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Structure in quantum entanglement entropy is often leveraged to focus on a small corner of the exponentially
large Hilbert space and efficiently parametrize the problem of finding ground states. A typical example is the use
of matrix product states for local and gapped Hamiltonians. We study the structure of entanglement entropy using
persistent homology, a relatively new method from the field of topological data analysis. The inverse quantum
mutual information between pairs of sites is used as a distance metric to form a filtered simplicial complex. Both
ground states and excited states of common spin models are analyzed as an example. Furthermore, the effect of
homology with different coefficients and boundary conditions is also explored. Beyond these basic examples, we
also discuss the promising future applications of this modern computational approach, including its connection
to the question of how space-time could emerge from entanglement.
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I. INTRODUCTION

Problems in quantum physics are often difficult to solve
due to an exponentially large Hilbert space (e.g., d = 2N for
N spins), which limits exact diagonalization to small systems
only. However, due to the remarkable entanglement scaling
properties found in many physical systems, it is often pos-
sible to focus only on a small corner of the Hilbert space.
For example, the problem of finding a ground state of a
one-dimensional local and gapped Hamiltonian can be param-
eterized efficiently with matrix product states [1]. Beyond this
class of Hamiltonians, the entanglement properties have also
proven useful in projected entangled-pair states [2] and the
multiscale entanglement renormalizaton ansatz (MERA) [3].

Phases of matter can differ in their entanglement scaling
properties, and the critical phase transition is typically a point
of special interest. The area law states that the entanglement
entropy only depends on the surface between two subregions
of the system [4,5]. The transverse field Ising model (TFIM)
exhibits a quantum phase transition (QPT) from the ferro-
magnet with area law entanglement to a paramagnet that also
follows an area law. At the quantum critical point (QCP),
the entanglement entropy diverges logarithmically with the
subsystem size (volume law) [6–8], thus allowing the iden-
tification of the phase transition. Another example of a phase
transition that is studied through entanglement properties is
the many-body localization (MBL) transition [9,10]. In gen-
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eral, a randomly selected state in Hilbert space typically
follows a volume law.

Considering the daunting complexity of Hilbert space,
various large-scale computational techniques are employed:
Phase transitions and order parameters are now often analyzed
and constructed with machine learning [11,12].

Here we outline the proposal to use persistent homology
to identify entanglement structures and QPTs. Persistent ho-
mology analysis has been used to identify phase transitions
in classical spin models [13–18] and some quantum systems
[14,19,20]. These examples also illustrate the evolving views
on the importance and unique role that entanglement plays
as an indicator of qualitative changes in quantum systems.
Our approach focuses on the objects that are derivative of
quantum states (simplicial complexes) and function as a key
descriptor of global properties of the system. The main tech-
nique used in this paper is persistent homology, a relatively
new method from the field of topological data analysis (TDA)
that computes the shapes present in data [21–24]. In short,
TDA often involves turning a point cloud in data space into
a filtered simplicial complex where the filtration is done with
a chosen length scale parameter. At each filtration stage, the
homology groups are computed and compared. Homology
group elements that persist over many stages lead to persistent
homology and can be visualized in a barcode or persistence
diagram. For more details and a practical introduction to per-
sistent homology, see Ref. [25].

In this paper, we study the geometric and topological fea-
tures of the entanglement entropy with persistent homology.
The logic of the approach is schematically shown in Fig. 1.
A state |ψ〉 in Hilbert space is converted to a corresponding
barcode that efficiently describes its entanglement structure.
The barcode is the result of applying persistent homology to
a distance matrix that quantifies the entanglement between all
subsystems. Using this approach, we discuss the changes in
barcode space comparing ground states, excited states, and
phase transitions. As an example, we focus on two common
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FIG. 1. A given state ψ in Hilbert space is mapped to a barcode
that describes the topological structure of the entanglement of its sub-
systems. The proximity parameter ε is computed from the quantum
mutual information and the homology groups indicate features in the
emergent geometry.

quantum spin chains in a transverse field: The Ising model and
XXZ model. The former is the simplest example of a QPT, and
the latter is a model commonly used to study MBL [10,26].

The remainder of this paper is structured as follows. In
Sec. II, we outline how persistent homology captures the
entanglement structure of a quantum state. An introduction
to simplicial homology, persistence, and our distance metric
are presented in Sec. III–V. A demonstration is carried out for
two different spin models in Secs. VI and VII, followed by a
discussion in Sec. VIII. We conclude in Sec. IX.

II. ENTANGLEMENT AND PERSISTENT HOMOLOGY

The foundation of our paper is the description of the
entanglement structure of a quantum state using persistent
homology. Given a state |ψ〉, we divide the quantum system
into N subsystems. For each pair of subsystems, the quantum
mutual information (MI) Mi j is computed. A structure appears
when entangled subsystems (with large MI) form clusters.
A distance metric is defined as the inverse MI between two
subsystems. This brings strongly entangled subsystems close,
while nonentangled subsystems are far apart. Given a distance
matrix between all subsystems, the computation of persistent
homology groups makes it possible to study topological and
geometrical features of the entanglement structure. This infor-
mation can be plotted as a barcode, where long bars indicate
topological features that persist over large length scales. The
length scale refers to the entanglement through the defined
distance metric. The barcode captures the global entanglement
structure of the quantum state and gives a detailed view of the
phase portrait of the system. How to compute this in practice
is outlined in the next section.

The barcode is a summary of the topological and geometri-
cal features of the entanglement structure. Each quantum state
has a barcode and it can be used in a number of applications.
In our paper, we demonstrate that changes in the barcode
reveal phase transitions. At the same time, the barcode reveals
the length scale of the entanglement in the state which is
important when developing suitable wave function ansatze.
Finally, the barcode describes the emergent geometry of the
entanglement, which could provide a starting point to study
the emergence of space-time from entanglement.

The barcodes corresponding to quantum states can be com-
pared in a number of ways. Distance measures such as the
bottleneck distance [27] or the Wasserstein distance [28] op-
erate directly on the complete barcodes rather than derived
quantities. However, depending on the application, it can be
sufficient to simply count the number of bars at a specific
length scale (i.e., the Betti number βk). We focus on Betti
numbers in our paper and demonstrate its sensitivity to QPTs.
However, the computational algorithm outlined here is general
and can be used in a variety of applications.

