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Effect of spin-orbit coupling on the zero-point renormalization of the electronic band gap
in cubic materials: First-principles calculations and generalized Fröhlich model
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The electronic structure of semiconductors and insulators is affected by ionic motion through electron-phonon
interaction, yielding temperature-dependent band gap energies and zero-point renormalization (ZPR) at absolute
zero temperature. For polar materials, the most significant contribution to the band gap ZPR can be understood
in terms of the Fröhlich model, which focuses on the nonadiabatic interaction between an electron and the
macroscopic electrical polarization created by a long-wavelength optical longitudinal phonon mode. On the other
hand, spin-orbit interaction (SOC) modifies the bare electronic structure, which will, in turn, affect the electron-
phonon interaction and the ZPR. We present a comparative investigation of the effect of SOC on the band
gap ZPR of twenty semiconductors and insulators with cubic symmetry using first-principles calculations. We
observe a SOC-induced decrease of the ZPR, up to 30%, driven by the valence band edge, which almost entirely
originates from the modification of the bare electronic eigenenergies and the decrease of the hole effective
masses near the � point. We also incorporate SOC into a generalized Fröhlich model, addressing the Dresselhaus
splitting which occurs in noncentrosymmetric materials, and confirm that the predominance of nonadiabatic
effects on the band gap ZPR of polar materials is unchanged when including SOC. Our generalized Fröhlich
model with SOC provides a reliable estimate of the SOC-induced decrease of the polaron formation energy
obtained from first principles and brings to light some fundamental subtleties in the numerical evaluation of the
effective masses with SOC for noncentrosymmetric materials. We finally warn about a possible breakdown of the
parabolic approximation, one of the most fundamental assumptions of the Fröhlich model, within the physically
relevant energy range of the Fröhlich interaction for materials with high phonon frequencies treated with SOC.
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I. INTRODUCTION

Electron-phonon interaction (EPI) has been widely investi-
gated from a theoretical point of view since the late 1940s,
through pioneering works of Pekar [1], Landau and Pekar
[2], Fröhlich [3], and Feynman [4], and numerous subse-
quent works [5,6]. Using model Hamiltonians, those first
theories essentially addressed the interaction of an electron
in an isotropic, continuous medium with the macroscopic
polarization induced by longitudinal optical (LO) long-range
lattice vibrations, which yields in a correlated state called
a polaron. The Fröhlich model since became the foundation
stone of modern large-polaron studies. From a first-principles
point of view, the works of Allen, Heine and Cardona [7–9]
(AHC) in the 1980s clarified earlier theories by Fan [10] and
Antončík [11]. They provided a unified formalism for the EPI
self-energy, rooted in many-body perturbation theory, which
addresses all types of lattice vibrations.

Despite their fundamentally different perspectives, the
model Hamiltonian and first-principles approaches address
the same problem, namely, the consequences of EPI on the
electronic structure. Amongst numerous effects on transport
and optical properties of materials [6], EPI modifies the
quasiparticle energy and introduces finite quasiparticle life-
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times, which depend on the phonon population at a given
temperature. As a consequence, the electronic structure does
not only acquire a temperature dependence: it is affected even
at absolute zero temperature, through the zero-point motion of
the ions. This T = 0 K correction is known as the zero-point
renormalization (ZPR). From the Fröhlich model perspective,
the band edge ZPR corresponds to the polaron formation
energy.

In recent years, considerable efforts have been directed
towards tackling the Fröhlich interaction within the full
complexity of real materials as captured by first-principles
methods (see Refs. [12,13] and references therein). Among
others, Sio et al. [14,15] developed a first-principles theory
of polarons, later reformulated using a variational princi-
ple [16]. More recently, Lafuente-Bartolome et al. proposed
a self-consistent many-body Green’s function theory which
simultaneously addresses phonon-induced band structure
renormalization and small polaron formation [17,18]. From
another perspective, Houtput and Tempere [19] derived anhar-
monic corrections to the Fröhlich Hamiltonian, and Kandolf
et al. [20] and Macheda et al. [21] investigated the Fröhlich
interaction in doped solids. Other works proposed models
retaining certain fundamental assumptions of the original
Fröhlich model while lifting some of its hypotheses. Schlipf
et al. [22] addressed the case of multiple phonon branches,
relying on the first-principles Fröhlich vertex proposed by
Verdi and Giustino [23]. Miglio et al. [12] introduced a
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generalized Fröhlich model (gFr), based on a simplified
electron-phonon vertex, that allows for multiple phonon
branches, degenerate band extrema and anisotropic band
warping. The authors used this model to reveal the predom-
inance of nonadiabatic effects in the ZPR of semiconductors
and insulators and explain why including such effects in
calculations is essential to obtain an agreement between the
first-principles band gap ZPR (ZPRg) and experimental data.
Their gFr model was recently used to obtain polaron effective
masses and localization lengths in cubic materials [13], as
well as to investigate the domain of applicability of the Fröh-
lich model using a high-throughput computational framework
[24].

One question which remains unaddressed in Ref. [12] is
the effect spin-orbit coupling (SOC). It is well known that
SOC lifts the spin degeneracy of the Bloch states throughout
the Brillouin zone, except at time-reversal invariant k points.
For the valence band maximum (VBM) of cubic materials,
which is triply degenerate when neglecting SOC, this leads
to a 4 + 2 degeneracy: the two split-off bands are moved to
lower energies compared to the heavy hole and light hole
bands, which remain degenerate at the � point. This loss
of degeneracy could affect the ZPRg predicted by the gFr
model. In addition to the electronic eigenvalues, the inclusion
of a SOC term in the external potential of the first-principles
Hamiltonian will also have repercussions on the first-order
Hamiltonian perturbed by atomic displacements, which is a
key quantity for computing the ZPR.

SOC has often been neglected throughout literature when
investigating the Fröhlich interaction since strong polaronic
effects are most likely to occur in materials where the LO
phonon frequency is large. Such systems typically contain
light atoms (e.g., oxides), for which SOC can reasonably be
expected to be weak. Some theoretical studies have addressed
the consequences of SOC on EPI in 2D materials [25–27],
mainly through Rashba-Holstein [28,29] and Rashba-Fröhlich
[30,31] model Hamiltonians. To the best of our knowledge,
only Trebin and Rössler [32] explicitly investigated the effect
of SOC on the Fröhlich polaron for triply degenerate band
extrema in 3D materials. However, they relied on an isotropic
model Hamiltonian, thus neglecting the effect of band warp-
ing.

From the first-principles perspective, density-functional
perturbation theory calculations including SOC have been
available for about 15 years [33,34]. Other formalisms relying
on finite differences and distorted supercells [35], as well as
the recent special displacement method [36], have also been
used to investigate this question. Nevertheless, SOC remains
commonly neglected in ZPR calculations to this day. Full
first-principles EPI calculations with SOC are typically done
on a case-by-case basis [22,37,38]. Rashba materials [39],
for which SOC is known to have a profound impact on ei-
ther the electronic structure or the phonon frequencies, and
topological materials [40,41], in which SOC is necessary to
induce the band inversion, have naturally been investigated
by including SOC in first-principles EPI calculations. Some
compound-specific comparative studies have been made, for
example, in PbTe [42,43], CH3NH3PbI3 [44] and BAs [45],
as well as when investigating the superconducting coupling
constant [46–49]. Yet, even in the most simple case of cubic

materials, the effect of SOC on EPI and the ZPR has not
received the thorough investigation it deserves.

In this paper, we investigate the effect of SOC on the
ZPR of twenty semiconductors using the nonadiabatic AHC
framework. We focus on representative cubic materials, as
their well-characterized electronic structure provides a sim-
ple framework to investigate the mechanisms at play. Their
triply degenerate VBM also proves ideal to investigate the
effect of SOC on the polaron formation energy of degenerate
extrema within the gFr model. We evaluate the first-principles
ZPR with the AHC methodology and extend the generalized
Fröhlich model of Miglio et al. [12] to include SOC. First-
principles calculations show that spin-orbit coupling reduces
the zero-point renormalization of the valence band edge by
15%–30% for the heavier materials, e.g., the tellurides. We
address the SOC-induced Dresselhaus splitting [50] occur-
ing in noncentrosymmetric materials, which shifts the band
extrema slightly away from its location without SOC in re-
ciprocal space. The leading mechanism driving the observed
SOC-induced decrease of the ZPRg is found to be the variation
of the electronic eigenenergies of the occupied bands and the
decrease of the hole effective masses near the � point. We
also confirm the claims of Miglio et al. [12] regarding the
predominance of nonadiabatic effects in the ZPRg of polar
materials. We relate the results from the two approaches and
bring to light some limitations of the approximations inherent
to the gFr model when SOC is considered.

Section II presents an overview of the theoretical con-
cepts used throughout this work. We first review the AHC
formalism for EPI (Sec. II A), then briefly discuss some
key consequences of SOC in the first-principles perspective
(Sec. II B) before demonstrating how to incorporate SOC
into the gFr model of Ref. [12] (Sec. II C) and investigat-
ing the consequences of Dresselhaus splitting on our results
(Sec. II D). Section III provides the relevant technical details
regarding our calculations. We respectively analyze our first-
principles and gFr model results in Secs. IV A and IV B then
summarize our findings in Sec. V.

II. METHODOLOGY

A. AHC formalism

In the following, we briefly summarize the key concepts
of the nonadiabatic Allen-Heine-Cardona (AHC) framework
[7–9]. We work with the Hartree atomic unit system, such that
h̄ = me = c = |e| = 1.

Within the many-body perturbation theory formalism, the
electron-phonon interaction at temperature T affects the
electronic Green’s function through a frequency-dependent
electron-phonon self-energy, �kn(ω, T ), where k and n are
respectively the electron wave vector and band index. At the
lowest order of perturbation, known as AHC theory [9], the
self-energy contains two terms, called the Fan and Debye-
Waller (DW) contributions:

�AHC
kn (ω, T ) = �Fan

kn (ω, T ) + �DW
kn (T ). (1)

The dynamical Fan self-energy contains two first-order ver-
tices treated at second order in perturbation theory, while the
static Debye-Waller self-energy has one second-order vertex
treated at first order in perturbation theory. The Feynman
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FIG. 1. Fan and Debye-Waller diagrams contributing to the AHC
self-energy.

diagrams corresponding to these contributions are shown in
Fig. 1.

Note that we implicitly suppose that the full self-energy
matrix can be approximated by its diagonal counterpart, i.e.,
�knn′ ∝ δnn′ . The nondiagonal contributions hybridize the un-
perturbed electronic eigenstates within the interacting Green’s
function [51] and become important when the band gap nearly
vanishes. These can be safely neglected here as we work with
semiconductors and insulators.

