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Quantum breakdown model: From many-body localization to chaos with scars
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We propose a quantum model of fermions simulating the electrical breakdown process of dielectrics. The
model consists of M sites with N fermion modes per site and has a conserved charge Q. It has an on-site chemical
potential μ with disorder W and an interaction of strength J restricting each fermion to excite two more fermions
when moving forward by one site. We show that the N = 3 model with disorder W = 0 shows a Hilbert space
fragmentation and is exactly solvable except for very few Krylov subspaces. The analytical solution shows that
the N = 3 model exhibits many-body localization (MBL) as M → ∞, which is stable against W > 0 as our
exact diagonalization (ED) shows. At N > 3, our ED suggests an MBL to quantum chaos crossover at small
W as M/N decreases across 1, and persistent MBL at large W . At W = 0, an exactly solvable many-body scar
flat band exists in many charge Q sectors, which has a nonzero measure in the thermodynamic limit. We further
calculate the time evolution of a fermion added to the particle vacuum, which shows a breakdown (dielectric)
phase when μ/J < 1/2 (μ/J > 1/2) if W � J , and no breakdown if W � J .
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I. INTRODUCTION

The breakdown of dielectrics in an electric field (the
Townsend avalanche) [1] is one of the most violent far-
from-equilibrium systems. Generically, it involves a spatially
asymmetric process which creates more and more particles
towards a fixed spatial direction, as driven by certain forces
(electric field, enthalpy gradient, etc.). As a result, a micro-
scopic perturbation can be amplified into a macroscopic signal
in a short time, producing a particle avalanche. Therefore
the breakdown process is often utilized in designing quantum
measurement apparatuses, such as the Geiger counter, which
works near the breakdown electric field of inert gases [2,3].
Similar processes also occur in chemical reactions and generic
chain reactions. However, the study of the breakdown phe-
nomenon has been largely restricted to phenomenological and
semiclassical models, since the quantum problem inevitably
involves an enormous Hilbert space and strong many-body
interaction.

The studies in the past decades have significantly ad-
vanced our knowledge on nonequilibrium quantum dynamics
of many-body systems. The thermalization is revealed to be
closely related to many-body quantum chaos by the eigen-
state thermalization hypothesis [4–7] and solvable quantum
chaotic models, particularly the Sachdev-Ye-Kitaev (SYK)
models [8–11], manifest the quantum butterfly effect of per-
turbation amplifications. On the other hand, quantum systems
lacking thermalization have been investigated extensively,
which are known as the many-body localization (MBL) phase
[12–16]. The MBL has also been numerically studied in
interacting fermions in an electric field (interacting Wannier-
Stark) [17,18] and similar models [19–22]. In addition,
non-Hermitian effective quantum models have been proposed
to describe the electrical breakdown of the Mott insulator
[23,24]. However, the Hermitian quantum modeling of the
electrical breakdown phenomena has not yet been explored.

Models showing Hilbert space fragmentations have also been
studied as systems lacking thermalization [19–22,25–27]. In
addition, many-body quantum scars have been studied as
nonthermal eigenstates in quantum chaotic systems [28–43].
These developments have provided new tools for us to study
the quantum physics of the electrical breakdown.

In this paper, we introduce a quantum breakdown model
with a spatially asymmetric interaction, to give a simplified
quantum modeling of the breakdown process. The model con-
sists of a 1D chain of M sites, and each site consists of N
fermion degrees of freedom. Except for an on-site chemical
potential, the model only contains an asymmetric nearest-
neighbor interaction that annihilates (creates) a fermion on
the mth site and creates (annihilates) three fermions on the
(m + 1)th site (1 � m < M). The model is to provide a sim-
plified model for the dielectric gas breakdown in an electric
field (the Townsend avalanche [1]), where each site represents
a layer of the gas perpendicular to the electric field, and the
layer separation is roughly the mean free path. When an atom
(or molecule) in a certain layer is ionized into an ion and
electron, the electron will be accelerated by the electric field
and excite more ionizations (two more in the model here)
in the next layer through collisions, as shown in Fig. 1(a).
Therefore, although the microscopic interaction in the gas is
generically inversion symmetric, the effective interaction in
the electric field is inversion asymmetric.

We note that our model here is an oversimplified model for
breakdown in the following sense; first, the electric field (or
other generalized force) is not explicitly present, instead its
effect is integrated into the asymmetric interaction. Secondly,
we have ignored the spatial structure within each layer of gas,
assuming an electron in one layer can excite any electrons
in the next layer. Despite these simplifications, we can ap-
proximately identify the asymmetric interaction strength J as
the voltage difference between adjacent layers, and view the
chemical potential μ in each layer as the ionization energy
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FIG. 1. (a) Simplified illustration of the electrical breakdown,
where an electron in a layer hits the next layer and creates two
more electrons, leading to a particle avalanche. (b) The quantum
breakdown model in a 1D lattice with M sites (open boundary) and
N fermion modes per site. The only interaction annihilates a fermion
in site m and creates three fermions in site m + 1 (and the inverse
process).

of an atom. We also include a disorder strength W giving
fluctuations in μ.

The quantum breakdown model exhibits a surprisingly
rich physics. The model has a conserved charge Q, which
significantly reduces its numerical complexity. We first show
that the N = 3 model with disorder strength W = 0 shows a
Hilbert space fragmentation into exponentially large number
of Krylov subspaces in all charge Q sectors, and is exactly
solvable except for very few Krylov subspaces of certain
charge Q sectors. The exact solution shows the N = 3 model
is in a 1D MBL phase in the M → ∞ limit (the 1D limit), and
we further verified the robustness of the MBL under nonzero
disorder W > 0 via exact diagonalization (ED). For N > 3,
we perform ED calculations. At weak disorder strength W ,
from the level spacing statistics (LSS) and eigenstate entan-
glement entropies, we find the model shows MBL features
when M/N > 1, while is quantum chaotic when M/N < 1.
This lead us to the conjecture that the model at small W is in a
1D MBL phase with localization length of order N in the limit
M/N → ∞, and is quantum chaotic in the limit M/N → 0
(the 3D limit), with a crossover around M/N ≈ 1. At suffi-
ciently large W , the model shows MBL features irrespective
of M/N . Moreover, when W = 0, in many charge Q sectors,
there exists a set of exactly solvable degenerate eigenstates
forming a many-body scar flat band, leading to quantum scar
states with a nonzero measure in the thermodynamic limit.

We further investigate the time evolution of a fermion
added to the first layer of the model, to examine the break-
down phenomena. With weak disorders W � J , irrespective
of M/N , our calculations show the system is in a breakdown
phase when μ/J < 1/2 (μ � 0), and in a dielectric phase (no
breakdown) when μ/J > 1/2. The ratio M/N affects the spa-
tial ranges of the breakdown. When M/N > 1, the model can
only have a local breakdown with the particles ionized within

order N number of sites after the initial perturbation. When
M/N < 1, the model will exhibit a global breakdown with
particles ionized in the entire system. With strong disorders
W � J , the breakdown is absent because of the persistent
MBL for any ratio M/N .

The rest of this paper is organized as follows. The quan-
tum breakdown model and its conserved charge is defined
in Sec. II. In sections III and IV, we first give the exact and
almost exact solution of the N = 3 model at disorder W = 0,
and then compare with the ED results at both W = 0 and
W > 0. Section V shows the ED calculations for N > 3 mod-
els suggesting the MBL to chaos crossover around M/N ≈ 1
at small W , the persistent MBL at large W , and gives the
theoretical understanding of the many-body scar flat bands.
Section VI presents the time-evolution of a fermion added to
the particle vacuum of the model, which reveals the break-
down transition at μ/J = 1/2 at small W , and absence of
breakdown at large W . Lastly, remarks and future directions
are discussed in Sec. VII.

II. THE QUANTUM BREAKDOWN MODEL

A. The Hamiltonian

Figure 1(a) gives a simplified illustration the breakdown
(Townsend avalanche) process of a dielectric gas in a large
enough electric field (to the left), where we assume the gas
consists of neutral atoms (the black dots). When an atom
is ionized into an electron and an ion, the electron will be
accelerated in the direction opposite to the electric field, and
then hit and ionize more atoms, which will eventually lead to
a particle Townsend avalanche as illustrated by the blue lines.
In principle, the ions can induce a similar particle avalanche,
but it would happen in a much longer time scale because
of their much heavier mass, and may be terminated by the
recombinations of ions with electrons from the electrode on
the left. Moreover, if the dielectric is a solid instead of a gas,
the ions will stay static. Therefore we will ignore the ions and
focus on the electrons to simplify the quantum model of the
breakdown.

By ignoring ions, we can assume each ionized electron in
layer m can hit layer m + 1 and create more ionized electrons
via interaction. The cost of ignoring the ions is that one can
only write down interactions with electron number changing
by an even number, since electrons are fermions. Therefore
the simplest breakdown interaction is an inversion asymmetric
interaction annihilating one electron in layer m and creating
three electrons in layer m + 1 (and its Hermitian conjugate).
The distance between two adjacent layers is thus approxi-
mately 2�mfp for 2 collisions to happen, where �mfp is the mean
free path of the electrons.

To further simplify the model, we ignore the spatial struc-
ture within each layer, and treat each layer as a site of a
1D lattice with an open boundary condition, as shown in
Fig. 1(b). By assuming M sites (layers) in total and N complex
fermion (electron) modes in each site, we define the quantum
breakdown model Hamiltonian in the 1D lattice as containing
three parts:

H = HI + Hμ + Hdis. (1)
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The first part is the asymmetric breakdown interaction tak-
ing the form

HI =
M−1∑
m=1

N∑
i< j<k

N∑
l=1

(
Ji jk

m,l c
†
m+1,ic

†
m+1, jc

†
m+1,kcm,l + H.c.

)
, (2)

where cm,i and c†
m,i are the annihilation and creation operators

of the ith fermion mode on the mth site (1 � i � N , 1 �
m � M) and Ji jk

m,l are complex parameters which are totally
antisymmetric in indices i, j, and k. The notation H.c. stands
for Hermitian conjugate of the first part, so HI is Hermitian.
We shall consider the cases with both uniform and random
interaction Ji jk

m,l . For HI not to vanish, we require the number
of fermion modes per site N � 3.

The second part of the Hamiltonian is an on-site chemical
potential uniform within each site:

Hμ =
M∑

m=1

μmn̂m, n̂m =
N∑

i=1

c†
m,icm,i, (3)

where n̂m is the fermion number operator on site m, and to be
general, we assume the chemical potential μm can depend on
site m.

The last part is a disorder potential within each site:

Hdis =
M∑

m=1

N∑
i

νm,ic
†
m,icm,i, (4)

where νm,i are Gaussian random potentials with mean value
and variance given by

〈νm,i〉 = 0,
〈
ν2

m,i

〉 = W 2. (5)

The constant W � 0 characterizes the disorder potential
strength. We note that one could add a nondiagonal random
hopping term νm,i jc

†
m,icm, j within a site, but one could always

rewrite the model in the diagonal fermion basis of the hopping
matrix νm,i j on each site m, after which the disorder poten-
tial will take the diagonal form of Eq. (4) without loss of
generality.

For later convenience, we define the interaction strength
between sites m and m + 1 as

Jm =
⎛
⎝ 1

N

N∑
i< j<k

N∑
l=1

∣∣Ji jk
m,l

∣∣2

⎞
⎠

1/2

. (6)

In particular, when the system is on average uniform, which
is the case we will focus on dominantly, we can assume both
the chemical potential and the interaction strength are site m
independent:

μm = μ, Jm = J. (7)

In the case of fully random interactions Ji jk
m,l , we assume the

interactions are generated from a Gaussian distribution with
statistical mean and variance〈

Ji jk
m,l

〉 = 0, 〈|Ji jk
m,l |2〉 = 3!J2

N (N − 1)(N − 2)
, (8)

where J is defined in consistency with Eq. (7). We note the
similarity of such an interaction to that in the SYK model
[8–11].

B. Conserved charge

With the open boundary condition as shown in Fig. 1(b),
the quantum breakdown model in Eq. (1) has a conserved
global U(1) charge

Q =
M∑

m=1

3M−mn̂m. (9)

In other words, each fermion in layer m carries an effective
charge qm = 3M−m. The breakdown process can thus be un-
derstood as charged particles keeping splitting into partons
carrying a 1/3 factor smaller charge as the layer index m
increases by one. This allows us to study a fixed charge Q
sector each time, which has a much smaller Hilbert space
dimension than that of the entire model.

We note that one could complicate the Hamiltonian of
Eq. (1) by adding other terms, such as the hopping between
different sites. This will, however, lead to the loss of the con-
served charge Q, making the analytical and numerical studies
much more difficult. In this paper, we restrict ourselves to the
model in Eq. (1) with the conserved charge Q.

C. Chiral symmetry

We can define a unitary chiral transformation C as

C(cm,l , c†
m,l )C

−1 = (−1)m(cm,l , c†
m,l ), (10)

and it is straightforward to see that the model Hamiltonian
H = HI + Hμ + Hdis transforms as

C(HI + Hμ + Hdis )C−1 = −HI + Hμ + Hdis. (11)

Moreover, [C, Q] = 0. Therefore, when the disorder potential
W = 0, namely Hdis = 0, the Hamiltonian H at chemical po-
tentials μ and −μ are exactly opposite to each other via a
chiral transformation, and thus have exactly opposite energy
spectra in the same charge Q sector. We call this property the
chiral symmetry between μ and −μ. When W > 0, the chiral
symmetry still approximately true due to randomness of Hdis.
Therefore we will only focus on μ � 0 hereafter.

D. Physical meaning of the parameters

In a realistic breakdown system, both the number of
fermion modes N per layer and the number of layers M are
large. We can view the ratio M/N as proportional to the ratio
of the length (in the direction of electric field) and cross
sectional area of the space containing the dielectric gas. The
ratio M/N is thus tunable by the geometry of the container. In
the 1D limit where the container is a quasi-1D long tube with
a small cross sectional area, we have M/N � 1. In contrast,
in the 3D limit where the container has similar sizes in all the
three directions, we have M/N � 1.