III. SIMPLICIAL HOMOLOGY

Simplices are the building blocks for topological spaces
and are convenient due to their combinatorial nature. A k-
simplex consists of k + 1 vertices, i.e., S = [v0v1 . . . vk] (see
Fig. 3). Each simplex can be oriented in two ways, −S or
+S, however, this feature is not always used in persistent ho-
mology, as we will see. Combining simplices and connecting
them forms a simplicial complex that represents a topologi-
cal space. This section introduces the concepts of simplicial
homology, namely, chains, boundaries, cycles, and homology
groups.

For each definition, we also study an example. The exam-
ple simplicial complex K corresponds to topological space
that is a disk glued to a circle,

K = { [012]︸︷︷︸
2-simplex

, [01], [12], [20], . . .︸ ︷︷ ︸
1-simplices

, [0], [1], . . .︸ ︷︷ ︸
0-simplices

}

∼=

0

1

2

3
(1)

as becomes clear once we compute its homology.

A. Chains

A k-chain is a sum of k-simplices in K . All the possible
k-chains form a group. For the example in Eq. (1), there are
three chain groups: C0, C1, and C2. The 1-chains are, for
example,

C1 = {a01[01] + a12[12] + a20[20] + a13[13] + a23[23]}
= 〈[01], [12], [20], [13], [23]〉, (2)

where the 1-simplices form a basis. An element in the chain
group is denoted by c ∈ Ck , and this element represents a
specific k-chain.

B. Boundaries

The boundary operator ∂ for a k-simplex is defined as

∂S =
k∑

j=0

(−1) j[v0v1 . . . v̂ j . . . vk], (3)

where v̂ j is removed from the sequence. In other words, it is a
sum of the faces of the simplex, where the faces are (k − 1)-
simplices. The Fundamental Lemma of Homology [29] states
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FIG. 2. Vietoris-Rips complex of a point cloud with six data points (a) at increasing proximity parameter ε (b)–(e). The barcode (f) shows
the persistent homology.

that applying the boundary twice always leads to zero, i.e.,
∂∂S = 0. The boundary operator is typically applied to a chain
group Ck , leading to a boundary group Bk . For Eq. (1), the
boundary group:

B0 = ∂1C1

= {a01([1] − [0]) + a12([2] − [1])

+ a20([0] − [2]) + a13([3] − [1])

+ a23([3] − [2])}
= {(−a01 + a20)[0] + (a01 − a12 − a13)[1]

+ (a12 − a20 − a23)[2] + (a13 + a23)[3]}. (4)

C. Cycles

A k-cycle is a k-chain with an empty boundary, i.e.,
∂kc = 0. This group is denoted by Zk , where Z stands for
the German zyklus (cycle). By definition, the k-cycles are a
subset of all the k-chains, i.e., Zi ⊂ Ci. Mathematically, it
corresponds to taking the kernel of the boundary operator, i.e.,
all the elements that are mapped to the identity element. In

(d)

C

A

B

D

(c)

C

A

BA B

(b)

A

(a)

FIG. 3. Here we show (a) 0-simplex (point), (b) 1-simplex (line
segment), (c) 2-simplex (filled triangle), (d) 3-simplex (filled tetrahe-
dron). Higher-dimensional simplices exist but are not shown here for
simplicity. Simplices are glued together to form a simplicial complex
and its topological properties are described by simplicial homology.
Entangled quantum subsystems A, B, C and D are represented by
0-simplices. A k-simplex consists of k + 1 subsystems.

other words, the k-cycle group is

Zk = Ker(∂k ) = {c ∈ Ck | ∂ (c) = 0} (5)

because 0 is the identity element. For Eq. (2), it means the
coefficients a ∈ Z are constrained by ∂ (c) = 0, narrowing it
down to two generating elements for the 1-cycle group:

(6)

Note that the larger cycle of 0 − 1 − 3 − 2 can be constructed
by a linear combination of this basis.

D. Homology groups

The homology groups Hk are defined as the quotient of
cycles and boundaries,

Hk = Zk

Bk
= Ker ∂k

Im ∂k+1
, (7)

where Zk are the k-cycles and Bk the k-boundaries. This is
sometimes referred to as “cycles mod boundaries.” The first
homology group for our example contains one generating
element,

H1(K ) = 〈[01] + [12] + [20], [12] − [13] + [23]〉
〈[12] − [02] + [01]〉

∼= 〈[12] − [13] + [23]〉 ∼= Z, (8)

which captures the one-dimensional hole (of the empty tri-
angle 1 − 3 − 2). The 1-cycle between the points 0 − 1 − 2
is modded out because it is the boundary of the 2-simplex
(filled triangle). A similar computation leads to the other
homology groups. In summary, the homology groups for the
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example K are H0(K ) ∼= Z, H1(K ) ∼= Z and Hk (K ) ∼= 0 for
all k > 1. In other words, the topological space K contains
one connected component (as described by H0) and contains
one one-dimensional hole (as described by H1).

In this example, the homology computation is performed
over the integers because the coefficients are chosen to be
a ∈ Z, but most practical codes use booleans, i.e., a ∈ Z2. For
more examples of homology computations and the effect of
different coefficients, see Appendix C.

IV. PERSISTENT HOMOLOGY

The persistent homology of a set of discrete data char-
acterizes the shapes that are present in the data at different
length scales. In practice, this means the simplicial homology
computations described in the previous section with a method
of filtration. The filtration refers to the choice of a distance
metric and how this metric leads to a set of nested simplicial
complexes. A simple example of six data points in the two-
dimensional Euclidean plane is shown in Fig. 2. The chosen
proximity parameter ε is, in this case, given by simply the
Euclidean distance and visualized by the growing disks. As
soon as disks overlap, a new simplex is formed. When three
points are connected, a 2-simplex (filled triangle) is formed. In
general, for k points, a (k-1)-simplex is formed. This particular
filtration leads to a so-called Vietoris-Rips complex. The sim-
plicial homology at every level of filtration is summarized in
the barcode Fig. 2(f). More specifically, a generating element
of a homology groups that spans multiple length scales is
indicated by a bar with a start (birth) and end (death). The
length of the bar is also referred to as the lifetime.