Within this framework, the temperature dependence of an
electronic eigenstate with eigenvalue εkn then reads

εkn(T ) = Re
[
�AHC

kn (ω = εkn(T ), T )
] + ε0

kn. (2)

From this point, we work exclusively at T = 0 K. The ZPR
of an electronic eigenstate |kn〉 is obtained from Eq. (2),

ZPRkn = εkn(T = 0) − ε0
kn, (3)

while the band gap ZPR is the difference between the ZPR
of the conduction and valence band edges (respectively, ZPRc

and ZPRv),

ZPRg = ZPRc − ZPRv. (4)

We apply the on-the-mass-shell approximation to Eq. (1),
thus evaluating the Fan self-energy at the poles of the Green’s
function, namely, at the bare electronic eigenvalue, ε0

kn,

�Fan
kn (εkn(T = 0), T = 0) ≈ �Fan

kn

(
ω = ε0

kn, T = 0
)
. (5)

Furthermore approximating the interacting electronic Green’s
function by the noninteracting Kohn-Sham wave function ob-
tained from density-functional theory (DFT), one obtains the
standard expression for the nonadiabatic Fan self-energy [6],

�Fan
kn

(
ε0

kn, T = 0
) =

BZ∑
qν

∑
n′

| 〈k + qn′| ∇qνV KS |kn〉 |2

×
[

1 − fk+qn′

ε0
kn − ε0

k+qn′ − ωqν + iηk
+ fk+qn′

ε0
kn − ε0

k+qn′ + ωqν + iηk

]
.

(6)

The contributions of all phonon modes with frequency ωqν

are summed for all wave vector q and branch index ν in the
Brillouin zone (BZ). In Eq. (6) and throughout this work, all
phonon modes summations are implicitly normalized by the
number of phonon wave vectors used to sample the Brillouin
zone. Since we work at T = 0 K, the Fermi-Dirac occupa-
tion functions, fkn, are either 1 for the occupied states or
0 for the conduction bands. The small imaginary parameter
ηk = η sgn(ε0

kn − μ), with μ the chemical potential and η

real and positive, shifts the poles of the Green’s function in

the complex plane to maintain causality. Without SOC, the
electronic bands are implicitly spin degenerate.

The electron-phonon matrix elements squared,∣∣gFan
knn′ (qν)

∣∣2 � | 〈k + qn′| ∇qνV KS |kn〉 |2, (7)

capture the probability that an electron in eigenstate ε0
kn in-

teracts with a qν phonon, given the self-consistent first-order
variation of the Kohn-Sham potential (labeled with super-
script “KS”) induced by the collective atomic motion along
this phonon mode [6,52]. The operator ∇qν expressed in the
position basis can be written as

∇qν = 1√
2ωqν

∑
κα

Uν,κα (q)
∑

l

eiq·Rl
∂

∂Rlκα

= 1√
2ωqν

∑
κα

Uν,κα (q)∂κα (q), (8)

where Rlκα denotes the displacement of atom κ , located in unit
cell l , in cartesian direction α. The phonon eigendisplacement
vector Uν,κα (q) verifies the generalized eigenvalue equation

Mκω
2
qνUν,κα (q) =

∑
κ ′α′

�αα′
κκ ′ (q)Uν,κ ′α′ (q) (9)

and the normalization condition∑
κα

MκU ∗
ν,κα (q)Uν ′,κα (q) = δνν ′ , (10)

where Mκ is the atomic mass of atom κ . The dynamical matrix
�αα′

κκ ′ (q) is the Fourier transform of the second derivative of
the total energy with respect to two atomic displacements,

�αα′
κκ ′ (q) =

∑
l

eiq·Rl
∂2E

∂Rlκα∂R0κ ′α′
. (11)

For its part, the Debye-Waller self-energy is formally de-
fined as [6]

�DW
kn =

∑
qν

1

2
〈kn| ∇qν∇−qνV KS |kn〉 . (12)

The direct evaluation of the second-order derivative of the
Kohn-Sham potential with respect to atomic displacements
entering Eq. (12) is a computational bottleneck in the density-
functional perturbation theory approach. By applying the
rigid-ion approximation, i.e., assuming that the potentials cre-
ated by each nucleus are independent of each other, one can
replace the second-order derivatives by the same first-order
derivatives entering �Fan

kn [52], yielding

�DW,RIA
kn (T = 0) =

BZ∑
qν

∑
n′ 	=n

− 1

4ωqν

∣∣gDW
knn′ (qν)

∣∣2
ε0

kn − ε0
kn′ + iη

, (13)

where RIA stands for rigid ion approximation and where∣∣gDW
knn′ (qν)

∣∣2
=
∑
κκ ′

∑
αα′

[Uν,κα (q)Uν,κα′ (q)∗ + Uν,κ ′α (q)Uν,κ ′α′ (q)∗]

×〈kn|V (1)
κα (0)∗ |k + qn′〉 〈k + qn′|V (1)

κ ′α′ (0) |kn〉 , (14)
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with

V (1)
κα (0) = ∂κα (q = 0)V KS, (15)

following the definition of the operator ∂κα (q) in the second
line Eq. (8). The consequences of the rigid-ion approximation
on the ZPR have been discussed in Ref. [52] for crystals and
in Ref. [53] for molecules.

B. Spin-orbit interaction

We now examine how SOC can affect Eqs. (6) and (13).
Upon inclusion of SOC, the electronic wave function becomes
a spinor

|kn〉 =
(|kn ↑〉

|kn ↓〉
)

(16)

and the Hamiltonian, a 2×2 matrix,

Ĥk =
(

Hk↑↑ Hk↑↓
Hk↓↑ Hk↓↓

)
. (17)

In real space, the general form of the SOC contribution to the
electronic Hamiltonian writes [50]

ĤSOC(r) = 1
4 (∇V (r) × P̂) · σ, (18)

where P̂ is the momentum operator and σ are the Pauli matri-
ces.

For a plane wave basis set and norm-conserving pseu-
dopotentials, SOC only enters the Hamiltonian through the
electron-ion term. Assuming that the pseudopotentials are
fully separable and substituting the Coulomb potential in
Eq. (18), one recovers the typical L · S term from introductory
quantum mechanics. For a single atom, one gets [33]

V e−ion(r, r′) =
∑

l

V SR
l (r, r′) |ls〉 〈ls|

+
∑

l

V SOC
l (r, r′)L · S |ls〉 〈ls| , (19)

where V SR
l (r, r′) and V SOC

l (r, r′) follow the Kleinman-
Bylander construction [54]:

V x
l = f x

l (r)EKB,x
l f x

l (r′), x ∈ {SR, SOC}, (20)

where EKB,x
l is the Kleinman-Bylander energy [55]. SR stands

for the scalar-relativistic contribution to the electron-ion po-
tential (hence, without SOC), and |ls〉 〈ls| is the projector on
the tensor product subspace of angular momentum L and spin
S, which has dimension 2(2l + 1). Detailed expressions for
V SR

l and V SOC
l can be found in Ref. [56]. No magnetism is

considered, such that the electronic density is given by a single
scalar function, ρ(r).

The consequences of SOC on the explicit density-
functional perturbation theory equations have been derived
in Refs. [33,34] for norm-conserving pseudopotentials. In our
case, the general form of the equations presented in Sec. II A
remain unchanged, but all the relevant physical quantities, i.e.,
ωqν , ε0

kn and the electron-phonon matrix elements squared,
Eqs. (7) and (14), now capture the effect of SOC. There is
no implicit sum on the spin degree of freedom, as the spino-
rial electronic wave functions mix the spin-up and spin-down
components.

C. Generalized Fröhlich model

In the following, we discuss how to incorporate SOC into
the generalized Fröhlich model developed in Ref. [12]. For
completeness, we start by reviewing the key elements of this
model. First neglecting SOC, the Hamiltonian at the first order
of interaction writes:

H =
∑
knσ

θk2

2m∗
n (k̂)

c†
knσ cknσ +

∑
q j

ω0 j (q̂)

(
a†

q jaq j + 1

2

)
+

∑
knn′σ

∑
q j

ggFr
knn′ (q j)c†

k+qn′σ cknσ (aq j + a†
−q j ). (21)

The first term corresponds to parabolic bare electronic
eigenenergies εkn with direction-dependent effective mass
m∗

n (k̂), while the second term allows for multiple phonon
branches j with direction-dependent Einstein frequency
ω0 j (q̂), evaluated at the zone center �. The c†

knσ , cknσ , a†
q j ,

aq j are respectively the creation and annihilation operators
for electrons and phonons, while k̂ and q̂ are unit vectors.
The parameter θ gives the sign of the effective mass: θ = −1
for the holelike bands and θ = 1 for the electronlike bands.
The sum on spin index σ implies that all electronic states are
doubly degenerate.

The last term couples the electron and phonon subsystems
through the Fröhlich interaction, with matrix element

ggFr
knn′ (q j) = 1

q

4π

�0

(
1

2 ω0 j (q̂)VBvK

)1/2 q̂ · p j (q̂)

ε∞(q̂)

×
∑

m

sn′m(k̂′)s∗
nm(k̂), (22)

where k′ = k + q, �0 is the primitive unit cell volume, VBvK

is the Born-von Karman normalization volume associated
with the k and q samplings, and ε∞ is the macroscopic optic
dielectric constant, obtained from the dielectric tensor,

ε∞(q̂) =
∑
αβ

q̂αε∞
αβ q̂β. (23)

Here, p j (q̂) is the mode-polarity vector of the j-phonon
mode [12], constructed from the Born effective charges,
Z∗

κα,α′ , and the phonon eigendisplacement vectors, Uj,κα (q),
summing over all Cartesian directions α and all atoms κ in
the unit cell,

p j,α′ (q̂) = lim
q→0

∑
κα

Z∗
κα,α′Uj,κα (qq̂). (24)

Note also that our formulation of the Fröhlich matrix element,
Eq. (22), relies on the Born and Huang convention for the
phonon eigenvectors [57], which implies the following rela-
tion:

Uj,κα (−q) = U ∗
j,κα (q), (25)

such that Eq. (21) is Hermitian. See Ref. [58] for a thorough
discussion of the different phase conventions in the literature.

The unitary matrix snm(k̂) describes the direction-
dependent overlap between the electronic states at the band
extrema located at � and states along the k direction, in the
k → 0 limit, computed from the periodic part of the wave
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function (indicated by the subscript P):

snm(k̂) = lim
k→0

〈kk̂n|�m〉P . (26)

While we set the band extrema at � for convenience, the
previous definition allows for a band extrema located at any
wave vector in the Brillouin zone.

In all previous expressions, the sums on electronic bands
index n, n′ and m run on the degenerate subset of bands con-
nected to extrema, thus allowing interband couplings within
this subset. The sum on phonon branches j is restricted to LO
modes, as p j (q̂) is zero otherwise.

When SOC is considered, the Hamiltonian is no longer di-
agonal in spin space. We can, however, define new electronic
creation and annihilation operators, c̃†

kn and c̃kn, such that the
electronic part of the Hamiltonian can be written as

H el =
∑
kn

εSOC
kn c̃†

knc̃kn. (27)

In order to formulate a Fröhlich Hamiltonian for the SOC
case, we will suppose that the relevant part of the electronic
structure is at a band extremum, with quadratic departure from
the extremal eigenenergy as a function of the wave vector.
This is the same hypothesis as for the generalized Fröhlich
model without SOC. Generally speaking, this hypothesis is
correct when the band extrema are nondegenerate (except for
the spin degeneracy) when the SOC is not present. It will hold
also when the starting band extremum is degenerate, provided
the typically spin-orbit coupling energy is much bigger than
the phonon energy, so that, after applying the SOC, one is
left with a new band extremum with quadratic departure of
the eigenenergy in a sufficiently large zone, where the phonon
energy is relevant.