Physically, the interaction strength J in Eq. (7) is approxi-
mately the average energy a fermion can gain by turning into
three fermions in the next site. Therefore one can identify J
with the electric potential energy difference 2eEele�mfp of an
ionized electron between neighboring layers, where e is the
electron charge, and Eele is the electric field. The chemical
potential μ � 0 can be understood as the ionization energy
for creating an electron, with a disorder strength W due to
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frozen

frozen frozen frozen

Q=3M-1

Q=3M-1

generic Q

conditionally
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blocking site mb conditionally
extended

conditionally
extended

conditionally
extended

mb,pmf,p mb,p+1mf,p+1 mf,p+2

FIG. 2. Illustration of the eigenstates of the N = 3 model W = 0.
(a) The Krylov subspace without blocking in the charge Q = 3M−1

sector, which is conditionally extended. (b) Krylov subspaces with
blocking site mb in the charge Q = 3M−1 sector, which is localized
on sites m � mb and conditionally extended on sites m > mb. (c) In
a Krylov subspace of a generic charge sector Q, the lattice is divided
into alternating localized and conditionally extended intervals, lead-
ing to MBL eigenstates.

fluctuations, which will disfavor breakdown. One thus expects
the quantum dynamics of the system to undergo a dielectric
breakdown transition as the ratio μ/J decreases towards zero,
which is studied in Sec. VI.

III. THE N = 3 MODEL WITH W = 0

We first study the model with N = 3, the minimal number
of fermion modes per site for the interaction in Eq. (2) not to
vanish. In this section, we fix the disorder potential strength
W = 0 [defined in Eq. (5)], namely, Hdis = 0. We will show
that this N = 3 model with W = 0 shows a Hilbert space
fragmentation into an exponentially large number of Krylov
subspaces in each charge Q sector, and is exactly solvable
except for very few Krylov subspaces in certain charge Q sec-
tors, regardless of the parameters μm and Ji jk

m,l . The resulting
many-body eigenstates indicate that the model is in a 1D MBL
phase as M → ∞, as summarized in Fig. 2, and the energy
spectrum exhibits an interesting fractal-like structure. The
N = 3 model with disorder strength W > 0 will be studied
in Sec. IV, where we find the MBL phase remains robust.

A. Model simplification

With disorder potential W = 0, we are allowed to simplify
the model interactions by U(3) unitary rotations of the fermion
basis cm,l in each site. We define a new fermion basis fm,l by

cm,l =
3∑

l ′=1

U (m)
ll ′ fm,l ′ , (12)

where the unitary matrices U (m) satisfy
∑

l J123
m,l U (m)

ll ′ =√
3Jmδ1,l ′ det(U (m+1)), with the interaction strength Jm de-

fined in Eq. (6), and δl,l ′ is the Kronecker delta function.

Note that the product operator in each site cm,1cm,2cm,3 =
det(U (m) ) fm,1 fm,2 fm,3 is invariant up to a phase factor
det(U (m) ). This transforms the total Hamiltonian in Eq. (1)
into the fm,l basis:

H = HI + Hμ,

HI =
M−1∑
m=1

⎡
⎣√

3Jm

⎛
⎝ 3∏

j=1

f †
m+1, j

⎞
⎠ fm,1 + H.c.

⎤
⎦,

Hμ =
M∑

m=1

μmn̂m, (13)

where n̂m = ∑3
l=1 f †

m,l fm,l is equivalent to the definition in
Eq. (3). Note that only the first fermion mode fm,1 in each
site can excite three fermions in the next site.

B. Eigenstates of the Q = 3M−1 charge sector

The Hamiltonian is block diagonal in each charge Q sector,
the Hilbert space of which is spanned by the basis of all Fock
states with integer fermion number nm = 〈n̂m〉 on each site m,
satisfying Q = ∑

m 3M−mnm.
As a prototypical example, we investigate the Q = 3M−1

charge sector in this section. This is the charge sector of
adding one fermion to the first site of the particle vacuum
state |0〉 (vacuum state defined by n̂m|0〉 = 0 for all m). The
fermion numbers of the Fock state basis are thus limited to
the following string configurations:

nm = 2ϑms−m+1 − 2δm,1 + δm,ms , (14)

where ms is an integer satisfying 1 � ms � M, and we have
defined the integer variable Heaviside function ϑm as

ϑm =
{

1, (m > 0)
0, (m � 0) (m ∈ Z). (15)

More explicitly, the fermion number configurations in
Eq. (14) takes the form {nm} = {0, 2, . . . , 2, 3, 0, . . . , 0} when
ms > 1, where the msth site has three fermions and is the last
site with a nonzero fermion number (i.e., the site the fermions
have spread to). When ms = 1, one has {nm} = {1, 0, . . . , 0},
and we call this configuration the reference configuration of
charge Q = 3M−1, which is the configuration with the smallest
total number of fermions possible in this charge Q sector.

The Fock states with nm given in Eq. (14) with all possible
ms constitute the Hilbert space basis of the charge Q = 3M−1

sector, which has a Hilbert space dimension hQ = 3M−1+5
2 . In

the below, we will show that this Hilbert space further frag-
ments into an exponentially large number of disjoint Krylov
subspaces, each of which has its Hamiltonian equivalent to a
single-particle tight-binding model.

1. A Krylov subspace without blocking

A Krylov subspace is defined as a closed Hilbert space
spanned by states Hn|ψ〉 of all nonnegative integers n � 0
from some root state |ψ〉, where H is the Hamiltonian. We first
examine a special Krylov subspace in the Q = 3M−1 charge
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1
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2
3

1
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m=1 m=M

(a)

(b)

(c)

FIG. 3. Illustration of the Fock states in the Krylov subspace
without blocking [as given by Eq. (16)] in the charge Q = 3M−1

sector of the N = 3 model at W = 0. The three circles on each site
m stand for the fermion basis fm, j after rotation in Eq. (13). Solid
and hollow circles stand for occupied and empty fermion modes,
respectively. (a)–(c) shows three possible fermion occupation states
in this Krylov subspace.

sector, which has a basis of M Fock states defined by

|ms, 1, 1〉 = f †
ms,1

ms∏
m=2

f †
m,2 f †

m,3|0〉, (16)

where 1 � ms � M. Note that the first fermion mode fm,1 on
each site m is empty except for the msth site. The fermion
occupations of such states in Eq. (16) are illustrated in Fig. 3.
The three-quantum number notation of state |ms, 1, 1〉 will be-
come clear in next section. These M Fock states form a closed
Hilbert Krylov subspace as illustrated by Fig. 3, in which we
choose |1, 1, 1〉 to be the root state, and the Hamiltonian in
Eq. (13) acts in this Krylov subspace as

H |ms, 1, 1〉 = ϑms−1

√
3Jms−1|ms − 1, 1, 1〉

+ ϑM−ms

√
3Jms |ms + 1, 1, 1〉 + Vms |ms, 1, 1〉.

(17)

Here Vms = μms + 2
∑ms

m=2 μm, the coefficients Jm are given
in Eq. (6), and the notation ϑm is defined in Eq. (15). Such
a Hamiltonian is thus equivalent to a single-particle tight-
binding Hamiltonian on sites 1 � ms � M with an open
boundary condition, which has an on-site potential Vms , and
a nearest neighbor hopping

√
3Jms . The many-body state

|ms, 1, 1〉 is thus equivalent to a single free effective particle
on site ms. We say this subspace has no blocking (also de-
fined in the next section), since all the sites are connected by
hopping.

It is straightforward to diagonalize such a single-particle
Hamiltonian and obtain the eigenstates in this subspace.
Generically, if the parameters Vms and/or Jms are disordered
with respect to ms, the tight-binding Hamiltonian in Eq. (17)
will exhibit the Anderson localization [44], with all the eigen-
states spatially localized around different sites ms. Since
the basis in Eq. (16) are many-body fermion states, these

eigenstates should be viewed as many-body localized (MBL)
in the original fermion basis.

In the case when Eq. (7) is satisfied, namely, when the
chemical potential μm = μ and interaction strength Jm = J
are uniform, one has Vm = (2m − 1)μ that increases linearly
with m. If μ �= 0, the Hamiltonian of Eq. (17) resembles that
of the noninteracting electron Bloch oscillation in electric
field, and thus the eigenstates will be Wannier-Stark localized
[45] within roughly a localization length of order J/|μ|.

In the special case when

μm = μ1

3m−1
, Jm = J, (18)

one has Vms = μ1 and Jms = J independent of ms. As a result,
the eigenstates will be extended in the entire 1D chain, given
by

|ψk,1,1〉 =
M∑

ms=1

sin
πkms

M + 1
|ms, 1, 1〉, (19)

where k is an integer (1 � k � M). The according eigenen-
ergy is

Ek,1,1 = μ1 + 2
√

3J cos
πk

M + 1
. (20)

More generally, the eigenstates will be extended if Vm and Jm

are periodic in m.
Therefore we say the eigenstates in this Krylov subspace

of Eq. (16) are conditionally extended [on the hollow sites in
Fig. 2(a)], meaning that they are extended if and only if Vm

and Jm are periodic in m. The states in this Krylov subspace
behave as a single free effective particle in the entire lattice.

2. Other Krylov subspaces: blocking enforced localization

Following a similar idea, we can determine all the other
Krylov subspaces in the charge Q = 3M−1 sector and derive
the eigenstates exactly.

The Fock basis in Eq. (16) in the Krylov subspace above
has the first fermion mode fm,1 empty in all sites but site ms.
We now consider a set of more generic Fock states defined as
follows:

∣∣ms, mb,
{
s j

m

}〉 = f †
ms,1

ms∏
m=mb+1

f †
m,2 f †

m,3

mb∏
m=2

f †
m,s1

m
f †
m,s2

m
|0〉,

(21)

where 2 � mb < ms � M, and {s j
m} are the indices of occu-

pied fermion modes on sites 2 � m � mb ( j = 1, 2), with the
specific requirement on site mb:

s1
mb

≡ 1, s2
mb

= 2 or 3. (22)

For all the other sites 2 � m < mb, the coefficients s1
m and s2

m
can take any two distinct values among {1, 2, 3}. Therefore mb

and ms are the last two sites with the first fermion mode fm,1

occupied. Some examples of Fock states in Eq. (21) are given
in Fig. 4.

We call the site mb in Eq. (21) a blocking site, for the
reasons below. Since the first fermion mode fmb,1 on site mb is
occupied, and the (mb + 1)th site is not empty, it is easy to see
that the Hamiltonian in Eq. (13) cannot change the occupation
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1
2
3

blocking site mb

1
2
3

frozen sites

1
2
3

frozen sites (another Krylov subspace)

(a)

(b)

(c)

FIG. 4. Illustration of the Krylov subspace with a blocking site
mb (where the first fermion mode fmb,1 is occupied) in the charge
Q = 3M−1 sector of the N = 3 model at W = 0. Solid and hollow
circles stand for occupied and empty fermion modes, respectively.
The fermion occupation on sites m � mb is frozen. (a) and (b) shows
two possible fermion occupation states in such a Krylov subspace,
with (a) being the root state. (c) shows a state in another Krylov sub-
space with the same blocking site mb but a different frozen fermion
occupation on sites m � mb.

configuration on sites 1 � m � mb by any number of actions
on the Fock state in Eq. (21). Namely, the coefficients {s j

m} are
invariant, and the fermions on sites 1 � m � mb are frozen, as
illustrated in Fig. 4. Therefore the dynamics of the Fock state
in Eq. (21) is blocked at site mb and only happens on sites
m > mb.

As a result, one can show that all the Fock states
|ms, mb, {s j

m}〉 in Eq. (21) with the same blocking site mb and
occupation configuration {s j

m} form a closed Krylov subspace,
and we define the root state of this Krylov subspace to be the
Fock state with ms = mb + 1 [Fig. 4(a)]. So we can simply
label the Krylov subspaces by quantum numbers (mb, {s j

m}).
The Hamiltonian in Eq. (13) acting on Fock states in such a
Krylov subspace in a similar way to Eq. (17), but only on sites
ms > mb:

H
∣∣ms, mb,

{
s j

m

}〉 = Vms

∣∣ms, mb,
{
s j

m

}〉
+ ϑms−mb−1

√
3Jms−1

∣∣ms − 1, mb,
{
s j

m

}〉
+ ϑM−ms

√
3Jms

∣∣ms + 1, mb,
{
s j

m

}〉
, (23)

where as before, Vms = μms + 2
∑

1<m�ms
μm, Jm is defined

in Eq. (6), and ϑm is given in Eq. (15). Therefore, in the
Krylov subspace of Fock states in Eq. (21) with fixed indices
mb and {s j

m}, the Hamiltonian behaves as a single-particle
tight-binding model on sites mb + 1 � ms � M with an open
boundary condition, as shown in Figs. 4(a) and 4(b), and the
states can be viewed as a single free effective particle in this
interval. In particular, the energy spectrum of Eq. (23) for a
fixed blocking site mb is obviously independent of the indices
{s j

m}. Therefore each energy level with a blocking site mb

in the charge Q = 3M−1 sector has a degeneracy 2 × 3mb−2,

which is the number of possible frozen index configurations
{s j

m}, or the number of Krylov subspaces with the same block-
ing site mb.

The eigenstates of Eq. (23) in a Krylov subspace with
blocking site mb are thus conditionally extended on sites mb <

m � M, as illustrated in Figs. 2(b) and 4. If Vms and Jms are
not periodic in ms, one expects the eigenstates to be Anderson
localized (or Wannier-Stark localized if Vms is linear in ms),
or MBL in the fermion basis perspective. If instead Vms and
Jms are periodic, for instance if Eq. (18) is satisfied, yielding
Vms = μ1 and Jms = J , the eigenstates will be extended within
mb < m � M, with wave functions

∣∣ψk,mb,{s j
m}

〉 =
M∑

ms=mb+1

sin
πk(ms − mb)

M − mb + 1

∣∣ms, mb,
{
s j

m

}〉
, (24)

where k is an integer ranging within 1 � k � M − mb. The
energy of this eigenstate is given by

Ek,mb,{s j
m} = μ1 + 2

√
3J cos

πk

M − mb + 1
, (25)

which is degenerate with respect to all the 2 × 3mb−2 frozen
occupation configurations {s j

m}, as we have explained.
In addition to the above eigenstates in Krylov spaces with

blocking site mb � 2, there are two Fock states decoupled
from all the other states:

|1, 1, s〉 = f †
1,s|0〉 (s = 2, 3), (26)

which are readily the eigenstates of the Hamiltonian in
Eq. (13). Their energy eigenvalues are simply

E1,1,s = μ1 (s = 2, 3). (27)

We can view these two states as two one-dimensional Krylov
subspaces with a blocking site mb = 1. In this way, we can
summarize the Fock states in Eqs. (16), (21), and (26) in
the same notation |ms, mb, {s j

m}〉, with 1 � mb � ms � M, and
(mb, {s j

m}) label the Krylov subspace. If mb � 2, only those
states with mb < ms are valid.