In this paper, the discrete data are the quantum subsys-
tems and the distance metric is based on MI as a measure
of entanglement. The distance matrix between all quantum
subsystems i and j, i.e., Di j , forms a sequence of simplicial
complexes, K1 ⊂ K2 ⊂ · · · ⊂ Kn. For each simplicial complex
Ki, the homology groups Hk are computed, where k refers to
k-dimensional simplices (see Fig. 3). The homology groups
Hk are computed for each Ki and sequences of identical ho-
mology lead to so-called persistent homology. The sequence
of homology groups are typically visualized in a persistence
barcode or persistence diagram. Both show the same informa-
tion and reveal shapes present in the quantum MI. A barcode
is a collection of line segments that represent the generat-
ing elements of a homology group that span multiple length
scales. When two elements become homologous, the older
one survives, as described by the elder rule [29].

In practical applications, since the barcode itself is not a
scalar quantity, it is common to either use scalar properties de-
rived from the barcode or construct a scalar distance between
two barcodes. For example, the Betti number is an integer,

βk = rank(Hk ), (9)

that counts the rank of the kth homology group. Another ex-
ample is the lifetime of a specific bar in the barcode. Bars with
a long lifetime indicate that a feature (like a one-dimensional
hole) persists over a large range of length scale. Features with
a short lifetime are sometimes considered to be noise in the
input point cloud. However, these features can also indicate

the curvature of the manifold that the point cloud was sampled
from Ref. [30].

There are many different codes that implement the com-
putation of persistent homology given a distance matrix. An
example of the algorithm is shown in Appendix B. We use the
GUDHI Python module for the construction of a Vietoris-Rips
complex from the distance matrix and the computation of the
barcode [31].

In our method, each state |ψ〉 has a corresponding barcode
and a set of homology groups. The barcode is a fingerprint of
the entanglement structure of the state. Abrupt changes can
indicate phase transitions, and barcodes can also differentiate
between phases.

V. DISTANCE METRIC BASED ON ENTANGLEMENT

The N particles (or spins) form a discrete point cloud,
where the distance metric between spins is the (additive) in-
verse of the quantum MI. MI is commonly used to identify
clusters of entanglement and as a probe for phase transitions
(e.g., MBL and QPTs) [10,14,32,33]. The MI between two
sites i and j is defined as

0 � Mi j = Si + S j − Si j � 2 ln 2. (10)

Here, the entanglement entropy Si and Si j refer to taking only
sites i and i, j in subsystem A, respectively.

Theorem V.1. Let Di j be the inverse of the MI between
sites i and j:

2 ln 2 � Di j = 2 ln 2 − Mi j � 0. (11)

This is a distance metric that brings strongly entangled sites
(M → 2 ln 2) close together (D → 0), while nonentangled
sites (M → 0) are far apart (D → 2 ln 2).

Proof. The distance metric defined in Eq. (11) satisfies the
axioms for a metric because it is symmetric and satisfies the
triangle inequality. This triangle inequality relies on properties
of quantum entropy, and we start by writing the inequality in
terms of entropy:

Dxy � Dxz + Dzy,

2Sz + Sxy − Sxz − Szy � 2 ln 2. (12)

To show that the inequality holds, we first note that Sxz and Szy

are non-negative and the term X = Sxz + Szy can be replaced
by Sx + Sy, which is guaranteed to be equal or smaller by
the strong subadditivity of quantum entanglement [Eq. (A5)].
Furthermore, the term Sxy is replaced by an expression that
is guaranteed to be larger, Sxy � Sx + Sy [Eq. (A4)]. This
leads to

2Sz + Sx + Sy − Sx − Sy � 2 ln 2, (13)

2Sz � 2 ln 2, (14)

which is true because Sz has a maximum value of ln 2. Finally,
the distance of point i with itself, Dii, is never evaluated when
constructing homology, and we can consider it to be zero. �

Given a set of discrete data (quantum subsystems) and the
distance matrix (inverse MI), we can now study its homology
(see Fig. 4).
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D

DAC
DAB

DBD

DBC
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DCD

FIG. 4. Example of a simplicial complex created from a quantum
system comprising four subsystems: A, B, C, and D. The entangle-
ment entropy between all subsystems is used to compute the distance
Di j [Eq. (11)]. This complex corresponds length scale ε, where in this
case subsystems A, B, and C form a 2-simplex. Subsystem D is not
connected to the ABC component, indicating that the distances be-
tween D and A, B, and C is larger than ε. Here, the Betti numbers are
β0 = 2 (i.e., two connected components: ABC and D) and β1 = 0 (no
one-dimensional holes, since the 1-cycle ABC is also the boundary
of the 2-simplex ABC).

VI. EXAMPLE 1: ISING CHAIN IN TRANSVERSE FIELD

To demonstrate our approach to persistent homology of
quantum states, we study the simplest model of a QPT, the
TFIM on a one-dimensional lattice. The Hamiltonian H of
the TFIM is [8]

H = −
∑

i

σ x
i σ x

i+1 − h
∑

i

σ z
i , (15)

where σ are the Pauli matrices. The exact diagonalization
and entanglement entropy computation is implemented using
the QUSPIN package [34]. There is a QPT that can be mea-
sured by the magnetization M = |1/N

∑
i σ

x
i |. For h = 0, the

ferromagnetic ground state is the basis state with all spins
pointing along the x direction. For large h, the ground state
is a quantum paramagnet, a superposition of all basis states.

For h = 0, there is a degenerate ground state that is a
product state of all spin up |↑↑ . . . ↑〉 or all down |↓↓ . . . ↓〉.
For a small but finite h, these levels split with order hN and
the ground state is a macroscopic superposition (|↑↑ . . . ↑〉 +
|↓↓ . . . ↓〉) with ln 2 half-chain entanglement entropy [see
Fig. 5(a)]. The system undergoes a QPT at h = 1, and the
entanglement structure forms a 1-cycle, as will be discussed.
At h = ∞, the ground state is a a quantum paramagnet, i.e.,
superposition of all basis states 1√

2N

∑2N

i |i〉 and zero half-
chain entanglement entropy.

The quantum ground state is converted into a barcode
by computing the distance matrix D between all sites. This
constitutes constructing Vietoris-Rips complexes from this
distance matrix and computing its homology groups. The
barcodes are shown in Fig. 6. At zero length scale ε = 0, the
number of H0 bars (i.e., β0) indicates the number of quantum
subsystems (spins in this case) and the dimensionality of the
matrix D. At large length scales, at least one H0 bar sur-
vives, indicating one large connected component, similar to
the situation shown in the simple two-dimensional Euclidean
example (Fig. 2).