Supposing this hypothesis to be valid, we take the ex-
tremum eigenvalue as zero of energy, and expand the
eigenvalue as

εSOC
kn = θk2

2m̃∗
n (k̂)

, (28)

which captures the modification of the electronic effective
masses near the band extrema induced by SOC, m̃∗

n (k̂) re-
placing m∗

n (k̂). We also neglect spin-phonon interaction, thus
assuming that SOC affects the vibrational properties through
electronic properties only. Within these assumptions, we re-
cover an expression identical to Eq. (21), in which the sum on
σ has been absorbed inside the new electronic operators. The
starting point of Ref. [12] can therefore be taken as implicitly
incorporating the effects of SOC on the electronic and vibra-
tional properties. From now on, we simplify the notation by
dropping all tilde on electronic quantities which include SOC,
i.e., m̃∗

n (k̂) → m∗
n (k̂).

We now follow the same procedure as described in Sec-
tion 5 of the Supplementary Notes of Ref. [12]: we substitute
ggFr

knn′ (q j) for the matrix elements in the general expression
for �Fan

kn [Eq. (6)] and, as per the original Fröhlich model, take
the continuum macroscopic limit, replacing the discrete sum
over q by an integral over the q coordinate (

∑
q f (q)/VBvK →

�0/(2π )3
∫

d3q f (q)), thus extending the Brillouin zone
boundaries to infinity. Since we only consider interband con-
tributions within the degenerate subset of bands connected to

the extrema, only the second (first) term inside the brakets of
Eq. (6) contribute for the holelike (electronlike) bands. Tak-
ing the q → 0 limit of the denominator for purely parabolic
electronic bands, we are left with

ZPRgFr
nθ

= − θ

π�0

∫
d3q

∑
jn

1

q2

|sn,nθ
(q̂)|2

ω0 j (q̂)

(
q̂ · p j (q̂)

ε∞(q̂)

)2

× 1
q2

2m∗
n (q̂) + ω0 j (q̂)

, (29)

where nθ=−1 is the band index of the VBM and nθ=1, that
of the conduction band minimum (CBM). Using spherical
coordinates, the radial part of this three-dimensional integral
has an analytic solution of the form∫ ∞

0
dq

1

C1q2 + C2
= 1√

C1C2

π

2
, (30)

where the parameters C1 = (2m∗
n (q̂))−1 and C2 = ω0 j (q̂) are

positive. Recall that, for the VBM, the negative curvature of
the electronic bands is parametrized by θ . This yields

ZPRgFr
nθ

= − θ√
2�0

∮
4π

dq̂
∑

jn

|sn,nθ
(q̂)|2 (m∗

n (q̂))1/2

ω0 j (q̂)3/2

×
(

q̂ · p j (q̂)

ε∞(q̂)

)2

. (31)

With the previous definition of θ , we thus obtain a positive
(negative) ZPR for the VBM (CBM).

Up to this point, no special treatment was made to consider
SOC in the treatment of the Fröhlich interaction outside in-
corporating it implicitly in the static electronic and vibrational
properties, i.e. m∗

n (q̂), ω0 j (q̂), p j (q̂) and ε∞(q̂) are computed
with SOC.

We finally argue that the treatment of |sn,nθ
(q̂)|2 based on

the point group symmetry argument detailed in Supplemen-
tary information of Ref. [12] remains valid in the presence of
SOC. For this paper, we will treat the 3 × 2 → 4 + 2 degen-
eracy arising from a cubic space group, taking the VBM of
cubic materials as a typical example. The argument could be
generalized to any space group symmetry using group theory.

As the degeneracy arises from symmetry, i.e., it is not
accidental, the degenerate electronic wave functions at the ex-
trema can be decomposed in a basis of orthonormal eigenfunc-
tions that form an irreducible representation of the symmetry
group, G = Td for the zincblende structure and G = Oh for
the diamond structure. Without SOC, this basis contains three
eigenfunctions, denoted {|X 〉 , |Y 〉 , |Z〉}, which each are dou-
bly degenerate in the spin space. When considering SOC, the
basis functions {|X ↑〉 , |Y ↑〉 , |Z ↑〉 , |X ↓〉 , |Y ↓〉 , |Z ↓〉}
no longer form a good basis choice as they do not form an
irreducible representation of the double group, G ⊗ D1/2. One
rather has to use linear combinations of those states, namely,
the fourfold {| j = 3/2〉} states for the degenerate heavy hole
and light hole bands, which form the VBM, and the twofold
{| j = 1/2〉} states should one wish to evaluate the ZPR for the
split-off bands.

We now express the eigenstates entering the snm(q̂) overlap
integrals [Eq. (26)] in this basis. The |�v〉 state, where v =
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nθ=−1 is the band index of the VBM, can be written as

|�v〉 =
∑

m∈{±3/2,±1/2}
uvm

∣∣∣∣32 m

〉
, (32)

where uvm is the coefficient of the basis function |3/2 m〉, and
the |qq̂n〉 state becomes

|qq̂n〉 =
∑

m∈{±3/2,±1/2}

∣∣∣∣32 m

〉 〈
3

2
m

∣∣∣∣qq̂n

〉
,

=
∑

m∈{±3/2,±1/2}
snm(q̂)

∣∣∣∣32 m

〉
, (33)

where snm(q̂) is the overlap integral with the basis function
| 3

2 m〉. The q → 0 limit is implied.
Substituting the last two equations in Eq. (31), we obtain an

expression which is identical to the Supplementary Eqs. (24)
and (25) of Ref. [12], with the double sum on m, m′ ∈
{X,Y, Z} replaced by a double sum on m, m′ ∈ {±3/2,±1/2}.
The remaining of the argument thus holds, yielding a final
expression for the ZPRgFr which has the same form as their
Eq. (6):

ZPRgFr
nθ

= −
∑

jn

θ√
2�0ndeg

∮
4π

dq̂
(m∗

n (q̂))1/2

ω0 j (q̂)3/2

(
q̂ · p j (q̂)

ε∞(q̂)

)2

,

(34)

in which ndeg is now the degree of degeneracy of the band
extrema in presence of SOC. As the n summation is made
over degenerate states, the division by ndeg yields an average
over degenerate states. Note that this last expression can be
further simplified when applied to cubic systems, as in that
case the phonon frequencies and mode-polarity vector do not
not depend on the wave vector orientation, and the dielectric
tensor is isotropic (see Eq. (45) of Ref. [13]).

For materials whose vibrational properties are not signif-
icantly affected by SOC, such as cubic semiconductors and
insulators, the modification of the electronic effective masses
induced by SOC will have a dominant effect on the ZPRgFr.
The reduced dimensionality of the irreducible representation
at the extrema plays also a role. However, it is not directly due
to the smaller number of degenerate states contributing to the
ZPRgFr. Indeed, Eq. (34) makes it clear that an average over
degenerate bands is to be computed, not a simple sum of con-
tributions. The modification of the ZPRgFr due to spin-orbit
coupling is analytically obtained in the isotropic degenerate
model of Trebin and Rössler [32], see their Eq.(13), combined
with the effective masses from their Eqs.(6 a) and (6 b).

D. Generalized Fröhlich model in the presence
of Dresselhaus splitting

In Sec. II C, we implicitly assumed that the location of the
band extrema in reciprocal space is unchanged by the inclu-
sion of SOC, i.e., it remains at the high-symmetry, degenerate
k-point. However, for noncentrosymmetric materials such as
those of zincblende structure, SOC acts as an effective mag-
netic field which splits the previously spin-degenerate states.
As a consequence, the band extrema are slightly displaced

from their location without SOC, both in energy and momen-
tum (see Fig. 9 of Appendix B), thus breaking, in principle,
one of our underlying hypotheses. This effect was originally
discussed by Dresselhaus [50] in 1955. In the following, we
analyze the consequences of Dresselhaus splitting on Eq. (34)
for the degenerate k point (i.e., the � point in the current
work). See Appendix B for more details about the Dresselhaus
Hamiltonian and its consequences on the band structure of
zincblende materials.

In the presence of Dresselhaus splitting, the electronic dis-
persion of band n at k = � + q is no longer θq2/(2m∗

n (q̂)),
following Eq. (28), but rather

εSOC
qn = θ

(
q − k0

n (q̂)
)2

2m∗
n (q̂)

− θ�En(q̂), (35)

where k0
n (q̂) and �En(q̂) are respectively the momentum and

energy offsets characterizing the Dresselhaus splitting of band
n along direction q̂. As for the effective masses, we define
�En(q̂) as positive and let θ parametrize the sign of the energy
offset. Equation (29) therefore becomes

ZPRgFr
nθ

= − θ

π�0

∫
d3q

∑
jn

1

q2

× f (q̂)
(q−k0

n (q̂))2

2m∗
n (q̂) + ω0 j (q̂) − �En(q̂)

, (36)

where f (q̂) is a purely angular function which includes the
two rightmost fractions of the first line of Eq. (29).

As in Sec. II C, we express the integral in spherical coor-
dinates. However, instead of the usual integral boundaries, we
rather integrate on half the sphere (note the lower bound of
the cos θ integral), while simultaneously extending the lower
bound of the radial integral to −∞:

I =
∫

d3q
∑

jn

1

q2

f (q̂)
(q−k0

n (q̂))2

2m∗
n (q̂) + ω0 j (q̂) − �En(q̂)

=
∫ 1

0
d (cos θ )

∫ 2π

0
dφ

∫ ∞

−∞
dq

×
∑

jn

f (q̂)
(q−k0

n (q̂))2

2m∗
n (q̂) + ω0 j (q̂) − �En(q̂)

. (37)

With the change of variable q′(q̂) = q − k0(q̂), this integral
becomes

I =
∫ 1

0
d (cos θ )

∫ 2π

0
dφ

∫ ∞

−∞
dq′

×
∑

jn

f (q̂)
(q′(q̂))2

2m∗
n (q̂) + ω0 j (q̂) − �En(q̂)

. (38)

Note that, by construction, the unit vectors q̂ and k̂0
n point

in the same direction, hence q̂′ = q̂. Transforming back with
q′ = q, we note that the contribution of the momentum offset
has been exactly eliminated. One can then return the radial and
angular integral boundaries to their usual values and perform
the radial integral, which takes a form similar to Eq. (30):∫ ∞

0
dq

1

C1q2 + C′
2

, (39)
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where the parameter C2 has been replaced by C′
2 = ω0 j (q̂) −

�En(q̂). The parameter C1 and the angular function f (q̂),
respectively defined below Eq. (30) and in Eq. (36), therefore
remain unchanged by Dresselhaus splitting. As a conse-
quence, the treatment of the overlap matrices which enter
f (q̂), discussed in Sec. II C, is also unaltered.