One can verify that the total number of eigenstates we have
found adds up to the Hilbert space dimension hQ = 3M−1+5

2 of
the charge sector Q = 3M−1.

3. Numerical spectrum and entanglement entropy

To verify the above exact solutions in the Q = 3M−1 sector,
we perform exact diagonalization (ED) calculations of the
energy spectrum of the N = 3 quantum breakdown model. For
generality, our ED is performed in a full charge Q sector in the
original fermion basis cm,i, assuming not knowing any Krylov
subspaces.

We first show an example with (N, M ) = (3, 10) and no
randomness: we assume all the interactions in Eq. (2) are
uniformly J123

m,l = 10, the chemical potential μm = μ = 0, and
the disorder potential W = 0. The many-body energy spec-
trum in the Q = 3M−1 = 39 sector is shown in Fig. 5(a), where
α is an integer labeling the energy levels E (α) sorted from
low to high (1 � α � hQ). The energy levels agree well with
Eqs. (20), (25), and (27). Not surprisingly, most energy levels
have an extensive degeneracy, making the spectrum fractal-
like. This is consistent with the fact that the energy levels with
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FIG. 5. ED calculation in a charge Q sector of the model with
(N, M ) = (3, 10) and disorder potential W = 0. (a), (c), and (e)
shows the energy levels E (α) sorted from low to high (labeled by
α), and the corresponding LSS in the insets. (b), (d), and (f) show
the eigenstate entanglement entropy in subregion A (the first �M/2�
sites) versus energy E (α) for (a), (c), and (e), respectively (the darker
the higher density of dots). The parameters are labeled in the left
panels. In (a) and (b), the interaction J123

m,l = 10 is uniform, and
Q = 3M−1. In (c)–(f), the interaction J123

m,l is random with strength
J = 10, while Q = 3M−1 in (c) and (d) and Q = 21924 in (e) and (f).

a blocking site mb have a degeneracy 2 × 3mb−2 (the number of
degenerate Krylov subspaces with the same mb) plus other ac-
cidental degeneracies, and the fractal-like spectrum is because
the degeneracies are proportional to powers of 3. For instance,
the degeneracy of the E = 0 mode in Fig. 5(a) is contributed
by all the states of certain mb with k = (M − mb + 1)/2 ∈ Z
in Eq. (25). Moreover, we note that the parameters of Fig. 5(a)
satisfy Eq. (18) with μ1 = 0 and J = 10, so the eigenstates are
extended on sites m > mb.

Another example we show in the (N, M ) = (3, 10) case
has random complex interactions Ji jk

m,l satisfying Eq. (8), where
the interaction strength J = 10, while the chemical potential
μm = μ = 1 is uniform, and W = 0. Figure 5(c) shows the
energy spectrum in the Q = 3M−1 = 39 sector. Clearly, the
fractal-like level degeneracies remain for random interactions,
agreeing well with the degeneracy 2 × 3mb−2 for blocking site
mb. The randomness of interaction does remove all accidental
degeneracies.

The level spacing statistics (LSS) in a charge sector is
known as an indicator of integrability or quantum chaos,
which is defined as the statistical distribution p(δE ) of the
nearest neighboring level spacing

δE (α) = E (α + 1) − E (α) (1 � α � hQ − 1). (28)

Integrable systems show Poisson distribution LSS [46]

p(δE ) ∝ e−δE /λ0 , (29)

with some constant λ0, while fully quantum chaotic systems
show Wigner-Dyson (WD) distribution LLS [47–49]

p(δE ) ∝ δn
E e−δ2

E /λ2
0 , (30)

where n = 1, 2, 4 for models in the Gaussian orthogonal
ensemble (GOE), Gaussian unitary ensemble (GUE) and
Gaussian symplectic ensemble (GSE) symmetry classes, re-
spectively.

The insets of Figs. 5(a) and 5(c) show the LSS in the charge
Q = 39 sector. The extensive level degeneracies yield a delta
function peak in the LSS at δE = 0, while at δE > 0, the LSS
shows a Poisson distribution (although δE is large compared to
1/hQ). This is consistent with the fact that all the eigenstates in
the Q = 3M−1 sector are exactly solvable, namely, integrable.

To tell how localized the eigenstates are, we calculate the
entanglement entropy

SA(α) = −tr[ρA(α) ln ρA(α)] (31)

of the reduced density matrix ρA(α) of each eigenstate |α〉
in a subregion A. The subregion A is always defined as sites
1 � m � �M/2� hereafter, where �x� is the floor function giv-
ing the integer part of x. MBL and extended eigenstates should
exhibit area law and volume law entanglement entropies,
respectively. Figures 5(b) and 5(d) show the entanglement
entropy SA(α) of the Q = 3M−1 sector eigenstates in Figs. 5(a)
and 5(c), respectively. Each dot represents an eigenstate, and
the darker the color of the dots is, the denser the dots are
(to reflect the overlapping dots). In both cases, there are a
large number of eigenstates with low entanglement entropy
irrespective of the eigenenergy E (α), which can be identified
as area-law MBL eigenstates. The rest states, however, have
higher entanglement entropy peaked in the middle of the
energy spectrum, showing a volume law. The presence of vol-
ume law states has two reasons: first, as shown in Fig. 2, many
eigenstates have conditionally extended regions, which may
show a relatively large entanglement. In particular, compared
to most other charge sectors, the Q = 3M−1 has a relatively
larger conditionally extended region (see Sec. III C below),
thus is more delocalized. In Fig. 5(b) where the extended
condition Eq. (18) is satisfied, the eigenstates are like an
extended free effective particle in the conditionally extended
region. In Fig. 5(d) where the chemical potential μm = μ =
1, one expects Wannier-Stark localization with localization
length ∼J/|μ|, thus entanglement entropies are generically
lower than those in Fig. 5(b). Second, although the eigen-
states in each Krylov subspace we give in Sec. III B 2 are
strictly localized on sites m < mb, one can linearly superpose
the extensively degenerate eigenstates from different Krylov
subspaces into a new eigenbasis with high entanglement en-
tropies. This is generically the case in ED which ends up with
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TABLE I. Examples of reference configurations {n0
m} of charge

Q sectors for (N, M ) = (3, 10). The corresponding mc is also given
according to Eq. (33).

number of sites M charge Q {n0
m} mc

10 39 1,0,0,0,0,0,0,0,0,0 0
10 21 924 1,0,1,0,0,0,2,0,0,0 0
10 61 813 3,0,1,0,2,1,0,1,0,1 1
10 86 241 3,3,3,1,0,2,2,0,1,0 3

a random degenerate eigenbasis. Intriguingly, adding a small
disorder potential W [Eq. (5)] is sufficient to slightly break
the degeneracy and fix the eigenbasis to a low-entanglement
basis, as shown in Fig. 7(b), which has W = 10−6 and the
rest parameters the same as those in Fig. 5(b). Moreover, if
one rotates the fermion basis to the fm,l basis in Eq. (13),
adding a small disorder potential diagonal in the fm,l basis
pins all the eigenstates into each Krylov subspace we de-
scribed, which have entanglement entropy no larger than ln 2
(see Appendix A for details).

C. The generic charge sectors

We now study the Krylov subspaces and eigenstates in
an arbitrary charge Q sector of the N = 3 model. Similar to
Eq. (14), the allowed fermion number configurations {nm} of
the on-site Fock basis are uniquely determined by charge Q.
For later purpose, we rewrite the charge Q as

Q =
M∑

m=1

n0
m3M−m, (32)

where the integers n0
m satisfy the following condition:

n0
m

{= 3 (m � mc),
∈ {0, 1, 2} (m > mc), (33)

and mc � 0 is an integer uniquely determined by Q. We call
{n0

m} the reference configuration of charge Q, which has one-
to-one unique correspondence with charge Q. For instance,
the Q = 3M−1 sector we studied in Sec. III B corresponds to
{n0

m} = {1, 0, 0, . . . }. Intuitively, the reference configuration
{n0

m} of charge Q in Eq. (33) is the configuration with the
smallest possible total number of fermions in the charge Q
sector. In other words, {n0

m} in Eq. (33) is the charge configu-
ration where no fermions can move any further to the left via
interaction.

In particular, for any charge Q < 3M , one has mc = 0, and
thus 0 � n0

m � 2 for all m. In this case, the set of integers
{n0

m} is nothing but the digits of Q in ternary number. A few
examples of the reference configurations {n0

m} of charge Q
sectors in the (N, M ) = (3, 10) case are shown in Table I.

We first note that if mc > 1 in Eq. (33), the fermions on
the fully filled sites m < mc of the reference configuration
are frozen, so we can neglect them in the analysis of Krylov
subspaces. Then, we assume the reference configuration has
MQ partially filled sites on which 0 < n0

m < 3, and we assume
m f ,p is the pth such partially filled site sorted from small
to large (1 � p � MQ). We now show that depending on the
occupation numbers n0

m f ,p
on these MQ sites, the eigenstates in

the charge Q sector fractionalizes into an exponentially large
number of Krylov subspaces which are either exactly solvable
or almost solvable.

1. Fully exactly solvable charge sectors

Assume charge Q in Eq. (32) has n0
m f ,p

= 2 for any partially
filled site 2 � p � MQ if mc = 0, or for any 1 � p � MQ if
mc � 1. In this case, the eigenstates of all the Krylov sub-
spaces in the charge Q sector can be exactly solved.

To see this, we first note that the MQ sites at positions
m f ,p separate the unfrozen part of the system mc � m � M
into MQ + 1 decoupled subsystems. The first subsystem is
the interval of sites mc � m � m f ,1 − 1 (which vanishes if
m f ,1 = 1), and stays trivially in the zero fermion state. The
(p + 1)th (1 � p � MQ) subsystem is the interval of sites
m ∈ [m f ,p, m f ,p+1 − 1] (here we define m f ,MQ+1 = M + 1). It
is easy to verify that the allowed Fock basis fermion number
configurations within the (p + 1)th subsystem (1 � p � MQ)
are similar to Eq. (14), given by

nm = 2ϑms,p−m+1 − (
3 − n0

m f ,p

)
δm,m f ,p + δm,ms,p (34)

for sites m ∈ [m f ,p, m f ,p+1 − 1], where the integer ms,p ∈
[m f ,p, m f ,p+1 − 1] is a free parameter, and ϑm is defined
in Eq. (15). Namely, the allowed configurations within the
(p + 1)th subsystem typically take the form {nm} = {n0

m f ,p
−

1, 2, . . . , 2, 3, 0, . . . , 0}, where the site with 3 fermions is the
ms,pth site. Note that the allowed charge configuration in the
(p + 1)th subsystem is solely determined by n0

m f ,p
. This is

because n0
m f ,p

= 2 for any p � 1 guarantees that the m f ,pth
site is never empty, so the fermions in the pth subsystem is
blocked and cannot spread into with the (p + 1)th subsystem.

An explicit example is given in Figs. 6(a) and 6(b), where
the reference configuration is shown in Fig. 6(a), which has
mc = 0 and two partially occupied sites m f ,1 and m f ,2, with
1 (black) and 2 (blue) fermions, respectively. As shown in
Fig. 6(b), under interactions, the site m f ,2 always has at least
one fermion occupied, thus blocking any fermions from sites
m < m f ,2 to spread into or beyond site m f ,2. The entire sys-
tem is thus divided into two decoupled subsystems on sites
m f ,1 � m < m f ,2 and m f ,2 � m < M, respectively.

Because of the decoupling of the MQ + 1 subsystems,
the many-body eigenstates of the entire system decomposes
into the direct products of MQ + 1 subsystem eigenstates.
Each subsystem has Krylov subspaces and exactly solvable
eigenstates by the same method as we used for the charge
Q = 3M−1 sector (see Sec. III B). More explicitly, a Krylov
subspace of the (p + 1)th subsystem is labeled by a block-
ing site mb,p, defined as the second last site in the interval
[m f ,p, m f ,p+1 − 1] with the first fermion mode fmb,p,1 occu-

pied (similar to Eq. (21)), and frozen occupation indices {s j
m}

in the interval [m f ,p, mb,p]. Its root state is defined as the
Fock state with the smallest possible total fermion number
in this subspace. In this Krylov subspace, the Hamiltonian
maps to a single-particle tight-binding Hamiltonian similar
to Eqs. (17) and (23) with ms and mb replaced by ms,p and
mb,p (see Appendix B), thus is exactly solvable. The Krylov
subspaces of the entire system are simply the direct product
of the Krylov subspaces of the MQ + 1 subsystems.
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FIG. 6. Illustration of Krylov subspaces without blocking sites
in generic charge Q sectors with two filled sites mf ,1 and mf ,2 in
the reference configuration, for the N = 3 model at W = 0. Solid
and hollow circles stand for occupied and empty fermion modes,
respectively. (a) shows the reference configuration of a charge Q
sector with 2 fermions on site mf ,2, and (b) shows a generic state
in this Krylov subspace. In this case, site mf ,2 divides the system into
two decoupled subsystems which are exactly solvable. (c) shows the
reference configuration of another charge Q sector with 1 fermion on
site mf ,2. (d)–(f) show three possible states in this Krylov subspace.
In this case, site mf ,2 can be occupied by either fermions from the
right (blue) and from the left (black), yielding an effective hard core
interaction between the left and right subsystems.