Both the low (h < 1) and high (h > 1) field ground states
have constant MI Mi j for all pairs (see Fig. 5). This causes all

(a)

(b)

10−1 100 101

0
0.2
0.4
0.6
0.8

Field h

S

L = 10
L = 14
L = 18
L = 22

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

Site index j

M
1
,j
(h

)

h = 0.1
h = 0.316
h = 1
h = 3.162
h = 10

FIG. 5. (a) Half-chain entanglement entropy S as a function of
field h in the 1D TFIM. For small fields h, the entanglement is
constant, ln(2). At the critical point of h = 1, S grows as ln(N ).
(b) Quantum mutual information between first site 1 and site j as
a function of field h (logarithmically spaced) in the 1D TFIM. The
mutual information M1 j is largest between nearby sites, indicating
the local interactions of the Hamiltonian. Periodic boundary condi-
tions are used and lead to increased M1 j for large j.

sites to pair up at the same length scale in the barcode, as indi-
cated by the end of the H0 bars, also referred to as the death of
the feature. For the ferromagnetic phase, all the sites have the
same pairwise distance and are connected at the length scale
of ε = ln 2 [see Fig. 6(a)]. For the quantum paramagnet, the
spins are maximally separated, which is essentially a rescaled
version of having points being infinitely separated in space,
and each site survives as a single component up to the maxi-
mum length scale ε = 1 · 2 ln 2 see Fig. 6(c).

Around the QCP (h = 1), neighboring sites are more
strongly entangled than next-nearest neighbors. Due to the
symmetry of the Hamiltonian and the periodic boundary con-
ditions (PBCs), the distances are the same for each site, e.g.,
D12 = D23. This means we have a one-dimensional hole to
form inside the ring of spins that persists over a finite length
scale [see Fig. 6(b)]. At slightly longer length scales, next-
nearest neighbors are connected, after that next-next-nearest
neighbors, and so on. This process continues until furthest-
separated spins on the chain are connected and the hole
closes. This is a unique feature of the critical point due to
the entanglement structure of the critical state, and it can be
characterized by the start (birth) and end (death) of the bar in
H1, as shown in Fig. 6(d).

Figure 7 shows the birth and death value of H1 at h = 1 for
different chain lengths. This model is exactly solvable (see
Appendix D), and we can therefore compare the results to
the infinite chain. As described earlier, the cycle is formed
when the nearest neighbors connect, and this is set by the
distance D01. The hole closes when maximally separated spins
connect, which in the case of an infinite chain is set by D0∞.
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FIG. 6. Barcodes for transverse-field Ising chain with L = 10 sites at (a) h = 0.1, (b) 1, and (c) 10. The proximity parameter ε refers to the
length scale set by the distance matrix D(i, j). The dotted lines and panels above show the simplicial complex for a given ε. At the quantum
critical point, the spin chain forms a cycle of entanglement with a one-dimensional hole. (d) Lifetime of H1 and H0 bars. The persistence of the
1-cycle at the QCP increases with system size L.

For the infinite chain, the distances are D01/2 ln 2 ≈ 0.744293
and D0∞/2 ln 2 = 1, which matches the birth and death curves
shown in Fig. 7.

VII. EXAMPLE 2: XXZ SPIN CHAIN
IN TRANSVERSE FIELD

To study multiscale entanglement, we now focus on the 1D
XXZ spin chain in tranverse field with Hamiltonian

H = −
∑

i

[
(σ+

i σ−
i+1 + σ−

i σ+
i+1) + �

2
σ z

i σ z
i+1 + hiσ

z
i

]
, (16)

where σ±
i = σ x

i ± iσ y
i , � is the interaction strength and hi is a

random magnetization. We take � = 1 and the field uniformly
random hi = [−W,W ]. This model is often used to study
the nature of the MBL phase transition [10,26]. The critical
value of disorder reported in the literature varies, usually close
to Wc ≈ 3.8 as obtained through large-scale (L = 26) exact
diagonalization [35]. However, more recent studies suggest a
slightly larger value closer to Wc ≈ 5 [36,37]. In the ergodic
phase (small W ), the excited states have volume law entan-

10 14 18 22 26 30

0.75

0.8

0.85

0.9

L

ε
[2

ln
2]

Birth
Death

FIG. 7. Birth and death of the H1 persistence bar at the quantum
critical point h = 1 of the transverse-field Ising chain of varying size
L. The birth value is set by the distance between neighboring sites
and converges to D01/2 ln 2 ≈ 0.744293. The death value is set by
the distance between two maximally separated sites and converges
to D0∞/2 ln 2 = 1 (see Appendix D).

glement. In the MBL phase (large W ), the spins are mostly
weakly entangled, but the entanglement structure is the object
of our interest. Clusters (of spins) are defined as a subsystem
that has stronger entanglement internally than with the rest of
the system.

Using exact diagonalization, we select k = 50 eigenstates
from the middle of the spectrum for Nd = 3000 disorder real-
izations (i.e., changing the random magnetization hi). For each
eigenstate, we construct a Vietoris-Rips complex with the
distance metric of Eq. (11). The resulting persistence barcodes
are merged by discarding the information from which real-
ization each barcode originated. Since this leads to barcodes
with many bars, we use Betti numbers [Eq. (9)] to summarize
and investigate the results. Figure 8 shows the Betti numbers
for varying disorder strengths W . As the disorder strength W

0

0.05

0.1

β
1
/L

N
d
k

W = 1.0
W = 1.5
W = 2.0
W = 2.5
W = 3.0
W = 3.5
W = 4.0
W = 4.5
W = 5.0
W = 5.5
W = 6.0

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ε [2 ln 2]

β
0
/
L

N
d
k

FIG. 8. Betti numbers β0 and β1 for varying disorder strength
W . XXZ spin chain with L = 16 sites, Nd = 3000 realizations and
k = 50 states.
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FIG. 9. (a) Maximum Betti number of the first homology group
for varying disorder strengths W . 3000 disorder realizations. (b) The
disorder strength with largest Betti number, i.e., peak in (a), that
extrapolates to a critical strength of Wc ≈ 4.79 (marked by dotted
line).

decreases, there are fewer connected components as counted
by the normalized β0.