In light of this analysis, one finds that, in presence of
Dresselhaus splitting, Eq. (34) generalizes exactly to

ZPRgFr
nθ

= −
∑

jn

θ√
2�0ndeg

∮
4π

dq̂
(

q̂ · p j (q̂)

ε∞(q̂)

)2

× (m∗
n (q̂))1/2

ω0 j (q̂)
√

ω0 j (q̂) − �En(q̂)
. (40)

Supposing that �En(q̂) is small compared to ω0 j (q̂), one can
further simplify the last expression by Taylor expanding the
inverse square root, yielding

ZPRgFr
nθ

= −
∑

jn

θ√
2�0ndeg

∮
4π

dq̂
(

q̂ · p j (q̂)

ε∞(q̂)

)2

× (m∗
n (q̂))1/2

ω0 j (q̂)3/2

(
1 + �En(q̂)

2ω0 j (q̂)

)
. (41)

Comparing this expression with Eq. (34), one finds that
the energy offset stemming from the Dresselhaus splitting
slightly enhances the ZPR at the � point (recall that �En(q̂)
is defined as positive). The angular-dependent energy offset
can therefore be interpreted as direction-dependent modula-
tion of the integrand. Should the contribution of the energy
offsets be neglected, one recovers Eq. (34), which can now
be seen as a lower bound to the true value of ZPRgFr. An
upper bound could also be obtained by estimating the largest
value of �En(q̂) for a given physical system. Equation (40)
could also, in principle, be used to investigate the Fröhlich-
induced ZPR of the degenerate band crossing points in Rashba
systems [59], provided that the LO frequency is larger than
the largest energy offset. Greater care would be required oth-
erwise, as Eq. (40) would have poles.

Lastly, if we consider the Dresselhaus-splitted bands to
be independent of each other, the known polaron effec-
tive mass enhancement induced by the isotropic Fröhlich
interaction [60] should remain valid even in presence of
anisotropic bands (see the numerical results of Ref. [13]). This
suggests that EPI would attenuate the (already small) mag-
nitude of the energy and momentum offsets stemming from
SOC. However, the effect of the possible couplings between
the almost-degenerate bands, as well as continuity conditions
between the single band picture at the true extrema and the
degeneracies at the � point remain to be investigated. Besides,
as the momentum offset plays no role in Eqs. (40) and (41),
one can conclude than noncentrosymetric cubic materials re-
tain the Fröhlich physical picture of �-centered parabolic
bands, which has been well corroborated by the experimental
literature. See, for example, Fig. 2(b) of Ref. [61].

III. COMPUTATIONAL DETAILS

A. First-principles calculations

All first-principles calculations were performed with
the ABINIT software package [62]. The bulk ground state
properties were obtained from density functional theory,
while vibrational properties and electron-phonon coupling
were computed within density-functional perturbation theory
[63,64]. When SOC is taken into account, it is included both in
the ground state and the density-functional perturbation the-
ory calculations. We use norm-conserving pseudopotentials
from the Pseudo-Dojo project [65] and rely on the general-
ized gradient approximation of the Perdew-Burke-Ernzerhof
functional (PBE-GGA) [66]. The lattice parameters were
optimized in the absence of SOC until all forces on the atoms
were below 10−7 hartree/bohr3, except for Ge, where we used
the experimental lattice parameter, as otherwise the obtained
optimized lattice parameter for the PBE-GGA functional pre-
dicts a metallic ground state.

In order to isolate the effect of SOC on the EPI, we kept
the lattice parameter fixed to the theoretical value without
SOC. The electron-phonon self-energy was computed with
the ElectronPhononCoupling Python module [67]. All rel-
evant calculation parameters, including the relaxed lattice
parameters, the maximal plane wave energy, the Monkhorst-
Pack sampling of the Brillouin zone for k and q points, and
the broadening parameter η for the self-energy can be found
in Table S2 of Ref. [68].

We evaluate the sum on band index n′ in the self-energy
[Eqs. (6) and (13)] using a semistatic approach [52,69]: we
replace the explicit evaluation of the nonadiabatic contribution
of the high energy bands, namely, bands where the phonon
frequencies are negligible compared to the difference between
the electronic eigenenergies, by the solution of a Sternheimer
equation [53] for the subspace orthonormal to the active sub-
space. We chose the explicit number of bands in the active
subspace such that the energy difference between the CBM
and the highest band was at least 20 eV. We finally obtain the
converged ZPR values in the Nq → ∞ limit using the linear
extrapolation method described in Ref. [70].

B. Generalized Fröhlich model

The generalized Fröhlich model [Eq. (34)] relies on the
evaluation of angular-averaged square-root effective masses.
From the first-principles perspective, electronic effective
masses are typically computed either from finite differences
or from density-functional perturbation theory. In the absence
of SOC, we use the latter to evaluate the effective mass tensor,
or, in the case of degenerate states, the transport-equivalent
effective mass tensor defined in Ref. [71].

When SOC is taken into account, the calculation of the
effective mass tensor from density-functional perturbation
theory is not currently implemented in the ABINIT code for
norm-conserving pseudopotentials. Hence, we evaluate the
effective masses with SOC using order-4 central finite dif-
ferences from the first-principles electronic eigenvalues. The
VBM of zincblende materials constitutes a special case, as
the electronic dispersion displays Dresselhaus splitting due
to the lack of inversion symmetry [50]. Therefore, we model
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FIG. 2. Effect of SOC on the ZPR from first principles for (a) the VBM (circle markers) and (b) the CBM (square markers). The ZPR
reduction ratio, ZPR(SOC)/ZPR(no SOC), is presented with respect to the split-off energy, �SOC, which is an indicator of the SOC’s strength.
The color scale shows the absolute value of the SOC-induced correction to the ZPR, |ZPR(SOC)-ZPR(no SOC)|, in meV. For the VBM, the
absolute difference remains under 6 meV but increases with �SOC, yielding a relative decrease that reaches up to 30% for the heavier materials
(AlSb and the tellurides). For the CBM, most materials show a relative decrease below 5%, with the exception of ZnTe, CdSe and GaAs.
The absolute value of the difference remains negligible, below 1 meV. CdTe is absent from the CBM figure (see text). Numerical values are
provided in Table S3 of Ref. [68].

the dispersion with the Dresselhaus Hamiltonian [50] and ob-
tain the effective masses from quadratic fits. For comparison,
we also compute the angular-averaged effective masses for
the VBM using the electronic dispersion obtained from the
Luttinger-Kohn [72] Hamiltonian in the presence of SOC. See
Appendixes A and B for more details about our treatment
of the VBM. When Dresselhaus splitting is noticeable near
the CBM of zincblende materials, we evaluate the effective
masses from quadratic fits using the first-principles electronic
dispersion. We finally note that, despite not being very accu-
rate, the electronic effective masses computed with GGA-PBE
are sufficient for the purpose of this work, which focuses
on EPI. Lastly, as the effective masses computed from PBE
for GaAs at the theoretically relaxed lattice parameter are
particularly small, we also provide results computed at the
experimental lattice parameter [73].

IV. RESULTS AND DISCUSSION

A. First principles

1. Effect of SOC on the VBM and CBM ZPR

The effect of SOC on the ZPR computed from first
principles for our twenty materials is shown in Fig. 2 for
both the VBM (left, circle markers) and the CBM (right,
square markers). Both subfigures display the ZPR reduction
ratio, ZPR(SOC)/ZPR(no SOC), with respect to the split-
off energy, �SOC, which is a direct indicator of the SOC’s
strength. The color scale indicates the absolute value of the
SOC-induced correction to the ZPR for each band extrema,
|ZPR(SOC)-ZPR(no SOC)|. Numerical values can be found
in Table S3 of Ref. [68].

On the one hand, one can observe that the relative decrease
of the valence band edge ZPR, ZPRv, qualitatively increases
with �SOC. Recall that, for zincblende materials, the leading
orbital character of the VBM is p states from the anion. Hence,
the less affected materials regroup the lighter anions, namely,
all sulfides and Si, for which the relative decrease is below
5%. The selenides, arsenides and Ge display a relative de-
crease ranging from ∼10%–15%, while the heavier materials
in our set, AlSb and the tellurides, see their ZPRv reduced by
∼15%–30%. However, the numerical value of |ZPRv(SOC)-
ZPRv(no SOC)| remains small, under 6 meV for all materials.
Nevertheless, the color scale clearly indicates that the absolute
value of the correction increases with �SOC. Small absolute
differences were to be expected, as stronger SOC is naturally
present in heavier materials, which typically display smaller
ZPR.

However, the effect of SOC we observe on the ZPRv, hence
on the real part of the self-energy, is not nearly as significant
as the relative impact reported in the literature for the hole
mobility [74–76], which can be over 10% in weak-SOC mate-
rials like Si and reach more than 50% in heavier materials. In
this context, taking SOC into account reduces the number of
scattering channels, hence increasing the mobility. In contrast,
despite their respective contributions being reduced by SOC,
all phonon wave vectors still contribute to the ZPR. Recall
that the mobility depends on the electron-phonon self-energy
through the relaxation time of the electronic states, which goes
as the inverse of the imaginary part of �AHC

kn [6]. Thus one
could expect the inverse relaxation time of a given electronic
state when including SOC to decrease by a similar ratio as
the mobility when SOC is neglected. Nevertheless, it is not
entirely clear how those two ratios should correlate, as the
inverse relaxation time is defined for each electronic state,
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FIG. 3. Band structure of zincblende CdTe, with SOC (solid red
lines) and without SOC (dashed blue lines). As a guide to the eye, the
SOC energy bands have been shifted such that the VBM coincides
with its equivalent without SOC. The Fermi energy without SOC has
been set to zero.

while the mobility is a global quantity integrated on the BZ,
hence all the neighboring states around the � point contribute
to the hole mobility. While we have not attempted a full study
of the imaginary part of the self-energy for all materials, we
observe a relative decrease of the imaginary part of �kn near
the VBM which is larger than the ones reported in Fig. 2(a)
for the ZPR of AlSb, ZnTe, CdTe, and Si. This agrees with
the trends reported in the literature for the mobility. See
Sec. S2 and Fig. S3 of Ref. [68] for more details. As the
real and imaginary parts of �AHC

kn are related to one another
by the Kramers-Kronig relations, further investigation will be
required to fully understand the effect of SOC on the full
electron-phonon self-energy.

The CBM, on the other hand, displays very little modifi-
cation of the ZPR from SOC. The relative decrease remains
under 5% for all materials, including AlSb and some tel-
lurides. These results are in line with the atomic picture, in
which a s-like band such as the CBM of zincblende materials
is not affected by SOC since l = 0. This argument does not
hold for the d-like CBM of the rocksalt alkaline earth chalco-
genides; in that case, the conduction band edge ZPR (ZPRc)
decrease remains negligible as the CBM is well-isolated in
energy from the other bands. The only three exceptions to this
trend are ZnTe (20%), GaAs (9%) and CdSe (8%). CdTe is
absent from the CBM figure as its ZPRc changes sign when
including SOC, going from −0.4 to 0.4 meV. Nevertheless,
these seemingly large relative corrections are not numerically
significant: the absolute correction remains under 1 meV for
all materials (see the color scale), which is within the typical
numerical accuracy of this type of calculations.