Figure 2(c) illustrates the localization of a generic many-
body eigenstate in a Krylov subspace of such exactly solvable
charge Q sectors. Within the (p + 1)th subsystem on sites
[m f ,p, m f ,p+1 − 1], there is a blocking site mb,p. The sub-
system is then frozen in the localized configuration {s j

m}
within the interval of sites [m f ,p, mb,p], and maps to a con-
ditionally extended single free effective particle within sites
[mb,p + 1, m f ,p+1 − 1], similar to the charge Q = 3M−1 sector
[Fig. 2(b)]. This separates the entire system into alternating
frozen (thus localized) and conditionally extended intervals
[Fig. 2(c)], which maps to MQ free effective particles (one
in each conditionally extended interval) decoupled with each
other. Such many-body eigenstates are therefore necessarily
MBL in the original fermion basis, with a localization length
not exceeding the size of each subsystem. In the Q = 3M−1

sector, there is only one subsystem and some eigenstates can
still be extended; while in most charge Q sectors, the number
of subsystems MQ is usually a large number of the same order
as M, so the localization length is at most M/MQ which is
small.

2. The other charge sectors: exactly solvable
in most Krylov subspaces

For a generic charge Q sector, where some partially filled
sites m > mc in Eq. (33) have fermion number n0

m = 1, the
above picture of MQ + 1 decoupled subsystems separated by
sites m f ,p is no longer exact for all Krylov subspaces, but is
still a good approximation.

A Krylov subspace is still labeled by the blocking sites
{mb,p} and occupation indices {s j

m} in the MQ intervals
[m f ,p, mb,p]. We still define the (p + 1)th subsystem as the
interval [m f ,p, m f ,p+1 − 1]. If one has n0

m f ,p
= 1 on a site

m f ,p for some p � 2 (or p = 1 if mc � 1), there will be a
weak interaction between the pth subsystem and the (p + 1)th
subsystem on their boundary site m f ,p in certain Krylov
subspaces. This is because n0

m f ,p
= 1 allows site m f ,p to be

either occupied or empty (by the actions of interaction HI

in Eq. (13)). When site m f ,p is empty, it can either gain 3
fermions from the pth subsystem on its left, or gain 1 fermion
from the (p + 1)th subsystem on its right, which induces an
interaction between the two subsystems on site m f ,p. Note
that the fermions in each of the two subsystems cannot invade
into each other beyond the boundary site m f ,p, which restricts
the interaction to be on the site m f ,p only. However, such
an interaction is present only in the Krylov subspaces with
the blocking site mb,p = m f ,p, namely, with no blocking in
the (p + 1)th subsystem. This is because if mb,p > m f ,p, the
occupation configuration in the interval [m f ,p + 1, mb,p] will
be fixed, and the site m f ,p can only either be empty or accept
three fermions from the pth subsystem on its left, which elimi-
nates the interaction. Therefore there are only very few Krylov
subspaces having this inter-subsystem boundary interaction,
which must have mb,p = m f ,p. A more detailed expression
of such an inter-subsystem interaction can be found in
Appendix B.

Figures 6(c)–6(f) shows an example of Krylov subspace of
interacting subsystems we described above. Figure 6(c) gives
the reference configuration which has two partially filled sites
m f ,1 and m f ,2 with 1 fermion each (colored black and blue),
respectively.

If one view the Fock states in a Krylov subspace within
each interval [mb,p, m f ,p+1] as a conditionally extended single
effective particle on site ms,p ∈ [mb,p, m f ,p+1] (the site with
three fermions) similar to that in Eqs. (17) and (23), the
above picture can be illustrated as follows. If n0

m f ,p
= 1 and

mb,p = m f ,p for some p � 2, the (p − 1)th effective particle
and the pth effective particle will have a hard core repulsion
on site m f ,p. Otherwise, the (p − 1)th effective particle and
the pth effective particle are decoupled. Namely, among the
MQ effective particles [one in each conditionally extended
interval in Fig. 2(c)], two neighboring effective particles can
have a boundary hard core interaction with each other only
when their conditionally extended intervals touch each other
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and the boundary site m f ,p between them has n0
m f ,p

= 1. Such
an interaction obstructs us to analytically obtain the eigen-
states in these Krylov subspaces.

Since this interaction in any generic charge Q sector only
weakly exists on the boundary between some neighboring
subsystems in very few Krylov subspaces, we expect the
eigenstates to be well approximated by direct products of
eigenstates of MQ + 1 subsystems, which would still show
MBL. As a numerical test, in Figs. 5(e) and 5(f), we show the
energy spectrum and subregion entanglement entropy of the
charge Q = 21 924 sector eigenstates of the (N, M ) = (3, 10)
model calculated by ED, where the model parameters are the
same as Figs. 5(c) and 5(d), namely, uniform μm = μ = 1,
random interaction strength J = 10 (the same random Ji jk

m,l ),
and W = 0. This charge Q in the form of Eq. (32) corre-
sponds to {n0

1, n0
3, n0

7} = {1, 1, 2} and all the other n0
m = 0

(see Table I). Figure 5(e) shows that there are still extensive
degenerate energy levels. The LSS shows a delta function
peak at δE = 0 and a Poisson distribution at δE > 0, in con-
sistency with MBL. In Fig. 5(f), we see an extensive number
of low entanglement entropy eigenstates within the entire en-
ergy range, indicating their MBL. The rest states have higher
entanglement entropy due to the energy level degeneracies,
for the same reason as described in the end of Sec. III B 3.
But the eigenstate entanglement entropies of the Q = 21 924
sector are generically lower than those in the Q = 39 sector
[in Fig. 5(d)], since the eigenstates are more localized with
multiple nearly decoupled subsystems. Similarly, by rotating
to the fm,l basis in Eq. (13), one can eliminate such degeneracy
induced high entanglement entropy in the ED calculation (see
Appendix A for details).

As our Krylov subspace exact or almost exact solutions and
ED calculations show, the N = 3 quantum breakdown model
with W = 0 shows a 1D MBL in generic charge Q sectors
when M → ∞ (illustrated in Fig. 2). Note that such an MBL
can exist without any disorder and randomness: we can set
μm = μ, M = 0, and J123

m,l = J all being constant and still have
MBL.

IV. THE N = 3 MODEL WITH W > 0

The MBL nature of the eigenstates of the N = 3 quantum
breakdown model can be strengthened when the disorder po-
tential Hdis in Eq. (4) is turned on, namely, when the disorder
strength W > 0 [defined in Eq. (5)].

In the presence of a nonzero Hdis term, the basis transfor-
mation in Eq. (12) can no longer simplify the model (there
is no Krylov subspace structure), and there is no obvious
analytical method for solving the eigenstates. We therefore
calculate the eigenstates and spectrum of a charge Q sector
numerically by ED.

Figure 7 shows three examples of the ED energy spec-
trum and subregion entanglement entropy of the model with
(N, M ) = (3, 10), where the model parameters except for W
are exactly the same as those in the corresponding panels of
Fig. 5. Generically, the disorder potential W further localizes
the eigenstates and strengthen the MBL, as can be seen from
the lower entanglement entropy of eigenstates in Figs. 7(b),
7(d) and 7(e) as compared to Figs. 5(b), 5(d) and 5(e) (where
W = 0). We discuss this result in more details below.
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FIG. 7. ED calculation in a charge Q sector of the model with
(N, M ) = (3, 10) and disorder potential W > 0. The parameters ex-
cept for W are exactly the same as Fig. 5 and labeled in the left
panels. (a) and (b) has W = 10−6, while (c)–(f) has W = 1. (a), (c),
and (e) shows the energy levels E (α), and their LSS in the insets.
(b), (d), and (f) show the eigenstate entanglement entropy in subre-
gion A (the first �M/2� sites) for (a), (c), and (e), respectively (the
darker the higher density of dots).

First, a tiny disorder potential can readily pin the originally
degenerate many-body eigenstates into a more local basis
with considerably lower entanglement entropy. Figures 7(a)
and 7(b) shows the numerical calculation in the Q = 39 sec-
tor by adding a disorder potential strength W = 10−6 to the
(N, M ) = (3, 10) case with parameters in Figs. 5(a) and 5(b),
after which the energy spectrum is almost unchanged [see
Figs. 5(a) and 7(a)]. The inset of Fig. 7(a) shows the LSS
of in the range of δE ∼ 10−8 (the energy scale of level de-
generacy breaking), which is still a Poisson distribution. In
contrast, the entanglement entropies of the degenerate levels
in Fig. 7(b) are much lower than those in Fig. 5(b), indicating
the eigenstates are more localized. This is because the disorder
potential W connects the Krylov subspaces with different
blocking sites mb and different occupation configurations
{s j

m}, which induces a localization and degeneracy breaking
among all the originally degenerate eigenstates in different
Krylov subspaces, similar to the Anderson localization.
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The energy level degeneracy breaking and MBL become
stronger as the disorder strength W increases. Figures 7(c)–
7(f) show the spectra in the Q = 39 and 21 924 charge sectors
at (N, M ) = (3, 10) with W = 1, where the other parameters
are exactly the same as those in Figs. 5(c)–5(f). Compared
with Figs. 5(c)–5(f), the originally degenerate levels at distinct
energies are broadened and merged together by the disor-
der potential W , showing a clear Poisson LSS in Fig. 7. As
shown in Figs. 7(d) and 7(f), extensive numbers of eigen-
states show extremely low entanglement entropy regardless
of energy, indicating MBL. The Q = 21 924 sector [Fig. 7(f),
as a representative of generic charge sector] is clearly much
more localized than the Q = 39 sector [Fig. 7(d)], due to
the breaking of the system into smaller decoupled or weakly
coupled subsystems as explained in Sec. III C 2. In general, we
find the MBL is robust for any value W > 0. The Appendix C
Figs. 19(a)–19(b) shows an example of the N = 3 model with
W = 10 comparable to the interaction strength J = 10, where
the MBL feature is still clear. In the W � J limit, the MBL
is even stronger, as the disorder potential W also favors the
localization of fermions.

V. THE N > 3 MODELS

The quantum breakdown model in Eq. (1) with N > 3
becomes increasingly complicated, and we have not found
a method to solve it analytically. Therefore we employ ED
to numerically compute the full energy spectrum and eigen-
states of the N > 3 model. Within the system sizes (up to
NM ≈ 25 ∼ 28) and charge Q sectors calculable, when the
disorder potential W is not strong (W < J), we find the model
exhibits a crossover from MBL to quantum chaotic behaviors
as M/N decreases to M/N ≈ 1 (see Sec. V A below). This
suggests that the model has an MBL localization length of
order N sites, and behave like a chaotic quantum dot within
a localization length. Therefore we conjecture the model is
in a 1D MBL phase with localization length ML ∼ N in the
M/N → ∞ limit (the 1D limit), and is many-body chaotic in
the M/N → 0 limit (the 3D limit). At strong disorder poten-
tials W � J , we find the model always shows MBL features
irrespective of M/N (see Sec. V B).

Moreover, for generic (N, M ) at disorder potential W = 0,
we can identify a set of exactly solvable degenerate many-
body eigenstates in many charge Q sectors, which form a flat
band of many-body quantum scar states. This is discussed in
Sec. V C.

A. MBL to chaos crossover as M/N decreases at small W

Similar to the N = 3 case, we first discuss the N > 3
quantum breakdown model at disorder potential W = 0, and
then examine the robustness of the model features at small
disorder potential W > 0 (W < J). In the ED calculations,
we set a uniform chemical potential μm = μ, and random
interactions with a strength J , as we assumed in Eqs. (7) and
(8). Throughout this section, we set μ = 1 and J = 10.

1. ED result at zero and small W

Figure 8 shows the many-body energy spectrum and en-
tanglement entropy of a representative charge Q sector in the
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FIG. 8. ED calculation in a charge Q sector of the models with
N = 4, 5, and 7 and the largest M calculable, respectively, and
disorder potential W = 0. The parameters are labeled in the left
panels. (a), (c), and (e) shows the energy levels E (α), and insets show
their LSS. (b), (d), and (f) show the eigenstate entanglement entropy
in subregion A (the first �M/2� sites) for (a), (c), and (e), respectively
(the darker the higher density of dots).

(N, M ) = (4, 7), (5,5), and (7,4) quantum breakdown model
with W = 0, respectively. The most obvious feature we ob-
serve is the presence of an interval of flat dispersion in the
middle of the energy spectrum in Figs. 8(a), 8(c) and 8(e),
which indicates a highly degenerate energy level in each of the
charge Q sectors. Such a degenerate level when W = 0 is ob-
served in many charge Q sectors at generic (N, M ) in our ED.
We call this degenerate level a many-body scar flat band, the
origin of which is explained later in Sec. V C. For N = 3, this
is the level with the highest degeneracy in Fig. 5. In addition,
in the (N, M ) = (4, 7) spectrum in Fig. 8(a), other than the
many-body scar flat band (the highest degeneracy level in the
middle), there are enormous other degenerate levels showing
a fractal-like structure (similar to Fig. 5), which cannot be
understood by the explanation later in Sec. V C. This suggests
the existence of Hilbert space fragmentation into degenerate
Krylov subspaces at least also at N = 4, which we leave for
future study.

The insets of Figs. 8(a), 8(c) and 8(e) show the LSS of
the energy spectrum of the corresponding charge Q sector.
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First, all the LSS show a delta function peak at δE = 0, which
is due to the many-body scar flat band and other degenerate
levels if any. At δE > 0, the LSS is Poisson in Fig. 8(a)
when (N, M ) = (4, 7), almost Wigner-Dyson when (N, M ) =
(5, 5), and clearly Wigner-Dyson in Fig. 8(e) when (N, M ) =
(7, 4). The eigenstate entanglement entropy of Figs. 8(a), 8(c)
and 8(e) in subregion A (the first �M/2� sites) are given
in Figs. 8(b), 8(d) and 8(f), respectively. In Fig. 8(b) where
(N, M ) = (4, 7), most eigenstates have low (area law) entan-
glement entropies strongly fluctuating with energies, and the
pattern resembles that of (N, M ) = (3, 10) in Fig. 5, showing
MBL features. In contrast in Fig. 8(f) where (N, M ) = (7, 4),
most eigenstates have high entanglement entropies, outlining
a volume law dome expected for quantum chaotic systems. In
Fig. 8(d) where (N, M ) = (5, 5), the entanglement entropies
show features in between the above two cases. These results
suggest there is a crossover from MBL behavior to quan-
tum chaos behavior as the ratio M/N decreases to around
M/N ≈ 1.