Figure 9 shows the maximum of β1 (see Fig. 8) for vary-
ing disorder strengths W . This maxima occur at a length
scale around ε ≈ 0.95 · 2 ln 2. The Betti number β1 essentially
counts the number of spin clusters that are more strongly
entangled (strength set by ε) within the cluster than the envi-
ronment. The minimum set of spins to form a 1-cycle is four
spins (because three connected spins would form a 2-simplex
in a Vietoris-Rips complex). For smaller system sizes L � 14,
the maximum is at small disorder strength W . However, for
larger systems, a maximum in the expected range of 3 − 5
appears. Extrapolating the peak leads to a predicted critical
strength of Wc ≈ 4.79, which is in line with the aforemen-
tioned values reported in literature.

VIII. DISCUSSION

Here we lay out a few examples of related work and future
directions to explore. Computing the entanglement entropy
of all possible partitions is numerically impractical due to
the factorial number of possibilities. For single pairs of N
particles (or spins), the number is N choose 2 [scales as
O(N2)]. However, due to the nonadditivity of entropy, this
does not necessarily capture all the structure present in the
entanglement of the state.

Rather than starting from individual spins, it is also pos-
sible to perform a recursive bipartitioning of the spin chain
(as used in Ref. [10]). This turns the wave function into a
binary tree, where each node is a set of spins. Compared to
our method, which is bottom up from spin pairs, this could
be considered a top-down approach. Given the binary tree,
the distance between leaf nodes (single spins) can be used
to compute homology. This would be an alternative to our

bottom-up approach based on MI and an interesting direction
to explore in the future.

Another interesting future direction would be to connect
barcodes to matrix product states and tensor networks. In ma-
trix product states, the bond dimension refers to the dimension
of matrices used to represent the quantum state, and a small
bond dimension comes with low computational complexity.
For example, ground states of gapped Hamiltonians obey the
area law and have constant bond dimension [1]. The bond
dimension is dependent on the decay of correlations in the
model, and these correlations are measured by the barcode,
providing a potential bridge between the two. Regarding ten-
sor networks, the MERA [3] is used for infinite 1D quantum
critical states and represents an interesting case to study
through the lens of homology. Another state to consider is the
rainbow state, which is a ground state of the inhomogeneous
Ising transverse field chain that also exhibits a volume law
[38,39].

We compute entanglement entropy using singular value
decomposition, but diagonalizing the partial trace of a density
matrix (constructed as the outer product of the pure state)
has similar computational complexity. The purity (or linear
entropy) of a quantum state could be an alternative to the von
Neumann entropy that is used here, and it has the benefit of
not requiring diagonalization of the density matrix.

The first example of the Ising chain discussed in this
paper can be solved efficiently using the Jordan-Wigner
transformation. However, this is a special case and is not
generally efficient for all interacting Hamiltonians, so we
do not rely on this transformation in this work. Further-
more, the PBCs are essential for forming a 1-cycle in the
transverse-field Ising chain and this appears to limit the use-
fulness of barcodes. In Appendix E, we show an example with
open boundary conditions, where a phase transition is still
captured.

The von Neumann entropy is typically not experimentally
accessible, whereas the Rényi entropy of order α = 2 is ex-
perimentally accessible in certain setups [40]. This would
make it possible to compute the barcode of an experimental
setup.

Regarding persistent homology, we note that our homol-
ogy groups are computed with Z2 (boolean) coefficients, the
most common choice in TDA. The choice of coefficients
determines whether a simplex can occur multiple times in
a chain or whether the direction of travel (represented by
the sign of the coefficient) matters. The change in barcodes
for entanglement structure when computing homology with
different coefficients is also an interesting direction to explore.
For examples of manifolds and the effect of homology with
different coefficients, see Appendix C.

TDA is a powerful tool that can be applied to the questions
of emergent structures in the topology of the Hilbert space
describing the system. This connects directly to a deeper
question: Does space-time emerge from entanglement? This
is one of the questions that is part of the Simons Col-
laboration: It from Qubit [41]. The study of the emergent
geometry from entanglement is still a topic of active research
[42–45]. For example, Cao et al. have proposed the use of
MI and classical multidimensional scaling to form emergent
geometry [46].
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IX. CONCLUSION

Persistent homology is a tool for dealing systematically
with the entanglement structure in quantum states. The topo-
logical features that it computes can be used to answer a
number of scientific questions. First, the barcode of a quan-
tum state changes dramatically when the state undergoes a
QPT. It is therefore a unique type of quantum order pa-
rameter. We have demonstrated its capability for two basic
examples of the Ising chain and XXZ spin chain in a trans-
verse field. Second, it can guide the development of suitable
wave function ansatze with, for example, tensor networks.
Third, it provides a numerical approach for studying the
emergent geometry of entanglement. This is very relevant
to the scientific question whether space-time emerges from
entanglement.

The focus in this multidisciplinary work is on the ap-
plication of persistent homology to equilibrium QPTs, the
first of the aforementioned uses of the method. However,
it is also possible to examine many quantum phenomena
through the lens of homology and Betti numbers of the en-
tanglement structure. The effect of adding time dependence
to the presented scheme is also a promising future direction
to explore, and recent work has already introduced some
persistent homology observables for quantum many-body
dynamics [19].
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APPENDIX A: BIPARTITE ENTANGLEMENT ENTROPY

The distance metric used in our paper is based on quantum
MI and the properties of entanglement entropy. We therefore
recall the key properties of entanglement entropy. Bipartite
entanglement entropy is computed by performing Schmidt
decomposition on a quantum state. We start by breaking down
the Hilbert space in two parts, H = HA ⊗ HB, and form a
matrix Ci j such that

|ψ〉 =
∑
i=1

∑
j=1

Ci j |i〉A ⊗ | j〉B , (A1)

where {|i〉A} and {| j〉B} are the basis sets for HA and HB, re-
spectively [47]. Schmidt decomposition is essentially singular

value decomposition C = U�V †, where λα forms the diago-
nal of �. Assuming NB > NA, then the state can be expressed
in the following form:

|ψ〉 =
2NA∑
α

λα |α〉A ⊗ |α〉B . (A2)

If there is more than one nonzero singular value λα , then the
state is entangled. The singular values can also be used to
compute the entanglement entropy

S = −
∑

j

|λ j |2 ln (|λ j |2), (A3)

which is zero if the state |ψ〉 is a product state (without
entanglement). It is also upper bounded to ln (d ), where
d is the Hilbert space dimension. This is N ln 2 in the
case of N spins. Two other properties of quantum entropy
that are used to form the distance metric are the triangle
inequality,

|Si − S j | � Si j � Si + S j, (A4)

and strong subadditivity [48],

Sx + Sz � Sxy + Syz. (A5)

In the main text, we show how the bipartite von Neumann
entanglement entropy S is used to compute MI between sub-
systems and how it sets the length scale for the corresponding
persistence barcodes.