To understand these different tendencies from a qualitative
point of view, one can picture a typical zincblende band struc-
ture. In Fig. 3, the energy bands of CdTe with SOC (solid
red lines) have been shifted such that the VBM coincides
with the VBM without SOC (dashed blue lines). The Fermi
energy without SOC has been set to zero. When comparing

both sets of bands, one can see that the general shape of the
unoccupied subset of bands is scarcely affected by SOC, other
than a relatively small energy shift between spin-split bands,
located mostly close to the Brillouin zone boundaries. Recall
that the Fan and Debye-Waller contributions to the self-energy
have opposite signs [see Eqs. (6) and (13)] and almost equal
magnitudes. Nevertheless, when considering the contribution
from either the occupied or unoccupied subset of bands to the
AHC self-energy, the Fan term typically governs the net sign
of the renormalization in semiconductors. Hence, as the CBM
is mostly repelled by couplings with nearby conduction states
of higher energy, one can deduce that the ZPR of the CBM
will barely be affected by SOC, since the effective mass does
not change significantly and the band extrema is well isolated
in energy. The three apparent outliers, CdSe, ZnTe and GaAs,
all feature a direct fundamental gap at the zone center, small
CBM effective masses and a relatively small band gap energy
(albeit always much larger than the highest phonon frequency,
GaAs with SOC being the exception). In the light of the Kane
model [77], recall that the CBM and VBM at the � point are
linked through an avoided crossing. The CBM is thus indi-
rectly affected by SOC, through its interplay with the heavy
hole and light hole p-like bands. A small band gap reinforces
this interaction, resulting in a greater relative decrease of the
ZPRc for these three materials. We do not observe such an
effect in indirect band gap materials like AlSb.

When rather considering the VBM, one can observe the
loss of degeneracy predicted by group theory, as the two split-
off bands have been shifted by �SOC below the heavy hole and
light hole bands. Figure 3 also reveals two main consequences
of SOC on the occupied bands: on the one hand, the effective
masses in the vicinity of the zone center are reduced, and on
the other hand, the energy shift between the spin-split bands
occurs throughout the Brillouin zone, thus globally lowering
the eigenenergies of the occupied states with respect to the
VBM energy.

With this simple picture in mind, our results suggest that
the effect of SOC can be safely neglected for band extrema
which are well-isolated in energy, should the modification of
the effective mass remain small. In contrast, degenerate ex-
trema or densely entangled bands must be treated more care-
fully. We finally emphasize that one must not systematically
overlook the apparent small magnitude of the SOC corrections
to the ZPRv. What may at first be perceived as “only a few
meV” nevertheless captures a significant relative decrease for
the heavier materials, that reaches 15%–30% of the predicted
ZPRv without SOC. This effect cannot be neglected when
aiming for predictive results, especially if one seeks to vali-
date numerical predictions with experimental data.

2. Experiment versus first principles

We now examine how does the inclusion of SOC affects the
global agreement between ZPRg and available experimental
data. To make a fair comparison with experimental data, the
first-principles data shown in Fig. 4 include the theoretical
contribution of the zero-point expansion of the lattice [78,79].
This term originates from the phonon contribution to the total
free energy of the crystal, which increases the T = 0 K lattice
parameter compared to the static equilibrium value and, in
turn, affects the band gap energy (see Appendix D for more
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FIG. 4. Comparison between first-principles AHC band gap ZPR
and experimental values, without SOC (blue circles) and with SOC
(red diamonds). The dashed lines, emphasized by the shaded gray
area, indicate the theoretical ZPRg agrees with the experimental one
within 25%. Note that the scales are logarithmic. When SOC is
included, all materials lie within the shaded area. Numerical experi-
mental values are provided in Table S5 of Ref. [68].

details). Note that the scales are logarithmic. The shaded gray
area highlights the region where both ZPR (first-principles
and experimental) agree within 25% of each other. As exper-
imental values of the ZPR are obtained from extrapolation
procedures rather than from direct measurements, we have
to keep in mind when analyzing the accuracy of theoretical
results that there is an experimental uncertainty which can be
quite substantial, especially when few experimental datasets
are available for a given material. See the Supplementary
note 1 of Ref. [12] for a detailed discussion about the uncer-
tainties associated with the experimental values of the ZPR.

The results without SOC (blue circles) are equivalent to the
nonadiabatic AHC data shown in Fig. 2 of Ref. [12] for the ten
materials considered. When SOC is taken into account (red
diamonds), all materials now lie within the tolerance criterion,
including CdTe, which is largely overestimated without SOC.
Thus SOC does not alter the quantitative agreement between
first principles and experiment, although Ge and GaAs reach
the lower limit of the tolerance criterion.

One can also wonder if the greater predictability of the
nonadiabatic AHC approach compared to the adiabatic su-
percell method claimed in Fig. 2 of Ref. [12] (see empty red
triangles, labeled ASC-DFT) would remain upon inclusion of
SOC. Although we have not attempted any adiabatic supercell
calculation with SOC, our results suggest that the inclusion
of SOC would not reduce the significant underestimation of
the ZPR by adiabatic supercells for the lighter, more ionic
materials. For intermediate to strong SOC, our data show a
reduction of the total band gap ZPR ranging between 8%–34%
(see the rightmost column of Table S3 of Ref. [68]). Should
we infer that a similar effect would be observed in adiabatic
supercell calculations, one could expect the result obtained
from adiabatic supercells based on DFT calculations for CdTe
to lie inside the tolerance criterion. At the same time, the un-
derestimation would worsen for CdSe, and the ZnSe adiabatic
supercell result would likely exit the shaded area. Our results,

therefore, support the general conclusion of Miglio et al. [12]
regarding the adiabatic supercell method being outperformed
by the nonadiabatic AHC approach.

3. Origin of the SOC-induced ZPR decrease

In Sec. IV A 1, we discussed the effect of SOC on the ZPR
in terms of the variation of the electronic eigenvalues. We now
refine this analysis by constructing histograms of the different
q-point contribution to ZPRv with respect to the norm of the
phonon wave vector, for a 48 × 48 × 48 q-point grid. Figure 5
displays such decomposition for two polar materials, CdS
(left) where SOC has little effect on the calculated ZPR, and
CdTe (right) where, on the contrary, the calculated ZPR is
more strongly reduced by SOC. The bottom panels show the
distribution of the Brillouin zone weight for the different wave
vector bins. The solid and shaded hatched histograms refer to
the ZPR contributions computed respectively with SOC and
without SOC.

A first observation that emerges from this figure is the ex-
tremely similar shape of the mode histograms, apart from their
respective energy scale. For both materials, the vast majority
of the ZPR originates from the LO phonon mode (red) in a
very small portion of the Brillouin zone, near the zone center
(small q). This behavior is a clear signature of the Fröhlich
interaction. The contribution of the large q modes, which
cover most of the Brillouin zone, is significantly smaller and
split more equally between the acoustic (yellow), transverse
optical (TO, green), and LO modes.

We now compare the solid and shaded histograms to
identify how the different q regimes are affected. The total
contribution to the ZPR (blue) for CdTe shows that strong
SOC reduces the contribution of all phonon modes throughout
the Brillouin zone. This suggests that, in the large q regime,
the ZPR decrease can be associated with the global reduction
of the electronic eigenvalues in the occupied subset of bands.
In contrast, in the small q regime, it can be linked to the
decrease of the effective masses. On the contrary, for CdS
(weak SOC), the large q regime is unaffected by SOC; thus,
only the variation of the band curvatures in the vicinity of the
VBM seems to be responsible for reducing the ZPR.

At this point, we insist that our interpretation of the SOC-
induced ZPR reduction in terms of the variation of electronic
eigenvalues remains a heuristic analysis, since the full ZPR
expressions for a given q point [Eqs. (6) and (13)] include
other physical quantities which are, in principle, affected
by SOC: the phonon frequencies, ωqν , and the squared EPI
matrix elements, |gFan

knn′ (qν)|2 and |gDW
knn′ (qν)|2. To test our

hypothesis, we computed all the physical quantities entering
�Fan

kn and �DW
kn for CdTe while artificially reducing SOC to 1%

of its full strength. This allows us to decompose the electronic
states correctly in terms of the double group irreducible repre-
sentations while still reproducing the electronic and phononic
dispersions without SOC adequately (see Sec. S1 of Ref. [68]
for more details). With these in hand, we can precisely control
which ingredients of the self-energy are affected by SOC.
While such arbitrary combinations of full SOC and low SOC
quantities have no physical meaning per se, they will prove
insightful for understanding our previous results.
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FIG. 5. Total and mode contribution to ZPRv for different q-point norms, for polar materials, for a 48 × 48 × 48 �-centered q-point grid,
for (a) CdS (weak SOC) and (b) CdTe (strong SOC). Solid histograms include SOC while the shaded hatched ones do not. Lower panels
show the Brillouin zone weight distribution for the different q points . Both materials display a clear signature of the Fröhlich interaction,
as the LO mode (red) at small q accounts for the greatest part of the total ZPR. Notice the different y-axis scaling for both materials. The
total contribution at large q (blue) is more equally splitted between the LO, acoustic (yellow) and TO (green) modes. For CdTe (right), the
SOC-induced decrease of the ZPR originates from the whole Brillouin zone, and can be heuristically understood in terms of the variation of the
effective masses (small q) and of a global decrease of the eigenenergies of the occupied bands (large q). Only the small q behavior is observed
in CdS (left), as emphasized by the insets.
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FIG. 6. Contribution to the total ZPRv of CdTe with varying
SOC strength for different q-point norms, for a 48 × 48 × 48 �-
centered q-point grid. The different physical quantities entering �EPI

kn

[Eqs. (6) and (13)] are computed without SOC (dark indigo), with
SOC (light red), and from mixed combinations of full SOC and
1% SOC quantities (cyan and olive dashes, see text for details).
The four histograms can be qualitatively grouped into two classes
according to the strength of SOC used to evaluate the electronic
eigenvalues, in agreement with the heuristic explanation developed in
Fig. 5.

Figure 6 show the histogram decomposition of the total
ZPRv (the equivalent of the blue histograms of Fig. 5) for
different combinations of contributions. Table I contains the
numerical results for ZPRv, ZPRc, and ZPRg for the same
combinations. The data labeled “only εlow

kn ” (olive dashes)
refer to �EPI

kn being computed with the full SOC except for
the electronic eigenenergies, which are taken at 1% SOC. In
constrast, “only εSOC

kn ” (cyan dashes) is computed with 1%
SOC except for the electronic eigenenergies, which are taken
at full SOC.

From Fig. 6 and Table I, the histograms can be grouped
in two categories. On the one hand, the data computed us-
ing low SOC eigenvalues, “only εlow

kn ,” yield both histograms

TABLE I. VBM, CBM, and band gap ZPR of CdTe for different
combinations of SOC strength. See Sec. IV A 3 and the caption of
Fig. 6 for details.

ZPR (meV)

Combination VBM CBM ZPRg

noSOC 16.4 −0.4 −16.8
SOC 11.4 0.4 −11.0
1% SOC 16.2 −0.5 −16.7
only εlow

kn 17.4 −0.8 −18.3
only εSOC

kn 11.1 −0.8 −11.9
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and total ZPR values which qualitatively reproduce the cal-
culation without SOC (dark indigo). On the other hand, the
data computed by including SOC only through the electronic
eigenvalues, “only εSOC

kn ,” capture almost all the ZPR decrease
of the SOC data throughout the Brillouin zone (see the light
red reference line). These results validate our heuristic ex-
planation and confirm that the modification of the electronic
eigenvalues dominates the SOC-induced decrease of ZPRv in
the different q regimes. While the phonon frequencies and the
EPI matrix elements undoubtedly influence the quantitative
results, we argue here that the SOC-induced variation of the
ε0

kn are sufficient to estimate the effect of SOC on the VBM
ZPR and, by extension, on the total band gap ZPR for this
class of cubic materials (see also Sec. S1 of Ref. [68]).