This crossover behavior remains robust against a small
disorder potential W > 0 (W < J , see Sec. V B for the cri-
terion of small W ). Figure 9 shows calculations with a small
disorder potential W > 0 (equals 0.5 or 1, see parameters in
the panels), where all the other parameters are exactly the
same as Fig. 8. The degenerate scar level is lifted by W > 0.
When (N, M ) = (4, 7), most eigenstates still show low (area
law) entanglement entropies as shown in Fig. 9(b), which is
similar to the N = 3 case in Fig. 7(d) and suggests MBL.
The LSS in Fig. 9(a) inset becomes semi-Poisson with a weak
level repulsion. We conjecture this LSS will tend to Poisson
if we could calculate larger M/N (when M is larger than
the MBL localization length), similar to the (N, M ) = (3, 10)
case in Fig. 7(c) inset. This MBL-like behavior is robust for
any W > 0. An example of the (N, M ) = (4, 7) model with
W = 10 (comparable to J = 10) is shown in Appendix C
Figs. 19(c) and 19(d), which show clear MBL features of
Poisson LSS and area law eigenstate entanglement entropies.
The (N, M ) = (5, 5) and (7,4) cases with a small W > 0
[Figs. 9(c)–9(f)] are not too different from those with W =
0 [Figs. 8(c)–8(f)], except that the eigenstate entanglement
entropies vary more smoothly with respect to the energy,
showing clearer features of volume law behaviors. Note that
the LSS in the energy scale of degeneracy breaking of the
many-body scar flat band [insets of Figs. 9(c) and 9(e)] are
also Wigner-Dyson, and this is because the disorder potential
W hybridizes the flat band with the other delocalized eigen-
states, leading to a level repulsion. Examples of more charge
Q sectors with W = 0 or W > 0 for the same (N, M ) can be
found in the Appendix C, Fig. 19. The LSS for smaller (N, M )
are shown in Appendix C, Fig. 21. All of these results suggest
the existence of an MBL to chaos behavior crossover as M/N
decreases to around M/N ≈ 1.

Moreover, in the (N, M ) = (7, 4) quantum chaotic case
in Figs. 8(f) and 9(f), there are sharp dips of entanglement
entropy in the middle of the energy spectrum, which indicate
these states are low-entanglement quantum scar states. The
dips are right above and below the energy of the many-body
scar flat band in Fig. 8(e), where the density of states are
low. Such quantum scar states also occur in the (N, M ) =
(5, 5) case in Figs. 8(d) and 9(d). At W = 0, the many-body
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FIG. 9. ED calculation in a charge Q sector of the models with
N = 4, 5, and 7 and the largest M calculable, respectively, and
disorder potential W > 0. The parameters except for W are the same
as Fig. 8, which are labeled in the left panels. (a), (c), and (e) shows
the energy levels E (α), and insets show their LSS. (b), (d), and (f)
show the eigenstate entanglement entropy in subregion A (the first
�M/2� sites) for (a), (c), and (e), respectively (the darker the higher
density of dots).

scar flat band states in Fig. 8(e) can also be understood as
low-entanglement quantum scar states, since they can be un-
derstood as states of fermions which do not hop, as we will
show later in Sec. V C. Adding a tiny disorder W > 0 will
fix the eigenbasis of the flat band into a relatively low en-
tanglement entropy basis (see Appendix C, Fig. 20), although
the W induced hybridization between the flat band and the
other delocalized eigenstates will eventually delocalize these
flat band eigenstates at larger W . In Fig. 8(f) with W = 0, the
many-body scar flat band states do not show low entanglement
entropy, again because the ED calculation arbitrarily picks a
high entanglement entropy eigenbasis within the degenerate
Hilbert space. Remarkably, the fraction of such flat band
quantum scar eigenstates is not measure zero compared to the
total number of eigenstates (see Sec. V C). This is in stark
contrast to previous quantum scar models, where the number
of scar states is usually measure zero in the thermodynamic
limit.
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2. Argument for the crossover from MBL to chaos

To define the MBL and quantum chaos phases, certain ther-
modynamic limit need be taken. As we explained in Sec. II D,
we define M/N → ∞ as the 1D thermodynamic limit (where
N can be a small number), and M/N → 0 as the 3D thermo-
dynamic limit (where both M and N are large). Our small
size calculations then suggest the model is MBL in the 1D
thermodynamic limit, and quantum chaotic in the 3D thermo-
dynamic limit, and the crossover possibly happens at M/N ≈
1. We emphasize that this conclusion may be subject to fi-
nite size effects. Nonetheless, we provide here a theoretical
argument for the crossover around M/N ≈ 1 at small disorder
potential W .

The key is to identify the localization length ML (number
of sites) of the model. Recall that a fermion on the mth site
can move to the (m + 1)th site and turn into three fermions. If
two of these three fermions stay in the (m + 1)th site, and the
other fermion further move and turn into three fermions on the
(m + 2)th site [as is the example in Eq. (14)], it appears this
process can go on to any distance away without localization.
However, we argue this is not true. This is because in this
picture, only one fermion in the last occupied site is mobile
(subject to randomness induced localization), while the mo-
bilities of all the other fermions rely on this single fermion
far way, which would not be a bulk property. To define the
localization length ML as a bulk property, we need to allow at
least one fermion per site to be mobile independently within
a localization length ML. Since a fermion needs to produce
at least two more fermions per site to move forward, it re-
quires a Hilbert space of 2 × (ML/2) = ML fermion modes
if it is to move by ML/2 sites, the midvalue of a localization
interval [0, ML]. Within an interval of ML sites, to allow one
mobile fermion per site, we would need a Hilbert space of
ML × ML = M2

L number of fermion modes; while the total
number of fermion modes available in the interval is NML.
Equalizing these two numbers yields an MBL localization
length

ML ∼ N. (35)

Therefore we expect the model to show MBL features when
M > ML, or M/N > 1. In contrast, when M < ML, or M/N <

1, the model should behave as a random extended system,
which is usually quantum chaotic.

B. Persistent MBL at W � J

We now show that when the disorder potential W � J , the
model exhibits MBL features irrespective of M/N .

When M/N > 1, we have shown in Sec. V A that the
model shows features of MBL at small disorder poten-
tial W < J . In this case, increasing the disorder potential
W only strengthens the MBL features, as shown in the
Appendix Figs. 19(a)–19(d) where W = J = 10. This means
strong disorder potential W will further decrease the local-
ization length ML in Eq. (35). Our ED calculation strongly
suggests that the model behaves as MBL for any disorder
potential strength W when M/N > 1.

When M/N < 1, our ED calculation indicates that there is
a crossover (or transition) from quantum chaos to MBL as
W/J increases. This should correspond to the point where
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FIG. 10. The crossover from quantum chaos to MBL with re-
spect to disorder potential strength W in the (N, M ) = (7, 4) model.
The interaction is random with fixed strength J = 10, μm = 1, and
the charge Q = 33. (a)–(c) gives the entanglement entropy SA(α)
of eigenstates with energy E (α) in the first 2 sites, and their LSS
(inserts), for disorder potential strength W = 60, 93, and 200, re-
spectively. (d) shows the level spacing ratio 〈r〉 of the model with
respect to the disorder potential strength W , which shows a crossover
from Wigner-Dyson (GUE) to Poisson at W ≈ 93. The four hori-
zontal dashed lines give the expected 〈r〉 values for Poisson (〈r〉 =
0.39), GOE (〈r〉 = 0.53), GUE (〈r〉 = 0.60), and GSE (〈r〉 = 0.67),
respectively.

the localization length ML decreases to M. In the case of
(N, M ) = (7, 4) with μm = 1 and J = 10, Figs. 10(a)–10(c)
shows the eigenstate entanglement entropies SA(α) and the
LSS (the insets) in the charge Q = 3M−1 sector, at different
values of W . As W increases, the entanglement entropies
SA(α) decrease monotonically, suggesting the approach to the
area law, and the LSS crossovers from Wigner-Dyson (GUE)
in Fig. 10(a) to Poisson in Fig. 10(c). These features are clear
indications of MBL. To reveal this crossover more explicitly,
we calculate the mean level spacing ratio 〈r〉 defined as the
mean value of the following ratio [14]:

r(α) = min{δE (α), δE (α + 1)}
max{δE (α), δE (α + 1)} , (36)

where δE (α) is the nearest neighboring level spacing in the
charge Q sector defined in Eq. (28). For LSS showing Poisson,
GOE, GUE, and GSE, the level spacing ratio 〈r〉 is expected
to be 0.39, 0.53, 0.60, and 0.67, respectively [50]. As shown
in Fig. 10(d), we find the level spacing ratio in this charge
Q = 3M−1 sector shows a sharp crossover (transition) from
the GUE value to the Poisson value at W/J ≈ 9.3, which is an
indication of crossover (or transition) from quantum chaos to
MBL as W/J increases.

Therefore we conclude that at sufficiently strong disorder
potential W � J , the model is always in the MBL regime.
Intuitively, the on-site disorder potential may play a similar
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role as the disorder potential in the Anderson localization
problem.

C. Many-body scar flat band at W = 0

We have seen in Fig. 8 (see also Appendix C, Fig. 19) that
at W = 0, many charge Q sectors of the quantum breakdown
model have an extensively degenerate level in the middle of
the spectrum, which we name as the many-body scar flat band.
Moreover, we find all the eigenstates |α〉 in this many-body
scar flat band has integer number of fermions on each site:

〈α|n̂m|α〉 = nm ∈ Z (nm � 0) (37)

and their eigenenergy is given by

E (α) =
M∑

m=1

μmnm. (38)

This indicates that the interaction HI in Eq. (2) has no con-
tribution to the eigen-energy of these states at all, so they
are the zero modes of HI satisfying HI |α〉 = 0. We note that
Eqs. (37) and (38) are generically not true for energy levels not
in the many-body scar flat band [for instance, not true for any
degenerate levels other than the many-body scar flat band at
energy E = 13 in the (N, M ) = (4, 7) spectrum in Fig. 8(a)].

The origin of such a many-body scar flat band here re-
sembles that of the single-particle flat bands of line-graph
tight-binding models [51,52] (e.g., the Lieb lattice [53] and the
kagome lattice [54]), which is due to the mismatch of dimen-
sions of the Hilbert subspaces connected by the Hamiltonian
HI , as we will show below.

1. M = 2 sites

The simplest example is the quantum breakdown model
with M = 2 sites. Consider the Hilbert space of Fock states
with nm (nm ∈ Z) fermions on site m (m = 1, 2), which has a
Hilbert space dimension

hn1,n2 = Cn1
N Cn2

N , (39)

where Cn
N = N!

(N−n)!n! is the binomial coefficient. Note that
Cn

N = 0 if n < 0 or n > N . The conserved charge Q is given
by Q = 3n1 + n2. The interaction HI in Eq. (2) can hop
from the Hilbert space of fermion numbers {n1, n2} into the
Hilbert space of fermion numbers {n1 ± 1, n2 ∓ 3}. The HI

hopping matrix between these two Hilbert spaces thus has
hn1+1,n2−3 + hn1−1,n2+3 rows and hn1,n2 columns. If the Hilbert
space dimensions for some integers {n1, n2} satisfy

d0
2 (n1, n2) = hn1,n2 − hn1+1,n2−3 − hn1−1,n2+3 > 0, (40)

the above HI hopping matrix will have a rank no larger than
hn1+1,n2−3 + hn1−1,n2+3, and thus there will necessarily be

d2(n1, n2) � d0
2 (n1, n2) (41)

number of linearly independent states in the {n1, n2} Hilbert
space that can be annihilated by HI . Namely, the interaction
Hamiltonian HI will have d2 zero modes with fermion num-
bers {n1, n2}, which will be eigenstates with energy given
by Eq. (38) when the disorder potential W = 0. These zero
modes of HI therefore form a many-body scar flat band. We

call d0
2 (n1, n2) in Eq. (40) the classical degeneracy (from sim-

ple dimension counting), and the actual degeneracy d2(n1, n2)
the quantum degeneracy.

Figures 11(a)–11(c) shows the classical degeneracy
d0

2 (n1, n2) defined in Eq. (40) as a function of n1 in several
charge Q sectors for (N, M ) = (15, 2) (recall n2 = Q − 3n1).
Each of them has one configuration {n1, n2} with d0

2 (n1, n2) >

0, and thus has a many-body scar flat band. Generically, for
N � 28, most charge Q sectors have one (and usually only
one) fermion number configuration {n1, n2} with d0

2 (n1, n2) >

0, as shown in Figs. 11(d) and 11(e). When N � 29, a charge
Q sector can have d0

2 (n1, n2) > 0 only if Q � N2/3 or 4N −
Q � N2/3, and the example of N = 29 is shown in Fig. 11(f).
We give a theoretical understanding and estimation of such
behaviors with respect to N in Appendix D.

Within the ED calculable system sizes with M = 2, we find
d2 = d0

2 in all charge sectors except for one case: the Q =
2N sector when N is odd. In this case, within N � 7, we find
d2 − d0

2 � 2. Therefore the classical degeneracy d0
2 gives a

very accurate estimation of the quantum degeneracy d2.

2. Generic M sites

The counting of many-body scar flat band degeneracy in
Eq. (40) for M = 2 sites can be straightforwardly generalized
to M > 2 sites. Consider a fermion number configuration
{n1, n2, . . . , nM} on the M sites in a charge sector Q. We as-
sume the first m sites (1 � m � M) with the sub-configuration
{n1, n2, . . . , nm} has d (m)

M zero modes of HI . When we add
the mth site to the first m − 1 sites, the d (m)

M zero modes of
the first m sites should span a subspace of the direct prod-
uct of the zero-mode Hilbert space of the first m − 1 sites
(dimension d (m−1)

M ) and the nm-fermion Hilbert space of the
mth site (dimension Cnm

N ). This is because the terms in HI

within the first m − 1 sites have to annihilate these d (m)
M zero

modes. Then, these d (m)
M zero modes also need be annihi-

lated by the interaction Ji jk
m−1,l between sites m − 1 and m.