APPENDIX B: PERSISTENT HOMOLOGY ALGORITHM

The computation of persistent homology for a sequence
simplicial complexes is, in practice, simply a row reduction of
a matrix. More specifically, the boundary matrix encodes the
boundaries present in the complex and each row and column
represent a simplex. The rows and columns are also ordered
by the appearance time of the simplices in the complex, such
that the first column/row appears before the next in the se-
quence of complexes, and so on. In other words, this ordering
originates from the input distance metric (e.g., Euclidean dis-
tance), as visualized in Fig. 2.

The standard algorithm (sometimes called the column
algorithm) reduces the boundary matrix, see Algorithm 1
below [21,29].

The worst-case time complexity of this algorithm is cubic
in the number of simplices, and a sparse matrix implementa-
tion is possible [21]. From the reduced boundary matrix, we
can read off the barcode. For other coefficients than Z2, see
Ref. [22].

Algorithm 1 Column algorithm

1: for j = 1 to m do

2: while there exists j0 < j with low( j0) = low( j) do

3: add column j0 to column j

4: end while
5: end for
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We now demonstrate the algorithm on an example simpli-
cial complex:

K =

14
1

2

3

45

6

7

8
910

11

12

13

.

(B1)

This corresponds to a space of a disk (2-simplex No. 14)
glued to a one-dimensional hole (cycle of one-simplices, 8-
11-12-13-10). First, deconstruct the simplicial complex into a
boundary matrix,

B =

7 8 9 10 11 12 13

7

8

9

10

11

12

13

14

1
2
3
4
5
6

1 2 3 4 5 6 14⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(B2)

where the nonzero rows indicate the boundary of the corre-
sponding column. Although we did not specify the ordering
when defining the simplicial complex, the simplices in the
columns and rows are also ordered by their appearance time
in the complex.

Next, reduce the boundary matrix following Algorithm 1
and indicate the lowest 1s with a box:

B =

7 8 10 11 12

7
+
8
+
9

8
+
11
+
12
+
10
+
13

7

8

9

1
2
3
4
5
6

1 2 3 4 5 6 14⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B3)

The persistence pairs can be harvested from the reduced
boundary matrix. An all-zero column indicates the birth of
a persistence pair. It dies by pairing it with a lowest 1. For
example, column 9 is all-zero and initiates a pair. For the
corresponding row 9, it pairs with column 14, leading to per-
sistence pair [9, 14)1, where the subscript indicates the birth
simplex is one-dimensional. The all-zero columns that cannot

be paired live until infinity. In our example, all the persistence
pairs are

[2, 7)0, (B4)

[3, 8)0, (B5)

[9, 14)1, (B6)

[6, 10)0, (B7)

[4, 11)0, (B8)

[5, 12)0, (B9)

[13,∞)1, (B10)

[1,∞)0. (B11)

As expected, only one connected component (0 dimensional-
ity hole) survives to infinity: [1,∞)0.

The persistence pairs are typically visualized in a barcode
(see Fig. 2), where the birth and death indicate the start and
end of the bar. Note that the explicit length scales associated
to the appearance of each simplex is not part of the persistent
homology algorithm, only the ordering is. The birth and death
simplices can be translated into birth and death length scales
when plotting a barcode by referring to the input sequence
of simplicial complexes that was generated using a distance
metric.

APPENDIX C: NONORIENTABLE SURFACES
AND TORSION

The entanglement structure of a quantum state is converted
into a topological space using MI as a metric. This space is
then studied using simplicial homology with Z2 coefficients,
which means that simplices either are included or excluded
when talking about loops in this space. This is computation-
ally easier, however, the more general case of homology with
integer coefficients (i.e., integral homology) is able to capture
more information. In this section, we study this in detail and
show that manifolds may have different homology groups,
depending on the choice of coefficients.

Nonorientable surfaces are twisted and turn clockwise ob-
jects to counterclockwise, with common examples being the
Möbius strip, Klein bottle, and the real projective plane. A
surface is orientable if it has a consistent notion of clockwise
rotation as we move around. It turns out that nonorientability
is connected to the notion of torsion. Algebraically, torsion
means that a group element has finite order (i.e., gn = e for
a positive integer n) and a group where all elements fit this
condition is called a torsion group. A torsion-free group has no
elements of finite order other than the identity element, e.g.,
(Z,+). Both orientable (e.g., RP 3) and nonorientable (e.g.,
RP 2) manifolds may have torsion in its integral homology.
However, there is a theorem that states that if M is a closed
connected n-manifold that is nonorientable, the homology
group Hn−1 contains torsion [49], Corollary 3.28.
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FIG. 10. (a) Möbius strip that is triangulated by gluing together
2-simplices. The faces are four unique 1-simplices and two 0-
simplices. (b) Simplicial complex of the Möbius strip showing the
orientation of the simplices. (c) Simplicial complex of the real pro-
jective plane that is constructed by gluing the sides of the Möbius
strip together—this can be done in R4 without the surface intersect-
ing itself.

In general, the k-homology group over the integers for a
simplicial complex K has the following form:

Hk (K,Z) =
βk︷ ︸︸ ︷

Z ⊕ · · · ⊕ Z⊕ Zk1 ⊕ · · · ⊕ Zkn , (C1)

where βk is the Betti number and ki are the torsion coefficients.
However, it is common to compute homology over Z2 rather
than the integers, leading to a different kind of homology,
namely, Hk (K,Z2). To illustrate the absence or presence of
torsion in nonorientable surfaces, we start with the Möbius
strip and then proceed to the real projective plane.