We note that our conclusions differ significantly from those
of Ref. [44], who reported that SOC enhances the electron-
phonon coupling strength in perovskite methylammonium
lead iodine (MAPbI3), thus increasing the temperature-
dependent band gap renormalization compared to a scalar
relativistic calculation. The electronic structure of MAPbI3

is, however, very different from the zincblende, diamond, and
rocksalt structures we investigated; the VBM is nondegenerate
and reasonably well isolated in energy, while the CBM, of Pb
character, can couple to more electronic states within a small
energy window (see Fig. 4 of their Supplemental Material),
resulting in the band gap opening with increasing tempera-
ture, in contrast with our set of materials. We observe some
variations of the ZPRv as well as in the small q regime of
its histogram decomposition when including SOC in the EPI
matrix elements and excluding it in the eigenvalues (see “only
εlow

kn ” data in Table I and Fig. 6). However, the effect is too
small to allow us to draw conclusions. In fact, for our set of
materials, any effect of SOC on the EPI matrix elements is
entirely washed out by the variation of the static electronic
eigenvalues. We also verified that the band gap correction at
T = 300 K decreased by a similar ratio as the ZPRg when
including SOC (see Table S4 of Ref. [68]), thus confirming
that our conclusions hold beyond T = 0 K.

B. Generalized Fröhlich model with SOC

We now present the results from our gFr model with SOC.
As mentioned in Secs. II D and III, and discussed thoroughly
in Appendix B, the VBM of zincblende materials with SOC
requires a special treatment, as it displays Dresselhaus split-
ting. As a consequence, the VBM in a generic direction k̂ is
slightly shifted from �, both in momentum and in energy.
We found an energy offset �En(q̂) smaller than 0.5 meV
for all materials, and an average momentum offset k0

n (q̂) of
∼5 × 10−3 Å−1, at most 10−2 Å−1 for CdS. For comparison,
the change in momentum expected from a photon doing a
vertical optical transition in a semiconductor with a band gap
energy of Eg = 1 eV would be �k ∼ Eg/hc ∼ 10−4 Å−1, with
h the Planck constant and c the speed of light. As we argue in
Sec. II D, the momentum offset has no consequence on the
ZPRgFr. Furthermore, for our set of materials, the largest
value of �En(q̂) is at least two orders of magnitude smaller
than the LO frequency. Hence, we can safely neglect the
energy offset and use Eq. (34).

FIG. 7. Comparison between the generalized Fröhlich model
ZPRg and the first-principles AHC ZPRg, with and without SOC. The
different markers indicate materials with similar ionicity and band or-
bital characters: Zn and Cd chalcogenides (yellow squares), alkaline
earth chalcogenides (purple diamonds) and group III-V materials.
Solid (dotted) markers include (exclude) SOC. Note that the scales
are logarithmic. The dashed lines and shaded gray area delimits the
region where they agree within 25% of each other, while the dotted
lines indicate where the ZPRgFr

g captures 50% (also 33% for the inset)
of the AHC value. Tables S3, S6, and S7 of Ref. [68] respectively
report the numerical values for the ZPRg obtained from AHC and
the gFr model, as well as the physical parameters entering Eq. (34).

Figure 7 compares ZPRg computed with the gFr model to
the first-principles AHC result, both with SOC (solid mark-
ers) and without SOC (shaded dotted markers). Note that
the scales are logarithmic. The shaded gray area delimits the
region where the gFr value deviates from the first-principles
ZPR by at most 25%. In this figure, the VBM contribution
to the ZPRg with SOC was computed with the Dresselhaus
Hamiltonian (see Appendix B for details). The Luttinger-
Kohn Hamiltonian yields qualitatively equivalent results. The
materials are grouped into three sets: the alkaline earth chalco-
genides (purple diamonds), the Zn/Cd chalcogenides (yellow
squares), both fairly ionic, and the less ionic III-V materials
(blue triangles). Si and Ge are not considered in this Section,
as their vanishing Born effective charges yield a null ZPRg in
the Fröhlich picture.

The alkaline earth chalcogenides, which display a larger
ZPRg ranging from 50 to 150 meV, are very well described
by the gFr model, which captures more than 75% of the
AHC ZPRg both without and with SOC. The Zn and Cd
chalcogenides ZPRg is also reasonably well captured by the
model, which accounts for more than two-thirds of the AHC
value. The absolute value of their ZPRg is smaller compared
to the isoelectronic alkaline earth chalcogenides, which can be
attributed to a smaller band gap at the DFT level that strength-
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ens the contribution of interband couplings between valence
and conduction states, thus reducing ZPRg. In contrast, the
gFr model captures less than one third of the ZPRg for III-V
materials.

Upon inclusion of SOC (going from the dotted to solid
markers), the gFr model qualitatively retains the same pro-
portion of the AHC ZPRg value for all three material families.
However, we observe a very small decrease for the sulfides
(upper rightmost groups of yellow and purple markers). These
results confirm that the claim of Ref. [12] is robust to the
inclusion of SOC: the ZPR of ionic materials, here both
chalcogenide families, is dominated by the physical picture
of a large polaron, where the movement of the slow electron
is correlated to the dynamically adjusting phonon cloud, as
emphasized by their Fig. 5(b) [12].

As in Ref. [12], we stress that a perfect agreement between
the gFr and AHC methodologies was not expected, hence the
labeling of the reference lines on Fig. 7 emphasize the fraction
of the total first-principles ZPRg captured by the gFr model
rather than the level of agreement between the two values. By
construction, the gFr model does not include the contribution
from acoustic and TO modes, nor the Debye-Waller contribu-
tion, as its purpose is to solely capture the contribution of the
nonadiabatic Fröhlich interaction to the ZPR. Moreover, all
interband couplings outside the fourfold degenerate subset at
the VBM are neglected. Discrepancies could also arise from
nonparabolic behavior of the electronic bands, which will
naturally occur at some point since the Brillouin zone is finite
and periodic, and from LO phonon dispersion.

On a different note, one can wonder if our gFr model with
SOC would provide a reliable estimate of the SOC-induced
decrease of ZPRv, without resorting to a full AHC calcula-
tion with SOC. In the spirit of the discussion presented in
Sec. IV A 3, the gFr model would capture the decrease of
the hole effective masses near the � point. To answer this
question, Fig. 8 compares the ratio ZPR(SOC)/ZPR(noSOC)
for the VBM obtained from the gFr model, using both the
Luttinger-Kohn (green circles) and Dresselhaus (purple trian-
gles) Hamiltonians, to the AHC value displayed in Fig. 2. The
color intensity of the markers is proportional to the split-off
energy, �SOC. Note that the scales are logarithmic. The shaded
gray area shows the region where both ratios agree within 5%
of each other.

Two observations can be drawn from Fig. 8. On the one
hand, the two ratios agree within 5% of each other for about
half of the 19 materials (dashed lines): 11 for the Dresselhaus
model and 9 for the Luttinger-Kohn model. The discrepancy
with the first-principles ratio is below 10% for most mate-
rials (dotted lines), thus providing a reasonable estimate of
the SOC-induced decrease of the VBM observed in the full
AHC calculation, from a single phonon calculation at the �

point. The main exceptions are CaTe with the Luttinger-Kohn
model, GaAs at the theoretical lattice parameter, ZnS and
CdS.

On the other hand, the difference between both models in-
creases with SOC, the Dresselhaus model being more accurate
for heavier materials. This discrepancy can be attributed to the
construction of the models: as it couples the fourfold heavy
hole and light hole bands to the twofold split-off bands, the
Luttinger-Kohn model intends to describe the effect of SOC
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FIG. 8. Comparison of the SOC-induced reduction of the ZPRv

obtained with the generalized Fröhlich model and with first-
principles AHC methodology. The electronic dispersion used to
compute the angular-averaged effective masses entering the ZPRgFr

v

[see Eq. (34)] was obtained either from the Luttinger-Kohn (green
circles) Hamiltonian or from the Dresselhaus (purple triangles)
Hamiltonian. The color intensity of the markers is proportional
to the split-off energy. Note that the scales are logarithmic. The
dashed (dotted) lines indicate where the ratio computed with the
gFr model deviates from the first-principles ratio by 5% (10%). For
most materials, the gFr model provides a fairly good estimate of the
first-principles ZPRv decrease, although using effective masses from
the Dresselhaus Hamiltonian delivers superior result. The discrep-
ancy between results from both Hamiltonians increases with SOC,
as the Luttinger-Kohn Hamiltonian tends to overestimate the light
hole effective masses (see text). The Luttinger-Kohn Hamiltonian
can be reparameterized with values extracted from the Dresselhaus
model which reproduce more accurately the curvature of light holes
around �. This delivers the SOC-induced reduction represented by
empty circle, that agree better with each Dresselhaus-based results.
Numerical values are provided in Table S6 of Ref. [68].

in a broader region of the Brillouin zone, thus capturing the
warping of the light hole bands around the split-off energy
observed in many cubic materials (see, for example, Fig. 2
of Ref. [71]). At stronger SOC, we observed that the cost of
qualitatively capturing the correct band warping is a less ac-
curate representation of the curvature of the light hole bands,
yielding an overestimated m∗ compared to the first-principles
dispersion. In contrast, the Dresselhaus Hamiltonian treats
only the fourfold VBM and provides an accurate description
of the bands in the vicinity of the � point, at the cost of not de-
scribing the band warping further away in the Brillouin zone
(see Fig. 10 of Appendix C). Moreover, while our Dresselhaus
model parameters are fitted to the first-principles dispersion
with SOC, the Luttinger-Kohn Hamiltonian relies on the the-
oretical Luttinger parameters obtained without SOC, �SOC

being the only parameter related to SOC. The original work
by Luttinger and Kohn already cautioned about a decreased
accuracy of their model for strong SOC [72].
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To validate this interpretation, we also compute the
Luttinger-Kohn model using fitted Luttinger parameters ex-
tracted from the Dresselhaus model (empty circles, see
Appendix C for details). The purpose of these parameters is
to reproduce more accurately the curvature of the light hole
bands around �, at the cost of deviating more severely from
the first-principles dispersion around the split-off energy and
underestimating the m∗ of the split-off bands compared to
the original Luttinger parameters. In that case, both models
agree very well. The fundamental differences between the two
models suggest that the modified Luttinger-Kohn Hamilto-
nian constructed from fitted Luttinger parameters would be
a more suitable choice to include SOC in the Fröhlich polaron
effective mass theory developed in Guster et al. [13], as it
simultaneously captures the correct curvature for the light
hole bands in presence of SOC and lacks the numerical com-
plications arising from the Dresselhaus splitting. One should
nevertheless make sure that the agreement region between the
fitted Luttinger-Kohn model and the first-principles dispersion
covers at least a few ωLO for the predicted polaron effective
mass to be reliable.