From our discussion in Sec. V C 1, the matrix of the Ji jk
m−1,l

term within the two sites m − 1 and m has a rank no larger
than hnm−1+1,nm−3 + hnm−1−1,nm+3, where hn1,n2 is the two-site
Hilbert space dimension of fermion number {n1, n2} defined
in Eq. (39). Therefore the number of modes that the Ji jk

m−1,l
term cannot annihilate is at most its rank times the number
of zero modes d (m−2)

M of the first m − 2 sites. This indicates
the number of zero modes d (m)

M of the first m sites satisfy the
recursion relation

d (m)
M = d (m−1)

M Cnm
N − d (m−2)

M (hnm−1+1,nm−3 + hnm−1−1,nm+3)

+ r (m)
M , (42)

where

r (m)
M � 0 (43)

is a nonnegative quantum correction beyond the above rank
counting, which may arise from destructive quantum interfer-
ences. The two initial values of the recursion relation are given
by

d (0)
M = 1, d (1)

M = Cn1
N , (44)
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2 (n1, n2) [defined in Eq. (40)] for several charge Q sectors (N, M ) = (15, 2) as a function of n1

(recall that n2 = Q − 3n1). Each Q sector has only one (n1, n2) configuration with d0
2 (n1, n2) > 0. [(d)–(f)] The maximal d0

2 of each charge Q
sector, calculated for (N, M ) = (15, 2), (28, 2), and (29,2), respectively. The y axis is log10(d0

2 + 1) (such that zero corresponds to d0
2 = 0).

where we allowed m to start from 0 for convenience. The num-
ber of zero modes, namely, quantum degeneracy dM ({nm}) of
the many-body scar flat band in the total M sites is given by

dM = d (M )
M (45)

from the recursion relation in Eq. (42).
We have not found a general formula for the quantum

correction r (m)
M in Eq. (43). From ED calculations, we find

r (m)
M is zero in most charge Q sectors. In the rare cases where

r (m)
M > 0, it is always much smaller than d (m)

M , so it only gives
a small correction to d (m)

M . We therefore define a classical
degeneracy d0

M ({nm}) as

d0
M = d (M ),0

M , (46)

where d (M ),0
M is defined by the recursion relation ignoring the

quantum correction r (m)
M , namely,

d (m),0
M = d (m−1),0

M Cnm
N − d (m−2),0

M

(
hnm−1+1,nm−3 + hnm−1−1,nm+3

)
,

(47)

with initial values d (0),0
M = 1 and d (1),0

M = Cn1
N . We expect the

classical degeneracy d0
M not to differ much from the actual

quantum degeneracy dM .
Similar to the M = 2 case in Sec. V C 1, for small N (at

least for N calculable in our ED) and M > 2, most charge
sectors Q have one [or very rarely two, see an example in
Appendix E, Fig. 22(e)] fermion number configuration {nm}
with dM > 0, leading to a many-body scar flat band. As an
example, Fig. 12(a) shows the many-body scar flat band quan-
tum degeneracy dM from ED and classical degeneracy d0

M
from Eq. (47) in all charge sectors Q for N = 4 and M = 3,
and Fig. 12(b) shows their difference dM − d0

M . We see that in
most charge Q sectors, dM = d0

M precisely. There are only four
charge sectors with dM − d0

M > 0, but this difference is much
smaller than dM . Figures 12(c) and 12(d) shows the fermion
numbers on the first site and second site of the many-body scar

flat band, respectively (missing points meaning no many-body
scar flat band in that charge Q sector).

VI. THE BREAKDOWN TRANSITION

To examine if the quantum breakdown model can describe
the dielectric breakdown phenomena, we numerically calcu-
late the time evolution of a fermion added into the particle
vacuum state of the system. We consider uniform chemical
potential μm = μ and random interactions with strength J =
10. By the chiral symmetry (Sec. II C), we can assume μ � 0
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FIG. 12. Many-body scar flat band for (N, M ) = (4, 3) with
W = 0 and random interactions. (a) The quantum degeneracy dM

from ED and the classical degeneracy d0
M computed from Eq. (47) in

all charge Q sectors. (b) The difference dM − d0
M for all Q. [(c) and

(d)] Fermion numbers n1 and n2 in the many-body scar flat band
in each charge Q sector. Missing points indicate the absence of a
many-body scar flat band.
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without loss of generality. We will examine both weak and
strong disorder potentials W .

As explained in Sec. II D, in the dielectric breakdown
picture, μ can be understood as the ionization energy for
producing a fermion, with disorder potential within a range
of W , while J can be viewed as the electric field induced
potential energy difference between neighboring layers (the
energy a fermion can gain upon moving forward by one site).

In the case of weak disorder potential W � J , when J >

2μ, the energy a fermion gains when moving a site forward
will be able to overcome the energy cost of producing two
more fermions, allowing the particle avalanche to happen.
Therefore we expect the breakdown transition to happen at

μ

J
= 1

2
(μ � 0, W � J ). (48)

As we will show, this point indeed corresponds to a break-
down transition in the quantum breakdown model with
W � J .

In the case of strong disorder potential W � J , when a
fermion moves forward by one site, the ionization energy
cost of producing two more fermions will be random and
roughly within the interval [2(μ − W ), 2(μ + W )]. In this
case, we expect no breakdown happening, since the system
is in the MBL regime (see Sec. V B). However, we expect
there is a crossover between weak and strong localization with
respect to μ/W . If J < 2(|μ| − W ), the interaction energy
the fermion gains will not be able to overcome the ionization
energy, obstructing the fermion to move by one site forward,
so the fermions are strongly localized (almost within one site),
which is analogous to strong Wannier-Stark localization. In
contrast, if J > 2(|μ| − W ), there is a chance the fermion can
move to the next site, if the random ionization energy happens
to be small, which gives a weaker localization of the fermions
analogous to the Anderson localization. Therefore we expect
a crossover from weak to strong localization at

μ

W
= 1 + J

2W
≈ 1 (μ � 0, W � J ). (49)

We will show this crossover is also verified by our ED calcu-
lations.

A. Energy spectrum dependence on μ/J

We first investigate the dependence of many-body energy
spectrum on the ratio μ/J . In Figs. 5–9, we have shown the
calculations only at μ/J � 0.1. Figure 13 shows the energy
spectrum with W = 0 in the Q = 3M−1 sector at larger μ/J .
We find that at small μ/J , the energy spectrum does not have
large gaps [Figs. 13(a) and 13(c)], while at large μ/J , the en-
ergy spectrum splits into many-body bands with gaps of order
2μ [Figs. 13(b) and 13(d)]. This is because as μ/J → ∞, or
J → 0, the energy spectrum is simply given by Hμ in Eq. (3),
which forms bands with an interband gap 2μ. However, we
observed no sharp changes but only an adiabatic crossover
in the energy spectrum as μ/J crosses 1/2. Therefore, if a
sharp breakdown transition exists at μ/J = 1/2, the change
in eigen-wavefunctions must play an essential role.

We also find that the LSS of the energy spectrum is insen-
sitive to μ/J . As shown in the insets of Fig. 13, the LSS of
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FIG. 13. The dependence of the energy spectrum on the chemical
potential μm = μ, for fixed random interactions with strength J = 10
and disorder potential W = 0, and the charge sector is Q = 3M−1.
(a) and (b) have (N, M ) = (4, 7), while (c) and (d) have (N, M ) =
(7, 4). At large μ, the spectrum splits into bands with gaps around
2μ. The LSS has no qualitative dependence on μ.

the (N, M ) = (4, 7) model at μ/J = 1
2 and 2 are both Poisson

[Figs. 13(a) and 13(b)], while the LSS of the (N, M ) = (7, 4)
model at μ/J = 1

2 and 2 are both Wigner-Dyson [Figs. 13(c)
and 13(d)]. This suggests that the MBL to chaos crossover at
M/N ≈ 1 is independent of μ/J .

B. Time evolution

To reveal the breakdown transition, we examine the dy-
namical evolution of an initial state |ψ (0)〉 which adds one
fermion to the first site of the particle vacuum |0〉. Since the
interactions are random, we can assume the fermion is in the
first fermion mode of site m = 1 without loss of generality,
namely,

|ψ (0)〉 = c†
1,1|0〉, (50)

where c†
m,i is the fermion creation operator in Eq. (2). Such

an initial state resembles creating one ionized atom in an
undisturbed dielectric gas. We then employ ED to calculate
the time-evolved state |ψ (t )〉 = e−iHt |ψ (0)〉 at time t . Note
that |ψ (t )〉 is always in the charge Q = 3M−1 sector. Here
we always take random interactions with interaction strength
J = 10 and uniform chemical potential μm = μ. We will ex-
amine different disorder potential strength W . Note that the
wave functions |ψ (t )〉 at chemical potentials μ and −μ are
related by the chiral symmetry C [Eq. (10)] followed by com-
plex conjugation, giving the same dynamics. We thus restrict
ourselves to μ � 0.

We comment that the time evolution of the single fermion
state in Eq. (50) is highly relevant to the measurement process
in a Geiger counter made of dielectric gas in a near-breakdown
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electric field, where an incident charged particle ionizes an
electron from the unperturbed particle vacuum state, giving
an initial state similar to Eq. (50). If the breakdown happens,
a macroscopic electric current will be arise due to the particle
avalanche [Fig. 1(a)]. We noticed that most recently, similar
measurement-related avalanche phenomenon is studied inde-
pendently in a spin model with asymmetric interactions in a
Bethe-tree lattice [55,56].

We define the number of fermions on the mth site at time t
as

nm(t ) = 〈ψ (t )|n̂m|ψ (t )〉, (51)

with the number operator n̂m defined in Eq. (3). The break-
down can be observed by measuring the number of fermions
n1(t ) on the first site. If the breakdown happens, we expect
n1(t ) to approach zero as time t → ∞, since the fermion will
turn into many fermions on the m > 1 sites. In contrast, if the
breakdown does not happen, one expects a nonzero n1(t ) as
t → ∞, since the fermion cannot induce a fermion avalanche
and is trapped near the first site.

We calculate the time evolution within t ∈ [0, 100], which
is sufficient for examining the long time behavior of the evolu-
tion. We discuss the weak and strong disorder potential cases
separately as follows.

(i) At weak disorder potential W � J , Figs. 14(a)–14(h)
show the late time behavior of the model with different (N, M )
(with W = 0 in the left panels and W = 1 in the right panels),
where we vary μ ∈ [0, 25] while fixing J = 10. The black
solid line in each panel shows the long-time mean value
〈n1〉 of the fermion number n1(t ) in the late time window
t ∈ [50, 100]. The yellow shaded region shows the range of
fluctuation of n1(t ) in the time window t ∈ [50, 100], which
has boundaries at 〈n1〉 ±

√
〈δn2

1〉, where
√

〈δn2
1〉 is the root

mean square of the fluctuation δn1(t ) = n1(t ) − 〈n1〉. The
model parameters are given in each panel.

The most prominent feature is, regardless of the values of
N and M, the long-time mean value 〈n1〉 shows a transition
around μ = 5 or μ/J = 1/2, which is exactly the transi-
tion point we expected in Eq. (48). On the μ/J > 1/2 side,
the mean value 〈n1〉 curve is (mostly) smoothly approach-
ing 1 as μ grows, with the fluctuation

√
〈δn2

1〉 becoming
smaller and smaller. This is the expected dielectric behavior
before breakdown, since the fermion is frozen on the first
site when μ → ∞. The behavior of μ/J < 1/2 side depends
on N/M (for total fermion modes NM around 25 ∼ 30). In
Figs. 14(a)–14(d) where N/M < 1, the value 〈n1〉 shows oscil-
lations with respect to μ. A special case is (N, M ) = (3, 10)
with disorder potential W = 1 in Fig. 14(b), where 〈n1〉 shows
a sharp transition from intense oscillation to no oscillation
as μ/J crosses 1/2. In contrast, in Figs. 14(e)–14(h) with
N/M � 1, 〈n1〉 is nearly zero, consistent with our expecta-
tion for the breakdown phase. This is the most obvious in
the (N, M ) = (7, 4) case with disorder potential W = 1 in
Fig. 14(h), where 〈n1〉 show a clear transition from almost
zero to nonzero at μ/J = 1/2. Hereafter, we call μ/J > 1/2
the dielectric regime, and μ/J < 1/2 the breakdown regime.

(ii) At strong disorder potential W � J , due to MBL ir-
respective to N/M (Sec. V B), the breakdown transition is
absent, and long-time mean value 〈n1〉 does not reach 0 at any
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FIG. 14. The long-time (t ∈ [50, 100]) mean value (solid lines)
and range of fluctuation (yellow shaded regions) of the number of
fermions n1 on site m = 1 for the initial state in Eq. (50), as a
function of chemical potential μm = μ. The parameters are given in
the panels. The vertical dashed line in (a)–(h) (for which W � J)
shows the position where μ/J = 1/2, while the vertical dashed line
in (i) and (j) (for which W � J) shows the position where μ/W = 1.

μ. However, a sharp crossover of the behavior of 〈n1〉 can be
observed around μ/W = 1, as shown in Figs. 14(i) and 14(j),
where (N, M ) = (7, 4) and W � J . The irregular oscillation
of 〈n1〉 on the μ < W side indicates the fermions are only
weakly localized around site m = 1 and can fluctuate, while
〈n1〉 ≈ 1 on the μ > W side indicates the fermion is strongly
localized within site m = 1. Such a crossover between weak
and strong localization is in consistency with our expectation
in Eq. (49). Note that such a behavior is analogous to the
N = 3 model with weak disorder 0 < W � J in Fig. 14(b),
except that the crossover points are different.

We now investigate the time evolutions more closely by
examining nm(t ) as a function of time t . Since our calculation
is in the charge Q = 3M−1 sector, we have

M∑
m=1

nm(t )

3m−1
= Q

3M−1
= 1. (52)
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FIG. 15. The number of fermions nm(t )/3m−1 on site m as a func-
tion of time t , for (N, M ) = (3, 10) with the initial state in Eq. (50).
n1(t ) is highlighted as the thick solid lines. The parameters are given
at the top of each panel [the same HI and Hdis as Figs. 14(a) and
14(b)].