Figures 10(a) and 10(b) show the Möbius strip M and its
corresponding simplicial complex. We now compute its one-
homology over the integers. The chain groups for the Möbius
strip M are

C0 = 〈[1], [2]〉, (C2)

C1 = 〈[3], [4], [5], [6]〉, (C3)

C2 = 〈[7], [8]〉, (C4)

where the simplices form a basis and the coefficients are hid-
den, e.g., C0 = {a1[1] + a2[2]}. The 1-cycles are a subgroup
of C1, namely,

Z1 = {c ∈ C1 | ∂ (c) = 0} (C5)

= {a3[3] + a4[4] + a5[5] + a6[6]}, (C6)

where the coefficients ai ∈ Z are constrained by ∂ (c) = 0. To
find the space of 1-cycles, we apply the boundary operator
[Eq. (3)] to the 1-simplices,

∂[3] = [1] − [2], (C7)

∂[4] = [2] − [1], (C8)

∂[5] = [2] − [1], (C9)

∂[6] = [1] − [1] = 0, (C10)

and row reduce this system of equations. The space of
1-cycles is generated by

Z1 = 〈[3] + [4], [3] + [5], [6]〉. (C11)

Next, to find the boundary group B1 = Im ∂2 = ∂2(C2), we
apply the boundary operator to the 2-simplices:

∂[7] = [3] + [6] + [5], (C12)

∂[8] = [3] − [6] + [4]. (C13)

Therefore, the boundary group B1 is generated by

B1 = 〈[3] + [6] + [5], [3] − [6] + [4]〉. (C14)

Finally, we find that the one-homology (cycles mod bound-
aries) over the integers for the Möbius strip M is

H1(M,Z) = 〈[3] + [4], [3] + [5], [6]〉
〈[3] + [6] + [5], [3] − [6] + [4]〉 (C15)

∼= 〈[3] + [4] + [6], [3] + [5] − [6], [6]〉
〈[3] + [6] + [5], [3] − [6] + [4]〉 (C16)

∼= 〈[6]〉 (C17)
∼= Z. (C18)

The number of one-dimensional holes is described by the
Betti number β1 = 1. Geometrically, we can see this loop in
Fig. 10(a) in the middle of the Möbius strip and observe that
group H1 is torsion-free.

In the case of Z2 coefficients, the boundary operator is

∂S =
k∑

j=0

[v0v1 . . . v̂ j . . . vk], (C19)

with v̂ j simplex being left out. Simplices appearing twice mod
out to zero, and again ∂2S = 0 is true. The Betti number βk is
now defined as the number of copies of Z2. Performing the
same steps as before, we arrive at the one-homology with Z2

coefficients for the Möbius strip,

H1(M,Z2) = 〈[3] + [4], [3] + [5], [6]〉
〈[3] + [6] + [5], [3] + [6] + [4]〉 (C20)

∼= 〈[3] + [4] + [6], [3] + [5] + [6], [6]〉
〈[3] + [6] + [5], [3] + [6] + [4]〉 (C21)

∼= 〈[6]〉 (C22)
∼= Z2, (C23)

where the Betti number βk is now defined as the number of
copies of Z2 (i.e., β1 = 1 in this case).

The real projective plane RP 2 can be constructed by em-
bedding the Möbius strip in R4 and gluing the sides together
with the right orientation, see Figs. 10(b) and 10(c). The chain
groups for this manifold are the same except for the 1-chains
and 1-cycles

C1 = 〈[3], [4], [6]〉, (C24)

Z1 = {c ∈ C1 | ∂ (c) = 0} (C25)

= {a3[3] + a4[4] + a6[6]}. (C26)
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Again, the coefficients are constrained by the boundary oper-
ator ∂ (c) = 0 and the space of the one-cycles is generated by

Z1 = 〈[3] + [4], [6]〉. (C27)

The boundary of the 2-simplices are now

∂[7] = [3] + [6] + [4], (C28)

∂[8] = [3] − [6] + [4]. (C29)

The boundary group B1 is generated by

B1 = 〈[3] + [6] + [4], [3] − [6] + [4]〉. (C30)

The one-homology group for the real projective plane:

H1(RP 2,Z) = 〈[3] + [4], [6]〉
〈[3] + [6] + [4], [3] − [6] + [4]〉 (C31)

∼= 〈[3] + [4] + [6], [6]〉
〈[3] + [6] + [4], 2[6]〉 (C32)

∼= 〈[6]〉
〈2[6]〉

∼= Z

2Z
≡ Z2. (C33)

The real projective plane has two-torsion and a Betti number
β1 = 0. Geometrically, it means that the single move from [1]
to [1] is a loop, but it cannot be contracted to a point, however,
twice the loop (i.e., walking around the rectangular perimeter
of the simplicial complex in Fig. 10) is contractible to zero.

In the case of Z2 coefficients, the real projective plane has
a one-homology of

H1(RP 2,Z2) = 〈[3] + [4], [6]〉
〈[3] + [6] + [4], [3] + [6] + [4]〉 (C34)

∼= 〈[3] + [4] + [6], [6]〉
〈[3] + [6] + [4], 2[6]〉 (C35)

∼= 〈[6]〉 ∼= Z2. (C36)

This is the same result as for the Möbius strip [Eq. (C23)],
with Betti number β1 = 1, so it is clear that homology over
Z2 coefficients cannot distinguish between these two topo-
logical spaces. In contrast, the integral homology is different
between the two spaces due to the presence of torsion in the
real projective plane. However, it is also important to note
that orientable manifolds (e.g., RP 3) can have torsion in its
integral homology groups.

More generally, there is the universal coefficient theorem
that relates the integral homology to homology with different
coefficients A, and it turns out that the integral homology
completely determines the homology groups for any Abelian
group A [49], Sec. 3.A.

Our study of entanglement structures only considers
homology with coefficients Z2 since it is the most compu-
tationally straightforward. However, as shown here, integral
homology groups are sometimes more informative. There ex-
ist algorithms that efficiently compute persistent homology
with different coefficients and deduce the torsion subgroups
of the integral homology [50]. Whether torsion provides im-
portant information in the study of entanglement structures is
unclear and the topic of future work.

APPENDIX D: TRANSVERSE-FIELD ISING CHAIN:
ENTANGLEMENT ENTROPY AT CRITICALITY

The demonstration of persistent homology on the one-
dimensional transverse-field Ising chain (with PBCs) relied on
the general approach of exact diagonalization, and this scales
to finite-size systems up to about L = 30 sites. However,
this model is exactly solvable and this makes it possible to
compute the entanglement entropy where a finite number of
sites are in subsystem A while the rest of the infinitely long
chain is in subsystem B. This also provides exact results for
the entanglement entropy and the MI used in our paper.

