmetry-breaking perturbations, such as
those arising from the longitudinal field h in the quantum Ising
models, cf. Eq. (4), giving rise to a relevant RG perturbation
at their CQTs. The gap � does not generally close when
h �= 0, behaving as � ∼ |h|z/yh at the critical point w = wc

in the infinite-volume limit. Therefore, the adiabatic evolution
across the critical point wc, through ground states associated
with the instantaneous values of w(t ), can be always realized
in the infinite-volume limit, for sufficiently large timescale ts
of the KZ protocol. However, for sufficiently small values of
h, the systems can be kept within the critical regime, giving
rise to universal peculiar distortions of the KZ scaling behav-
ior observed in the absence of symmetry-breaking terms.

We show that out-of-equilibrium FSS behaviors emerge
along generalized KZ protocols even in the presence of the
symmetry-breaking perturbation, described in Sec. II A. For
this purpose, we exploit RG scaling frameworks implemented

in terms of asymptotic homogenous scaling laws, cf. Eqs. (12)
and (13), that are expected to hold along the generalized
KZ protocol. This allows us to develop a generalized out-of-
equilibrium FSS theory, allowing for the symmetry-breaking
perturbation. The emerging out-of-equilibrium FSS scenario
in the presence of a static symmetry-breaking perturbation
requires an appropriate tuning of the corresponding Hamil-
tonian parameter, controlled by its RG dimension at the fixed
point associated with the CQT.

As paradigmatic models, we consider the quantum Ising
models, whose CQTs are characterized by the spontaneous
breaking of their Z2 symmetry, and two relevant param-
eters: the symmetry-preserving transverse field g, or w =
gc − g, and the symmetry-breaking longitudinal field h,
cf. Eq. (4). We consider generalized KZ protocols, where
the out-of-equilibrium dynamics is induced by variations of
the symmetry-preserving parameter w(t ) across its critical
value wc, with a linear time dependence w(t ) = t/ts, from the
disordered to ordered phase, and a large timescale ts. Unlike
most earlier studies based on KZ protocols, we allow for a
nonzero longitudinal field h. We extend the study of Ref.
[30], where the out-of-equilibrium scaling behaviors of KZ
protocols in the presence of a symmetry-breaking perturbation
were discussed in the infinite-volume (thermodynamic) limit.

Within the out-of-equilibrium FSS framework of general-
ized KZ protocols in the presence of the symmetry-breaking
perturbation, the adiabatic limit may arise for essentially two
reasons, i.e., because of the finite size (thus the critical gap
does not vanish, getting suppressed as � ∼ L−z) and be-
cause of the longitudinal field h (which does not allow the
gap to vanish even in the thermodynamic limit, behaving as
� ∼ |h|z/yh for sufficiently small values of h). We argue that
the nonadiabaticity of the out-of-equilibrium dynamics gets
suppressed by power laws, which can be inferred from the
first-order adiabatic approximation.

The scaling laws obtained within the out-of-equilibrium
FSS framework and, in particular, the predicted power-law
approaches to the adiabatic regime, are confirmed by numeri-
cal analyses of generalized KZ protocols in the quantum Ising
chain.

We have also briefly discussed the case in which the gen-
eralized KZ protocol is characterized by the time dependence
of both even and odd parameters w and h. Within analogous
scaling frameworks, we argue that no further interesting scal-
ing behaviors emerge when both parameters are changed with
the same timescales. Nontrivial FSS behaviors may only be
obtained by appropriately rescaling the timescales of w(t ) and
h(t ), proportionally to different powers of the size.

We remark that the emerging out-of-equilibrium scal-
ing scenario, put forward for extended KZ protocols in the
presence of symmetry-breaking perturbations, is expected to
hold for generic CQTs in any spatial dimension, with the
appropriate identifications of the symmetry-preserving and
symmetry-breaking Hamiltonian parameters playing the role
of w and h in Eq. (1). Moreover, analogous out-of-equilibrium
scaling scenarios are also expected to emerge at classical
finite-temperature transitions in the presence of perturbations
breaking the global symmetry.

As already mentioned in the Introduction, the FSS ap-
proaches generally simplify the analyses of the universal
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features of critical behaviors, essentially because they do not
require the further condition ξ � L of the thermodynamic
limit. In this paper, we have shown that the out-of-equilibrium
FSS scenarios associated with generalized KZ protocols can
already be observed for relatively small systems, with a
few decades of spin operators. This fact may also provide
a great help in studying higher-dimensional systems, where
only relatively small systems can be numerically studied.
See, for example, the study reported in Ref. [81] for two-
dimensional quantum Ising systems, where some evidence of
scaling behaviors along standard KZ protocols have already
been observed for small systems. Scaling behaviors requir-
ing a limited numbers of degrees of freedom may be more
easily accessed by experiments where the coherent quantum

dynamics of only a limited number of particles or spins can
be effectively realized, such as experiments with quantum
simulators in laboratories, e.g., by means of trapped ions
[47,48], ultracold atoms [49,50], or superconducting qubits
[51,52]. Moreover, our results may turn out to be particularly
relevant for quantum simulations and quantum computing,
where important experimental advances have been achieved
recently, see, e.g., Refs. [82–87].
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