The N = 3 case is relatively special compared to the N > 3
cases, due to its almost analytically solvable nature. Figure 15
shows nm(t )/3m−1 in the (N, M ) = (3, 10) case, where n1(t )
is highlighted as the thick solid lines. When W = 0, the dif-
ference between μ/J < 1/2 and μ/J > 1/2 is not significant,
both having 〈n1〉 far from zero, as Fig. 14(a) implies. In both
examples of μ/J = 0.4 and μ/J = 0.6 in Figs. 15(a) and
15(b), nm(t )/3m−1 show persistent quasi-periodic oscillations
with t . This can be understood by noting that the initial state in
Eq. (50) is in either the Krylov subspace without blocking in
Eq. (16) or the one-dimensional Krylov subspaces in Eq. (26)
in the Q = 3M−1 sector of the N = 3 model with W = 0,
which is equivalent to a tight-binding model with a single
effective particle [Eq. (17)] and thus show no sharp changes
as μ/J varies. When a finite disorder potential W = 1 is
added, the μ/J > 1/2 side remains qualitatively unchanged.
The μ/J < 1/2 side, however, is significantly altered, which
develops a strong irregular dependence on chemical potential
μ [see Fig. 14(b)]. Figures 15(c) and 15(d) show two examples
with W = 1 at μ/J = 0.4 and μ/J = 0.435, respectively. In
Fig. 15(c), the oscillation in n1(t ) is suppressed by the disorder
potential W [compared to Fig. 15(a)]. In Fig. 15(d) [note the
range of t plotted is different from Figs. 15(a)–15(c)], not
only the short period oscillation in n1(t ) is not suppressed,
but also a persistent long period oscillation arises. The under-
lying mechanism of such behaviors remains to be understood,
but these oscillations clearly indicate the absence of thermal
equilibrium in the N = 3 model.
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FIG. 16. The number of fermions nm(t )/3m−1 on site m as a func-
tion of time t , for (N, M ) = (7, 4) with the initial state in Eq. (50).
n1(t ) is highlighted as the thick solid lines. The parameters are given
on top of each panel [the same HI and Hdis as Fig. 14(g)].

The N > 3 cases do not show significant differences be-
tween disorder strength W = 0 and 0 < W � J , except that
〈n1〉 in the breakdown regime μ/J < 1/2 is generically
smaller when 0 < W � J , as Fig. 14 shows. We therefore only
discuss the W = 0 case here. In Fig. 16, we plot the time evo-
lution of nm(t )/3m−1 for (N, M ) = (7, 4) with W = 0, where
μ/J is 0.4, 0.5 and 0.6 in Figs. 16(a)–16(c), respectively. It is
clear that n1(t ) decays to zero in the breakdown regime μ/J <

1/2, and tends to certain oscillations around a nonzero value
in the dielectric regime μ/J > 1/2. We note that even if the
(N, M ) = (7, 4) model is quantum chaotic as indicated by its
Wigner-Dyson LSS (see Fig. 13), the dielectric regime μ/J >

1/2 shows persistent oscillations in fermion densities and does
not thermalize. In the W � J case, 〈n1〉 shows oscillations
depending irregularly on μ when μ < W [as Figs. 14(i) and
14(j) indicates], similar to the N = 3 case in Figs. 15(c)
and 15(d).

Based on the above observations, we conjecture that, at
weak disorder potential W � J , when both N and M are
large enough, irrespective of the ratio M/N , the breakdown
transition happens robustly at μ/J = 1/2, which is signaled
by whether n1(t ) tends to zero at large t . This is because
the breakdown picture only requires sufficiently large num-
ber of fermion modes in the subsequent sites. However, we
expect the breakdown phase to have a difference between
M/N > 1 and M/N < 1. When M/N > 1, our earlier analysis
in Sec. V A implies that the system shows 1D MBL with a
localization length around N , so we expect the fermion to
spread only by a length around N sites in the breakdown
regime. Since we expect this MBL to behave as a chaotic
quantum dot within a localization length N , we expect a local
thermal equilibrium within the length N is reached. We call
such a phase a local breakdown. When M/N < 1, the model
is globally quantum chaotic within a charge Q sector, so we
expect the spreading of the fermion to approach a global
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FIG. 17. The conjectured phase diagram of the quantum break-
down model at large N and M, where (a) is at weak disorder potential
(W � J), as a function of μ/J and M/N ; and (b) is at strong disorder
potential (W � J), as a function of μ/W and M/N .

thermal equilibrium in the breakdown regime, and we call
this phase a global breakdown. At strong disorder potential
W � J , we expect there is no breakdown for any M/N .

Our conjectures above are summarized into phase dia-
grams of the quantum breakdown model at large N and M, as
shown in Fig. 17. At weak disorder potential W � J , a tran-
sition between the dielectric phase and the breakdown phase
happens at μ/J = 1/2 irrespective of M/N . When M/N � 1
(the 1D limit), the system is in an MBL phase, and only local
breakdown within order N sites near the initial perturbation
can happen when μ/J < 1/2. When M/N � 1 (the 3D limit),
the system is quantum chaotic (with quantum scar states in
certain charge Q sectors), and a global breakdown in the
entire space is expected when μ/J < 1/2. At strong disorder
potential W � J , the model is persistently in the MBL phase,
where the localization is weak when μ/W < 1, and strong
when μ/W > 1.

VII. DISCUSSION

We have shown evidences that our quantum breakdown
model exhibits a crossover from MBL to quantum chaos at
small disorder W as M/N decreases across 1, and persistent
MBL at large disorder W . Accordingly, it undergoes a tran-
sition from dielectric to breakdown as μ/J decreases across
1/2, and shows no breakdown when W � J , which are sum-
marized in the phase diagrams of Fig. 17. At N = 3 and with
disorder potential W = 0, the model exhibit a Hilbert space
fragmentation into exponentially many Krylov subspaces, and
is exactly solvable except for very few Krylov subspaces in
certain charge Q sectors. The solution indicates features of
MBL. Remarkably, the MBL features can occur in the ab-
sence of any translational symmetry breaking randomness,
namely, when μm = μ, Ji jk

m,l = J are all uniformly constant
and W = 0. The MBL is robust against a nonzero disorder
potential W > 0. We note that our model show rather distinct
features (the local and global breakdown, etc.) compared to
the interacting Wannier-Stark type models [17–22], although
both are describing particles in an electric field. This is be-
cause our underlying settings are different: in our setup, the
electrons do not feel the electric field until they are ionized
from the atoms. For generic (N, M ) with W = 0, we also
show that a many-body scar flat band of quantum scar states
exists in many charge Q sectors, the origin of which can be
understood as the many-body generalization of the line-graph

tight-binding models such as the Lieb lattice and kagome
lattice models [51–54]. It will be intriguing to generalize this
idea to construct more interacting models with many-body flat
bands or quantum scar states.

The N = 3 quantum breakdown model, as an almost ex-
actly solvable MBL model at W = 0 as we demonstrated, may
allow one to further explore analytically the MBL quantum
dynamics, conserved quantities and quantum entanglement
[57–61], in contrast to many MBL models such as the disor-
dered magnetic field XXZ model [12–16] which heavily relies
on many-body numerical calculations. Perturbation analysis
on the N = 3 model may give a deeper understanding to the
quantum avalanche transition from MBL to thermal states
studied recently [62–68]. For the N > 3 models, it may also
be possible to find exact or almost exact solutions for certain
nonrandom interactions, which may provide more insights
to the phase diagram we conjectured in Fig. 17. For N > 3
with random interactions, Hilbert space fragmentation into
degenerate Krylov subspaces may still exist, as indicated by
the enormous fractal-like degenerate levels other than the
many-body scar flat band in the N = 4 case in Fig. 8(a).

In the large N limit, with random interactions satisfying
Eq. (8), it is possible to study our quantum breakdown model
using the large N expansion techniques of the SYK models
[8–11]. It would be particularly interesting to investigate the
MBL to chaos crossover and breakdown transition we conjec-
tured in Fig. 17 in this SYK limit. This is, however, beyond
the scope of this paper, and will be studied in a separate future
paper. Nevertheless, we make a few general observations here.
This SYK limit of our model is obviously different from the
previous SYK dot lattice models with spatially symmetric in-
teractions (upon random average) [69–73]. In our model, one
expect the quantum chaos and scrambling to develop towards
a fixed direction, in analogy to the chiral SYK models [74,75]
and generic chaotic chiral models [76,77], although our model
here is not chiral as a lattice model. The conserved charge
Q in our model is also very different from the on-site U(1)
charge in complex SYK models [78]. Moreover, one expects
a richer phase diagram in the SYK limit of our model. A
1/N expansion may be required for investigating the MBL to
chaos crossover with respect to M/N . We do note that MBL
was studied before in SYK models with spatially symmetric
interactions [72].

Since the breakdown phenomenon is the essential mech-
anism (for converting microscopic signals into macroscopic
signals) in many quantum measurement devices such as the
Geiger counter, we also anticipate that our quantum break-
down model may provide more insights to the understanding
of quantum measurement process. In fact, we noticed that
most recently Refs. [55,56] has independently studied a spin
model in a Bethe tree lattice with similar asymmetric interac-
tions, to simulate the avalanche from a microscopic quantum
state into Schrödinger cat states in a quantum measurement.
Their model also shows Poisson LSS and Hilbert space frag-
mentation analogous to our model in the MBL limit, and they
observed recurrence in the out-of-time-order correlator [56].

Our quantum breakdown model further allows a variety
of directions of generalizations. First, the number of fermion
modes N on each site can be generalized to a site-dependent
number Nm, which allows one to more freely change the

115171-19



BIAO LIAN PHYSICAL REVIEW B 107, 115171 (2023)

geometry of the “dielectric gas container”. In this case, the
formula for the many-body scar flat band degeneracy in
Eq. (42) simply changes through the substitutions Cnm

N → Cnm
Nm

and hnm−1,nm → Cnm−1
Nm−1

Cnm
Nm

. Secondly, one could assume certain
spatial structure within each layer of dielectric gas in Fig. 1(a),
such that the interaction Ji jk

m,l only acts among nearby fermions,
generalizing the model into higher spatial dimensions. An
example of such generalized lattices is the Bethe tree studied
in Refs. [55,56]. Moreover, the model can be generalized to
a wide class of models of fermions, bosons or spins with
different types of asymmetric interactions, which may give
rise to a rich variety of nonequilibrium phenomena. It will
also be useful to investigate the effect of adding bilinear inter-
site fermion hopping terms to our model, allowing a fermion
to move without creating additional fermions. Such hopping
terms break the conserved charge Q, which complicates the
model and requires theoretical or numerical methods beyond
this work. However, it is possible that such bilinear hopping
terms will not destabilize the MBL or the breakdown phases in
the presence of disorder W . This is because, such a model in-
terpolates between the Anderson localization phase (nonzero
hopping and zero interaction) and the MBL phase studied in
this paper (zero hopping and nonzero interaction). Another
interesting question is whether our Hermitian quantum break-
down model can be related to the non-Hermitian effective
quantum models of breakdown [23,24] in certain limit. We
leave the studies of these questions to the future.
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APPENDIX A: REDUCED ENTANGLEMENT ENTROPY
IN THE ROTATED BASIS OF THE N = 3 MODEL

For the N = 3 model at disorder potential W = 0, Fig. 18
shows a comparison between the entanglement entropy from
ED calculation in the original fermion basis cm,l in Eq. (2)
and that in the rotated basis fm,l in Eq. (13) (where only the
first fermion mode can move rightward via interaction). The
parameters are the same as those in Fig. 5. In the rotated fm,l

basis, a disorder potential Hdis = ∑M
m=1

∑N
i νm,i f †

m,i fm,i with√
〈ν2

m,i〉 = 10−6 is added. As a result, the eigenstates in the
rotated fm,l basis are pinned within each Krylov subspace
we discussed in Sec. III, thus all the states show low en-
tanglement entropy no larger than ln 2. This reflects the fact
that the model in each Krylov subspace is equivalent to a
single particle tight-binding model, which has entanglement
entropy at most ln 2. This also implies that the seemingly high
entanglement entropy in the original cm,l basis is because the
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FIG. 18. For (N, M ) = (3, 10) at disorder potential W = 0, the
entanglement entropy of the first �M/2� sites calculated in the origi-
nal fermion basis cm,l in Eq. (2) (the left panels) and the rotated basis
fm,l in Eq. (13) (the right panels in the same row). The interaction
strength is J = 10. In the rotated basis, a small disorder poten-
tial Hdis = ∑M

m=1

∑N
i νm,i f †

m,i fm,i with
√

〈ν2
m,i〉 = 10−6 is added, to

pin the eigenstates into the Krylov subspace basis we discussed in
Sec. III. The parameters of the first, second, third rows are the same
as those of the first, second, third rows in Fig. 5, respectively.

ED arbitrarily chooses a high-entanglement basis within each
degenerate subspace, which are superposition of different de-
generate Krylov subspaces.

APPENDIX B: THE INTERACTION BETWEEN
SUBSYSTEMS IN ARBITRARY CHARGE Q SECTORS

OF THE N = 3 MODEL

This Appendix is to supplement our discussion in
Sec. III C 2, to write down more explicitly the interaction be-
tween neighboring subsystems in certain Krylov subspaces of
an arbitrary charge Q sector of the N = 3 model with W = 0
given in Eq. (13).

Following the notations defined in and below Eq. (32), each
charge Q uniquely corresponds to a reference configuration
{n0

m} with 0 � n0
m � 2, and m f ,p is the pth site with n0

m > 0
(1 � p � MQ). Generalizing Eq. (21), we define the following
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Fock state basis |{ms,p}, {mb,p}, {s j
m}〉 in a generic charge Q

sector:∣∣{ms,p}, {mb,p},
{
s j

m

}〉
=

MQ∏
p=1

(
f †
ms,p,s1

ms,p

ms,p∏
m=mb,p+1

f †
m,2 f †

m,3

×
mb,p∏

m=m f ,p+1

f †
m,s1

m
f †
m,s2

m

nm f ,p∏
j=2

f †
m f ,p,s

j
m f ,p

)
|0〉, (B1)

where we restrict the blocking sites mb,p and spreading sites
ms,p to satisfy

m f ,p � mb,p � ms,p � m f ,p+1, (B2)

and we always fix

s1
mb,p

= 1, (B3)

which is necessary for defining mp
b as a blocking site. In

addition, for the state we defined in Eq. (B1) to be nonzero,
we require s1

ms,p
= 1 whenever ms,p > m f ,p, and s2

mnz
p

= 2 or 3.

All the other indices s j
m can generically take values 1, 2, or 3

(distinct for the same m).
In this representation, each Krylov subspace is labeled by

{mb,p}, {s j
m} for a given charge Q sector (i.e., given {m f ,p}).