Persistent homology captures the structure of the entan-
glement as described by the two-site MI Mi j . Translational
invariance means that the MI only depends on the distance
between two sites, i.e., Mi j = M0r with r = |i − j|. The dis-
tance metric used in persistent homology is simply the inverse
of the MI, such that high MI means two sites are close, see
Eq. (11).

At the critical point, the asymptotic behavior of the per-
sistent homology for this model is governed by two special
cases. The first case sets the birth length scale of the one-
homology when neighboring spins are connected and form
a cycle [Fig. 6(b)]. This is set by the amount of MI between
neighboring spins, i.e., M01. The second case is the point when
the one-hole is closed and it sets the death length scale. This is
set by the amount of MI between spins on opposite sides of the
chain, which in a case of an infinite chain corresponds to M0∞.
Therefore, we need to compute the entanglement entropies S1,
S01, and S0∞ [see Eq. (10)]. The exact one-site and two-site
reduced density matrix and the spin-spin correlation functions
for the infinite transverse-field Ising chain (at criticality) are
known [51–54].

Starting with the case of the single site in subsystem A, the
reduced density matrix is

ρ1 = I + 〈σ z〉σ z

2
, (D1)

where I and σ z are the identity matrix and the Z Pauli matrix,
respectively. For the ground state, the transverse magnetiza-
tion is [53]

〈σ z〉 = 1

π

∫ π

0
dφ

1 + λ cos φ√
1 + λ2 + 2λ cos φ

= 2

π
. (D2)

This gives the exact entanglement entropy,

S1

ln 2
= −Tr(ρ1 ln ρ1)

ln 2
(D3)

= 2π ln
(

4π2

π2−4

) − 8 tanh−1
(

2
π

)
π ln(16)

(D4)

≈ 0.68376, (D5)

normalized by ln (2) such that it ranges from 0 to 1.
The two-site case takes two spins i and j in subsystem A,

ρ0r = I0r + 〈σ z〉(σ z
0 + σ z

r

) + ∑3
k=1

〈
σ k

0 σ k
r

〉
σ k

0 σ k
r

4
, (D6)
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FIG. 11. Exact two-site entanglement entropy S0r/2 ln 2 (where
r = |i − j|) for an infinitely long transverse-field Ising chain with
periodic boundary conditions. The dotted lines indicate the minimum
S01 and the maximum S0∞.

which can be described with r = |i − j| due to translational
symmetry. The spin-spin correlation functions are known at
criticality,

〈σ x
0 σ x

r 〉 =
(

2

π

)r

22r(r−1) H (r)4

H (2r)
, (D7)

〈
σ

y
0 σ y

r

〉 = −
〈
σ x

0 σ x
r

〉
4r2 − 1

, (D8)

〈
σ z

0σ z
r

〉 = 〈
σ z

0

〉〈σ z
r 〉 + 4

π2

1

4r2 − 1
, (D9)

with H (r) = 1r−12r−2 . . . (r − 1). The two-site entanglement
entropy for neighboring sites is

S01

2 ln 2
= −Tr(ρ01 ln ρ01)

2 ln 2
(D10)

≈ 0.42805. (D11)

For the two-site case with limit r → ∞, the correla-
tion functions are 〈σ x

0 σ x
r 〉 = 0, 〈σ y

0 σ
y
r 〉 = 0 and 〈σ z

0σ z
r 〉 =

〈σ z
0 〉〈σ z

r 〉 = 4/π2, and the entanglement entropy,

S0∞
2 ln 2

= −Tr(ρ0∞ ln ρ0∞)

2 ln 2
(D12)

= S1

ln 2
(D13)

≈ 0.68376. (D14)

For completeness, Fig. 11 shows the entanglement entropy as
a function of r. This shows that neighboring sites with r = 1
have the lowest entanglement entropy and this leads to the
smallest MI distance. This matches what we see for a small
chain with h = 1 in Fig. 5(b).

Finally, we find that the MI [Eq. (10)] for the case of two
neighboring spins is

M01

2 ln 2
= S0 + S1 − S01

2 ln 2
≈ 0.255707. (D15)

Therefore, the distance [Eq. (11)] D01 = 1 − M01 ≈
0.744293, which matches the birth length scale shown in
Fig. 7. When the spins are far apart, the MI is zero,

M0∞
2 ln 2

= S0 + S1 − S0∞
2 ln 2

= 0, (D16)

meaning that the distance is the maximum D0∞ = 2 ln 2. This
refers to the death length scale Fig. 7. In other words, the birth

(a)

(b)
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Δ
d

FIG. 12. The ground-state magnetization M = |1/N
∑

i σ
x
i | of

the transverse-field Ising chain with open boundary conditions (a).
Range of the set of zero-homology deaths, where the maximum range
coincides with the transition close to h = 1.

and death of the one-homology of this model at criticality
converge to their expected values.

APPENDIX E: TRANSVERSE-FIELD ISING CHAIN:
PERSISTENT HOMOLOGY WITH OPEN BOUNDARY

CONDITIONS

The entanglement structure of a quantum state and its cor-
responding (persistence) barcode depend on the Hamiltonian
and its boundary conditions. For example, the existence of
the one-cycle for the tranverse-field Ising chain at critical-
ity [Fig. 6(b)] relies on PBCs being present. This raises the
question whether persistent homology is able to detect transi-
tions without PBCs. Here we show that the model with open
boundary conditions also shows a structure in its persistence
barcode. However, it is the zero-homology instead of the one-
homology that indicates a phase transition.

Without translational invariance due to PBCs, the MI be-
tween pairs of neighboring spins is not always exactly the
same. For example, close to the critical transverse field of
h = 1, we see that some pairs are closer as defined by the MI
distance metric [Eq. (11)], which means that the spins connect
and form one-simplices earlier. In terms of zero-homology
(connected components), this coincides with the end (typi-
cally referred to as death) of a bar, e.g., Fig. 2. Note that
zero-homology differs from one-homology in that the bars
always start (typically referred to as birth) at zero, indicat-
ing a disconnected data point (spin in our case). Therefore,
the only information is the set of death values. Since the
zero-homology bars are all born at zero, this is equivalent to
the set of lifetimes. The changes in zero-homology can be
summarized in many ways, and here we plot the difference
between the maximum and minimum of the set of death values
Fig. 12(b), and this indicates the transition around h = 1 at its
peak, similarly to the traditional magnetization [Fig. 12(a)].
This example shows that persistent homology is a general tool
that does not necessarily rely on PBC being present.
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