Lastly, we come back to the underestimation of the ratio
observed in Fig. 8 for ZnS and CdS, despite both models
agreeing quite well with each other. To understand this result,
recall the radial integral that occurred during the derivation of
the gFr model with SOC, Eqs. (29) and (30). At this point, we
suppose that the parabolic behavior of the electronic bands can
be extended to infinity to replace the integral with its asymp-
totic solution. By doing so, we assume that the Brillouin zone
region where the effective mass approximation holds is suffi-
ciently large such that one has reached a significant fraction
of the asymptotic value once the bands start to deviate from
parabolicity. Such fraction can be estimated by looking at the
analytical solution of Eq. (30) at a finite upper bound qc:∫ qc

0
dq

1
q2

2m∗
n (q̂) + ω0 j (q̂)

=
√

2m∗
n (q̂)

ω0 j (q̂)
arctan

(
qc√

2m∗
n (q̂)ω0 j (q̂)

)
. (42)

Assuming that qc corresponds to the wave vector where the
electronic bands start to deviate from parabolicity, the argu-
ment of the arctan function can be recast as√

q2
c/2m∗

n (q̂)

ω0 j (q̂)
=
√

Ec

ω0 j (q̂)
, (43)

namely the square-root of the ratio of the eigenenergy of
the electronic bands where they stop being parabolic and the
LO frequency. Should the departure from parabolicity occur
at an energy smaller than ω0 j (q̂) = ωLO with respect to the
VBM energy, like for ZnS and CdS, the radial integral would
have reached at most arctan(1) = 0.5, less than half of the
asymptotic value, and one can reasonably question the validity
of such an approximation. In physical terms, we warn against
a possible breakdown of the parabolic approximation within
the energy window that is physically relevant to the Fröhlich
interaction. As the effective mass approximation is a corner-
stone assumption of the original Fröhlich model, one should

therefore be particularly careful when introducing SOC in the
treatment of polarons for materials with high phonon frequen-
cies.

V. CONCLUSION

In the present study, we investigate the consequences of
spin-orbit coupling on the electron-phonon interaction contri-
bution to the zero-point renormalization of cubic materials.
Our first-principles calculations show that spin-orbit cou-
pling reduces the zero-point renormalization of the valence
band edge by 15%–30% for the heavier materials, while
the conduction band edge is scarcely affected. The leading
mechanism behind this behavior, brought to light by an Allen-
Heine-Cardona calculation where the strength of spin-orbit
coupling is artificially reduced to 1%, is revealed to be the
variation of the electronic eigenvalues entering the electron-
phonon self-energy and the decrease of the hole effective
masses near the valence band maximum.

We also extend the generalized Fröhlich model presented
in Miglio et al. [12] to include the spin-orbit coupling, reveal-
ing some numerical subtleties in the treatment of the valence
band maximum of zincblende materials due to Dresselhaus
splitting. We show that the predominance of nonadiabatic
effects on the zero-point renormalization of ionic materials
is robust to the inclusion of spin-orbit coupling and that
the generalized Fröhlich model can be used to estimate the
magnitude of the SOC-induced ZPR decrease with reasonable
accuracy. We finally warn about the accuracy of the Luttinger-
Kohn model with spin-orbit coupling for heavier materials and
propose a method relying on the Dresselhaus model to ex-
tract fitted Luttinger parameters more suitable for the purpose
of our generalized Fröhlich model with spin-orbit coupling,
as well as highlight a possible breakdown of the parabolic
approximation on which the original Fröhlich model with
spin-orbit coupling is built for materials with high phonon
frequencies.
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APPENDIX A: LUTTINGER-KOHN HAMILTONIAN

The effective mass theory derived in 1955 by Luttinger
and Kohn [72] describes the behavior of the electronic bands
in the vicinity of band extrema, using the second-order k · p
theory. For the threefold degenerate VBM of cubic materials,
the Hamiltonian without SOC writes

Hn,n′ (k) =

⎡⎢⎢⎣
Ak2

x + B
(
k2

y + k2
z

)
Ckxky Ckxkz

Ckxky Ak2
y + B

(
k2

x + k2
z

)
Ckykz

Ckxkz Ckykz Ak2
z + B

(
k2

x + k2
y

)
⎤⎥⎥⎦, (A1)

where k is the electronic wave vector, n, n′ are band indices, and Hn,n′ (k) is expressed in the {|X 〉 , |Y 〉 , |Z〉} basis, which forms
an irreducible representation of the symmetry group of the wave vector at the VBM.

The three parameters A, B, and C, known in the literature as the Luttinger parameters, can be deduced from the effective
masses, m∗

n , along the [100], [110], and [111] Cartesian directions in reciprocal space,

m∗−1
n [100] =

{
2A,

2B (twofold),

m∗−1
n [110] =

{
(A + B ± C),
2B,

m∗−1
n [111] =

{
2
3 (A + 2B + 2C),
2
3 (A + 2B − C) (twofold).

(A2)

In the presence of SOC, the Hamiltonian contains an additional term, HSOC [see Eq. (18)], which is treated as a perturbation
in the k · p expansion. The Hamiltonian is expressed in the basis of the zeroth-order wave functions, which are the fourfold
{|3/2, mj〉} (heavy holes and light holes) and the twofold {|1/2, mj〉} (split-off),

Hj,mj (k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P/2 L M 0 iL/
√

2 −i
√

2M

L∗ P/6 + 2Q/3 0 M −i(P − 2Q)/3
√

2 i
√

3L/
√

2

M∗ 0 P/6 + 2Q/3 −L −i
√

3L∗/
√

2 −i(P − 2Q)/3
√

2

0 M∗ −L∗ P/2 −i
√

2M∗ −iL∗/
√

2

−iL∗/
√

2 i(P − 2Q)/3
√

2 i
√

3L/
√

2 i
√

2M (P + Q)/3 − �SOC 0

i
√

2M∗ −i
√

3L∗/
√

2 i(P − 2Q)/3
√

2 iL/
√

2 0 (P + Q)/3 − �SOC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A3)

where the k-dependent parameters P, Q, L, and M are con-
structed from the Luttinger parameters,

P(k) = (A + B)
(
k2

x + k2
y

) + 2Bk2
z ,

Q(k) = B
(
k2

x + k2
y

) + Ak2
z ,

L(k) = − iC√
3

(kxkz − ikykz ),

M(k) = 1√
12

[
(A − B)

(
k2

x − k2
y

) − 2iCkxky
]
.

(A4)

The split-off energy �SOC makes the Luttinger-Kohn Hamil-
tonian with SOC nonhomogenous in (kx, ky, kz ), resulting in
the typical band warping observed around the split-off energy
in light hole bands of cubic materials (see, for example, the
�-L direction of Fig. 2 of Ref. [71]). Around this energy level,
the light hole bands typically depart from the quadratic be-
havior characterized by m∗ (SOC) to recover a curvature that
resembles m∗ (noSOC). �SOC can be extracted either from

experiments or from a DFT ground state calculations with
SOC. Note that Eq. (A3) inherently relies on the approxima-
tion that SOC is sufficiently small, such that the zeroth-order
wave functions form a good basis set for the H matrix. Lut-
tinger and Kohn explicitly warned that this approximation
would be less accurate in the presence of very strong SOC.
In practice, we observe that the light hole bands predicted by
the Luttinger-Kohn model with SOC for tellurides meander
around the first-principles dispersion and predict larger light
hole effective masses compared to the first-principles results
(see the blue curve in Fig. 10, which will be further discussed
in Appendix C).

In the present work, we extract the three Luttinger pa-
rameters from the effective mass tensor without SOC using
density-functional perturbation theory and evaluate �SOC

from our ground state calculation with SOC. The angular-
averaged effective masses for the heavy hole and light hole
bands are computed with order-4 finite differences, using the
electronic dispersion calculated by diagonalizing Eq. (A3).

115173-15



BROUSSEAU-COUTURE, GONZE, AND CÔTÉ PHYSICAL REVIEW B 107, 115173 (2023)

We note that, by construction, the Luttinger-Kohn Hamil-
tonian with SOC assumes inversion symmetry (without
SOC, time-reversal symmetry can be used to show that the
Hamiltonian matrix elements retain the same form). Hence,
it should not, in principle, be applied to zincblende materials
when SOC is considered. Nevertheless, we found that, despite
missing some microscopic features in the very close vicinity
of �, which will be described in the following Appendix,
the Luttinger-Kohn model with SOC provides a qualitatively
reliable description of the electronic bands, which does not
invalidate its use for zincblende materials.

APPENDIX B: DRESSELHAUS HAMILTONIAN

A correct treatment of the lack of inversion symmetry
in presence of SOC was made by Dresselhaus [50]. As
time-reversal symmetry is preserved, the electronic disper-
sion without SOC still verifies ε−kn = εkn, as per Kramer’s
theorem, but the Bloch functions no longer have to verify
u−kn(r) = ukn(−r) up to a phase factor. The inclusion of
SOC acts as an effective magnetic field which splits the spin-
degenerate states at finite crystal momentum, with condition

ε−kn↑ = εkn↓. This effect, known as Dresselhaus splitting,
creates a well-defined spin texture in reciprocal space, locking
the spin orientation to the crystal momentum [59]. Dressel-
haus splitting has been recently observed in GaAs and InSb
by circular dichroic photoemission [61]. The underlying phys-
ical mechanism is similar to the one driving Rashba splitting
[80,81], in which an asymmetry in the crystal potential along
a preferred axial direction acts as an effective electric field
to break inversion symmetry. The resulting spin texture, how-
ever, is different from the helical polarization associated with
Rashba systems [59,82]. See Ref. [59] for more details about
the difference between the Rashba and Dresselhaus effects.

For a generic direction in k space, the eigenvalues for the
heavy hole and light hole bands in the Dresselhaus model are
given by

Ek = k2

2
+
(

L + 2M

3

)
k2 + y, (B1)

where the bare electron mass m = 1 in atomic units. The
variables y = y(k, L, M, N,W ) are the roots of a fourth-order
polynomial,

y4 − 2y2

[
α2

9
k4 + β

(
k2

x k2
y + k2

y k2
z + k2

z k2
x

) + W 2k2

]
+ 4y W 2N

(
k2

x k2
y + k2

y k2
z + k2

z k2
x

) +
[
α2

9
k4 + β

(
k2

x k2
y + k2

y k2
z + k2

z k2
x

)]2

+W 4
[
k4 − 3

(
k2

x k2
y + k2

y k2
z + k2

z k2
x

)] + 2
α2

9
W 2

(
k6

x + k6
y + k6

z

) −
[

3
α2

9
+ 2N2

3

]
W 2k2

(
k2

x k2
y + k2

y k2
z + k2

z k2
x

)
+21

α2

9
W 2k2

x k2
y k2

z = 0, (B2)

in which we have defined the shorthands

α2 = (L − M )2, β = N2 − α2

3
. (B3)

Equation (B2) results from the secular determinant of the k · p
expansion in the fourfold degenerate subspace at the VBM.
Note that our W parameter is labeled C in the original work
from Dresselhaus [50]. We renamed it to avoid confusion with
the third Luttinger parameter.

The Dresselhaus model is thus parametrized by four real
numbers; three of them, L, M and N , play a similar role to the
Luttinger parameters [83], while the last one, W , captures in-
formation about SOC and the breaking of inversion symmetry
in the crystal potential [50]. Rewriting Eq. (B1) as

Ek = λ k2 + y, (B4)

hence defining

λ = 1

2
+
(

L + 2M

3

)
, (B5)

one can conveniently parametrize the Dresselhaus model by
α2, λ, W , and |N |. These four parameters can be extracted
from the electronic dispersion in the close vicinity of the �

point along two high-symmetry paths: in cartesian direction
k̂ = [1, 0, 0], Eq. (B1) reduces to

Ek[1,0,0] = λ k2 ±
√

α2

9
k4 + W 2k2, (B6)

in which both solutions are doubly degenerate, while for k̂ =
[1, 1, 1], one obtains

Ek[1,1,1] = λ k2 +
{ |N |

3 k2 (twofold),

−|N |
3 k2 ± √

2W k.
(B7)

Equations (B6) and (B7) reveal two peculiarities of the generic
electronic dispersion with SOC near the VBM of zincblende
crystals which complicate the numerical evaluation of elec-
tronic effective masses. These features are sketched in Figs. 2
and 5 of Ref. [50] and can be observed in Fig. 9 for CdS.
On the one hand, the Dresselhaus field shifts the heavy hole
band extrema away from the � point; this can be read from
the second case of Eq. (B7), which contains a linear term
in k. This momentum offset is, however, much smaller in
magnitude than what is typically observed in Rashba materials
[59]. In the present work, we found it to be of the order of
5 × 10−3 Å−1 on average and at most 10−2 Å−1, about half a
percent of the length of the reciprocal lattice vectors or less
in all cases. The energy difference between the true VBM and
the � point was at most 0.5 meV. Such a small effect will
be barely visible on the band structure but will nevertheless
render the finite central differences around � numerically
unreliable, regardless of the fact that the momentum offset
does not contribute to the gFr model [see Eq.(40)].

On the other hand, if we take the higher energy solution
of Eq. (B6) to be the heavy hole bands and the lower en-
ergy solutions to be the light hole bands, their slopes will
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FIG. 9. Dresselhaus splitting in CdS. In noncentrosymmetric ma-
terials, SOC shifts the band extrema away from the � point, both
in momentum and energy. As a consequence, numerical difficulties
arise in the evaluation of the angular-averaged effective masses re-
quired by the gFr model with SOC. Zincblende CdS displays the
largest effect detected in our dataset, with a momentum offset of
∼0.01 Å−1 and an energy offset of ∼0.5 meV. As these features
occur very close to � and since ωLO = 34.4 meV, we retain the phys-
ical picture of �-centered parabolic bands inherent to the Fröhlich
model (see text).

be discontinuous across �. As a consequence, the effective
mass computed from finite differences for these bands will
diverge as the k-point sampling gets denser. A similar feature
occurs in for the light hole bands in the k̂ = [1, 1, 0] cartesian
direction (see the upper panel of Fig. 2 of Ref. [50]), as well
as for generic k̂.

Nevertheless, in line with Dresselhaus [83] and as ad-
dressed in Sec. II D, we argue that these features have little
to no impact on our current application since the energy offset
between � and the true extrema is about two orders of magni-
tude smaller than the LO frequency.

With these precautions in mind, we obtain the model pa-
rameters from the calculated dispersion along the [100] and
[111] directions through the following relations.

(1) The difference between the dispersion of the two non-
degenerate bands given by Eq. (B7) is linear in k, with a slope
proportional to W .

(2) The average value of these two bands is quadratic in k.
The difference between this average and the dispersion of the
degenerate bands in the same direction is also quadratic in k,
with a curvature proportional to |N |.

(3) Averaging the difference between the nondegenerate
bands of Eq. (B7) with the degenerate bands in the same
direction results in a quadratic function in k, with curvature λ.

(4) The difference between the dispersion of the two pairs
of degenerate states in Eq. (B6) allows extracting the α2 factor.

To circumvent any numerical instabilities arising from the
band peculiarities associated with Dresselhaus splitting, we
computed the effective masses by fitting quadratic functions
to the Dresselhaus model dispersion rather than relying on
finite differences. The different parameters used for the Dres-
selhaus model are tabulated in Table S8 of Ref. [68]. Lastly,
we emphasize that our Dresselhaus parameters should be per-
ceived as fitting parameters rather than physical parameters.
While they retain some physical essence from their original

formulation (see Eq. (47) of Ref. [83]), we did not evaluate
them through the k · p framework but rather fitted them to the
first-principles dispersion with SOC.

APPENDIX C: FITTED LUTTINGER PARAMETERS
FROM DRESSELHAUS HAMILTONIAN

As discussed in Appendix A, the Luttinger-Kohn Hamil-
tonian becomes less accurate in predicting the light holes
effective masses as SOC increases. As a consequence, it yields
a smaller decrease of the ZPRv [i.e., a larger absolute value
of ZPRv(SOC)] compared to the first-principles result, as
emphasized in Sec. IV B of the main text, hence the over-
estimation of the ratios presented in Fig. 8. Nevertheless, it
lacks all the numerical difficulties arising from Dresselhaus
splitting. In the spirit of the original Fröhlich model, we
aim for reliable effective masses with respect to the first-
principles dispersion, while remaining in the physical picture
of �-centered parabolic bands. The Luttinger-Kohn Hamilto-
nian thus provides a more efficient framework to evaluate the
angular-averaged effective masses required by our gFr model.
In this context, we propose a very simple solution: to extract
fitted Luttinger parameters from the Dresselhaus model that
yield more predictive light hole effective masses compared to
the first-principles results in the presence of SOC.

First, we note that the momentum offset in the heavy
hole bands of zincblende materials prevents us from directly
fitting the Luttinger-Kohn model on the first-principles bands.
The Dresselhaus model, in contrast, parametrizes this offset
correctly through the W parameter. From our fitted values of
λ and α2, we can extract fitted values for L and M, through
Eqs. (B3) and (B4). To do so, one nevertheless requires
prior knowledge of the relative strength of L and M, as
α = |L − M|.

One can then go back to the original works of Luttinger-
Kohn and Dresselhaus (see Eq. (V.10) of Ref. [72] and
Eq. (47) of Ref. [83]) and note that the definitions of the
(A, B) and (L, M ) parameters differ only by the bare electron
mass term, h̄2/2me, which is equal to 1/2 in atomic units.
The definitions of the C and N parameters are equivalent.
As L maps to A and M maps to B up to a constant shift,
we can first deduce that sgn(L − M ) = sgn(A − B). Then, we
can use this mapping to extract fitted Luttinger parameters
that are optimized to reproduce the first-principles dispersion
with SOC along the [100] and [111] cartesian directions in
reciprocal space using the Dresselhaus model. Note that the
only purpose of these parameters is to provide an accurate
description of the first-principles bands in the close vicinity
of the � point. Hence, the predicted dispersion will rapidly
become less accurate than the original Luttinger parameters
for larger |k| values, as well as for the split-off bands.

Figure 10 compares the first-principles dispersion (black)
to the Luttinger-Kohn model dispersion obtained with the
original set of Luttinger parameters (blue) and the fitted pa-
rameters (dashed red) for CdTe. The dispersion obtained from
the Dresselhaus model (green dotted lines) is also shown for
comparison. While the original Luttinger-Kohn model closely
follows the band warping for a broader portion of the Brillouin
zone, the fitted parameters reproduce the light holes’ curvature
around � more accurately, similar to the one predicted by
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FIG. 10. Electronic dispersion from the Luttinger-Kohn and
Dresselhaus models for CdTe, computed with the original Luttinger
parameters [(A, B,C), solid blue lines], the fitted Dresselhaus model
(green dotted lines), and the fitted Luttinger parameters extracted
from the Dresselhaus model [(Ã, B̃, C̃), dashed red lines] as de-
scribed in Appendix C. The first-principles dispersion is shown in
black. While the original model qualitatively captures the correct
band warping, it overestimates the light holes’ effective masses. The
modified parameters reproduce the first-principles curvature of
the light holes with greater accuracy and produce the same ZPRgFr

as the Dresselhaus model, without the numerical difficulties.

the Dresselhaus model. In turn, they predict a SOC-induced
decrease of the ZPRgFr in better agreement with the first-
principles result, as shown by the open circle markers in
Fig. 8. The numerical values of the fitted Luttinger parameters
are tabulated in Table S8 of Ref. [68].

APPENDIX D: ZERO-POINT EXPANSION
OF THE LATTICE

The zero-point motion of the ions affects the band gap
energy in two distinct ways: on the one hand, the electrons
interact with the ionic motion through EPI, which is computed
at the static lattice geometry, a0 (typically, the lattice param-
eter obtained from a standard DFT relaxation). On the other
hand, the ionic vibrations contribute to the total Helmholtz
free energy of the crystal, yielding a small variation of the lat-
tice parameter, called zero-point lattice expansion. In addition
to the EPI contribution discussed in Sec. II A, the zero-point
lattice expansion induces a T = 0 K modification of the band
gap energy.

We work within the quasiharmonic approximation, in
which the main contribution to the temperature dependence
of the phonon frequencies is expressed as their variation with

respect to the lattice parameter, which causes the crystal to
expand [84]. The Helmholtz free energy then reads

F tot (V, T ) � F e(V ) + F vib(V, T ),

= E e
stat (V ) − kBT ln Zph(V, T ), (D1)

in which we approximate that the electronic and vibrational
degrees of freedom can be separated. Since we are dealing
with semiconductors and insulators, the entropic contribution
of the electrons to the free energy is neglected. E e

stat (V ) is the
Born-Oppenheimer energy obtained from DFT and kB is the
Boltzmann constant.

At T = 0, the contribution of the phonon partition function
is simply the zero-point energy, such that

F tot (V, T = 0) = E e
stat (V ) +

∑
qν

ωqν (V )

2
. (D2)

For cubic materials, the lattice parameter including zero-point
motion, a(T = 0), is obtained from the V (T = 0) volume by
minimizing the T = 0 K Helmholtz free energy. The zero-
point lattice expansion is simply the difference between the
static and dynamical lattice parameters:

�a(T = 0) = a(T = 0) − a0. (D3)

Once a(T = 0) is known, we approximate the zero-point
lattice expansion contribution to the band gap ZPR, labeled
ZPRZPLE

g , by computing the difference between the DFT
band gap energy, EDFT

g , evaluated at the static and T = 0 K
geometries:

ZPRZPLE
g � EDFT

g (a(T = 0)) − EDFT
g (a0). (D4)

For all materials, we computed the zero-point lattice ex-
pansion using an 8 × 8 × 8 �-centered q-point grid. As the
construction of the Helmholtz free energy only requires the
vibrational spectrum of the crystal, it converges faster with
respect to the q-point sampling compared to EPI. The values
of ZPRZPLE

g used to obtain Fig. 4 can be found in Table S5
of Ref. [68], along with experimental values of ZPRg. Note
that we did not attempt to evaluate the effect of SOC on
ZPRZPLE

g ; the same value was used to correct ZPREPI
g both

with and without SOC. As the zero-point lattice expansion
depends mostly on the phonon frequencies [see Eq. (D2)],
which are not significantly affected by SOC for the cubic
materials investigated (see Table S7 of Ref. [68]), we expect
this approximation to be fairly accurate for the purpose of
this work. For a more thorough discussion of the zero-point
lattice expansion and its effect on the band gap ZPR, see
Ref. [79].
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