The action of the Hamiltonian in each Krylov subspace can
be generically written down as

H
∣∣{ms,p}, {mb,p},

{
s j

m

}〉 = (Hhop + Hb-int )
∣∣{ms,p}, {mb,p},

{
s j

m

}〉
,

(B4)

where Hhop is a part that can be viewed as hoppings of a
noninteracting tight-binding model:

Hhop

∣∣{ms,p}, {mb,p},
{
s j

m

}〉 =
MQ∑

p′=1

[
δs1

ms,p′ ,1
(
ϑms,p′−mb,p′−1+δmb,p′ ,m f ,p′

Jms,p′ −1

∣∣{ms,p − δp,p′ }, {mb,p},
{
s j

m

}〉

+ ϑm f ,p′+1−ms,p′ −1Jms,p′
∣∣{ms,p + δpp′ }, {mb,p},

{
s j

m

}〉) + Vms,p′
∣∣{ms,p}, {mb,p},

{
s j

m

}〉]
, (B5)

where ϑm is the integer variable Heaviside function de-
fined in Eq. (15), Jm is defined in Eq. (6), and Vm =∑M

m=1 μmnm with nm being the site m number of fermions of
state |{ms,p}, {mb,p}, {s j

m}〉. Equation (B5) is nothing but the

generalization of Eq. (23), namely, an effective tight-binding
Hamiltonian for some effective particles on sites ms,p within
subregions m f ,p � ms,p < m f ,p+1. The term Hb-int is a bound-
ary interaction term

Hb-int

∣∣{ms,p}, {mb,p},
{
s j

m

}〉 =
MQ∑

p′=2

(
δms,p′−1,m f ,p′ δnm f ,p′ ,3

Jm f ,p′ −1

∣∣{ms,p − δp,p′−1}, {mb,p},
{
s j

m

}〉

+ δms,p′−1,m f ,p′ −1δnm f ,p′ ,0
Jm f ,p′ −1

∣∣{ms,p + δp,p′−1}, {mb,p},
{
s j

m

}〉)
, (B6)

where nm f ,p′ in the delta functions δnm f ,p′ ,3
and δnm f ,p′ ,0

is the number of fermions on site m f ,p′ of the state
|{ms,p}, {mb,p}, {s j

m}〉. This dependence on the number of
fermions nm f ,p′ makes Eq. (B6) an interaction term for
the effective particles located at sites ms,p, although it is
confined to the boundary sites m f ,p′ . Note that if mb,p′ >

m f ,p′ , the fermion number nm f ,p′ cannot be changed by
fermions on the right of site m f ,p′ , and one will always have
δnm f ,p′ ,3

= δms,p′−1,m f ,p′ , and δnm f ,p′ ,0
= δms,p′−1,m f ,p′ −1, in which

case Eq. (B6) becomes a free term for the effective particles
on sites ms,p as an additional part of Eq. (B5). This interaction
between the (p′ − 1)th and p′th subsystems is only present
when n0

f ,p′ = 1 and the Krylov subspace has mb,p′ = m f ,p′ ,
making it a very weak interaction. This interaction is a hard-
core repulsion on site m f ,p′ between the two effective particles
on sites ms,p′−1 and ms,p′ , as is obvious from the fact that
ms,p′−1 = ms,p′ is forbidden.

APPENDIX C: ADDITIONAL ED RESULTS
FOR N > 3 MODELS

This Appendix shows more examples of ED calculations
in different charge Q sectors of the N > 3 models.

Figure 19 show additional charge Q sectors of the models
with N = 3, 4, 5, and 7 and the largest M calculable, as a
supplement to Figs. 5 and 7–9 in the main text (the same
system sizes). The detailed descriptions and parameters are
given in the caption. The results show the same trend as
the main text figures show, that the system tends to MBL
if M/N > 1 (with Poisson or semi-Poisson LSS and many
eigenstates with area law entanglement entropy, subject to
finite system sizes), and behaves quantum chaotically when
M/N < 1 (with Wigner-Dyson LSS and most eigenstates with
volume law entanglement entropy).

The many-body scar flat band in a charge Q sector can be
immediately fixed into a localized eigenbasis when a small
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FIG. 19. ED calculation of more charge Q sectors of the models with N = 3, 4, 5, and 7 and the largest M calculable. The parameters
are labeled in the panels, where random interaction J = 10, the chemical potential is uniformly μm = μ = 1. The first and third columns are
the energy levels E (α) and their LSS in the insets. The second and fourth columns show the eigenstate entanglement entropy in subregion A
(the first �M/2� sites) for the energy spectra on their left (the darker the higher density of dots). The disorder potential is W = 10 in (a)–(d), to
show that the MBL behaviors in the M/N > 1 case remain robust when W is comparable to J . We set W = 0 in (e), (f), (i), (j), (m), and (n),
and W = 1 or 0.5 in (g), (h), (k), (l), (o), and (p).

disorder potential W is added, which breaks the degeneracy.
Figure 20 shows two examples of the eigenstate entanglement
entropies in the charge Q = 33 and Q = 30 sectors in the
(N, M ) = (7, 4) model. When a disorder potential W = 0.01
is added to the system, while the entanglement entropies
of most eigenstates are almost unchanged, the entanglement
entropy of the many-body scar flat band in the middle immedi-
ately drops significantly, indicating the real space localization
of the eigenbasis.

To test the MBL to chaos behavior crossover around
M/N ≈ 1, we further show in Fig. 21 the energy spectra
and LSS of smaller system sizes (N, M ) at W = 0, where

we always choose the Q = 3M−1 sector as an example. The
interaction is random with a strength J and chemical potential
is uniformly μm = μ = 1. One can clearly see a crossover
from Poisson to Wigner-Dyson LSS as M/N decreases
across 1, in consistency with an MBL to chaos behavior
crossover.

APPENDIX D: MORE ON THE CLASSICAL DEGENERACY
OF MANY-BODY SCAR FLAT BAND FOR M = 2 SITES

Here for the model with M = 2 sites, we give a theoretical
quantitative understanding of the dependence of the classical

115171-22



QUANTUM BREAKDOWN MODEL: FROM MANY-BODY … PHYSICAL REVIEW B 107, 115171 (2023)

-40 -20 0 20 40

E( )

0

1

2

3

S
A
(

)

µ  =1, random J=10, W=0m

N=7, M=4, 
Q=33

-40 -20 0 20 40

E( )

0

1

2

3

S
A
(

)

µ  =1, random J=10, W=0.01m

N=7, M=4, 
Q=33

(a) (b)

(c) (d)

-40 -20 0 20 40 60

E( )

0

1

2

3

4
S

A
(

)

µ  =1, random J=10, W=0.01m

N=7, M=4, 
Q=30

-40 -20 0 20 40 60

E( )

0

1

2

3

4

S
A
(

)

µ  =1, random J=10, W=0m

N=7, M=4, 
Q=30

FIG. 20. Changes of the eigenstate entanglement entropy of the
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degeneracy d0
2 of many-body scar flat band on N as we showed

in Figs. 11(d)–11(f). In particular, a transition is observed
between N = 28 and 29 in Fig. 11: for N � 28, most charge
Q sectors have a many-body scar flat band, while for N � 29,
only charge sectors with Q close to 0 and 4N have a many-
body scar flat band. We explain these two regimes in two
sections below, respectively.

By Eq. (40), classical degeneracy d0
2 (n1, n2) is given by

d0
2 (n1, n2) = hn1,n2 − hn1+1,n2−3 − hn1−1,n2+3, (D1)

where hn1,n2 = Cn1
N Cn2

N . We first note that for M = 2, the num-
ber of fermions n2 on site m = 2 can be represented by charge
Q and the number of fermions n1 on site m = 1 as

n2 = Q − 3n1. (D2)

Therefore we can express hn1,n2 as a function of Q and n1 as

hn1,n2 = hn1,Q−3n1 = Cn1
N CQ−3n1

N

= N!2

n1!(N − n1)!(Q − 3n1)!(N − Q + 3n1)!
. (D3)

We now examine the condition for a positive classical degen-
eracy d0

2 > 0.

1. Small N

As an approximation, as long as N is not too small, we
can regard ln hn1,Q−3n1 as a continuous function of n1. The
reason to take a log is because hn1,Q−3n1 can change by several

0 50 100 150

-20

0

20

40

E
(

)

N=4, M=4

0 5

E

p(
E
)

0 1000 2000 3000
-40

-20

0

20

40

60

E
(

)

N=9, M=3

0 0.02

E

p(
E
)

0 500 1000 1500
-20

0

20

40

E
(

)

N=8, M=3

0 0.05

E

p(
E
)

0 500 1000

-20

0

20

40

E
(

)

N=5, M=4

0 0.1

E

p(
E
)

0 500 1000

-20

0

20

40

E
(

)

N=4, M=5

0 1 2

E

p(
E
)

0 2000 4000 6000
-40

-20

0

20

40

E
(

)

N=4, M=6

0 2
E 10-4

p(
E
)

0 2000 4000
-40

-20

0

20

40

60
E

(
)

N=6, M=4

0 0.05

E
p(

E
)

0 200 400 600 800

-20

0

20

40

E
(

)

0 0.2 0.4

E

p(
E
)

N=7, M=3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 21. The energy spectrum E (α) (from low to high) and LSS
(the insets) of various small system sizes (N, M ) (see values in the
panels, with NM ≈ 16 ∼ 27) with W = 0, where the charge sector is
always Q = 3M−1, the interaction is random with interaction strength
J = 10, and the chemical potential is uniformly μm = μ = 1. The
LSS shows a clear crossover from Poisson to Wigner-Dyson as M/N
decreases across 1.

orders of magnitude as a function of n1. For a fixed charge
Q, we can approximate the classical degeneracy d0

2 (n1, n2) =
d0

2 (n1, Q − 3n1) in Eq. (D1) by Taylor expansion as

d0
2 (n1, Q − 3n1) ≈ hn1,Q−3n1

[
−d2 ln hn1,Q−3n1

dn2
1

−
(

d ln hn1,Q−3n1

dn1

)2

− 1

]
. (D4)
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By a straightforward calculation, we find

d ln hn1,Q−3n1

dn1
≈ ln(N − n1) − ln n1

+ 3 ln(Q − 3n1) − 3 ln(N − Q + 3n1)
(D5)

and

d2 ln hn1,Q−3n1

dn2
1

≈ − 1

N − n1
− 1

n1

− 9

Q − 3n1
− 9

N − Q + 3n1
. (D6)

In order to obtain a positive classical degeneracy d0
2 in

Eq. (D4), we should have
d2 ln hn1 ,Q−3n1

dn2
1

< 0, and at the same

time
d ln hn1 ,Q−3n1

dn1
as close to zero as possible. Numerically, it

can be shown that
d ln hn1 ,Q−3n1

dn1
= 0 when

n1 ≈ Q

4
, (D7)

at which one has

d2 ln hn1,Q−3n1

dn2
1

≈ −40

(
1

Q
+ 1

4N − Q

)
. (D8)

Note that Eq. (D7) implies n2 = Q − 3n1 ≈ Q/4. Therefore
we estimate the largest classical degeneracy d0

2 is reached
around the fermion number configuration n1 ≈ n2 ≈ Q/4, es-
timated by the formula

d0
2 (Q) ≈ hn1,Q−3n1

[
40

(
1

Q
+ 1

4N − Q

)
− 1

]
. (D9)

It is easy to see that d0
2 is minimal when Q = 2N (note that

0 � Q � 4N). Therefore, if d0
2 > 0 in the Q = 2N sector, we

would expect almost all (not all because this estimation is very
crude) charge Q sectors to have a many-body scar flat band.
Since

d0
2 (Q = 2N ) ≈ hn1,Q−3n1

(
40

N
− 1

)
, (D10)

which is positive only if N < 40, we conclude that the cri-
terion for having many-body flat band in almost all charge
Q sectors is N � 40. In the actual numerical calculation in
Figs. 11(d)–11(f), this criterion is N � 28, which is reason-
ably not far from our crude estimation.

2. Large N

As we have shown above, for large N [N � 29 from numer-
ical calculation in Figs. 11(d)–11(f)], the many-body scar flat
band will not occur in most charge Q sectors. However, here
we show that there is always a many-body scar flat band when
Q is close enough to 0 or 4N . Since the classical degeneracy
in Eq. (D1) is symmetric between Q and 4N − Q, we only
consider small Q here.

The proof is easy by noting that the configuration
(n1, n2) = (0, Q) always has a positive classical degeneracy
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FIG. 22. [(a)–(d)] The comparison between the classical degen-
eracy d0

M (blue dots) from Eq. (47) and quantum degeneracy dM (red
circles) in ED, for (N, M ) = (4, 4) and (N, M ) = (5, 3), respectively.
The parameters are μm = μ = 1, random interaction strength J =
10, and W = 0. [(e) and (f)] The energy spectrum of two example
charge sectors in the (N, M ) = (5, 3) model, which has two and one
many-body scar flat bands (red), respectively.

d0
2 at sufficiently small Q. By Eq. (D1), one has

d0
2 (0, Q) = h0,Q − h1,Q−3

= CQ
N

[
1 − NQ(Q − 1)(Q − 2)

(N − Q + 1)(N − Q + 2)(N − Q + 3)

]

≈ CQ
N

(
1 − Q3

N2

)
. (D11)

Therefore, at large N , when Q < N2/3, there is always a
many-body scar flat band with fermion number configuration
(n1, n2) = (0, Q). Similarly, when Q > 4N − N2/3, there is
always a many-body scar flat band with fermion number con-
figuration (n1, n2) = (N, Q − 3N ).

APPENDIX E: ADDITIONAL RESULTS FOR MANY-BODY
SCAR FLAT BAND WITH M > 2 SITES

In Fig. 22, we provide additional ED results as a supple-
mentary to the main text Fig. 12. Figures 22(a)–22(d) show the
comparison between the quantum degeneracy dM and classical
degeneracy d0

M [calculated by Eq. (47)] of many-body scar
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flat band in all the charge Q sectors, where the system sizes
are (N, M ) = (4, 4) and (N, M ) = (5, 3), respectively. Again,
the difference between dM and d0

M is zero in most charge Q
sectors, and small compared to dM in all the charge Q sectors.

In addition, we show a very rare charge Q sector example
in Fig. 22(e) which has two many-body scar flat bands, in
contrast to most charge Q sectors which has only one many-
body scar flat band [e.g., Fig. 22(f)].
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Z. Papić, Quantum scarred eigenstates in a rydberg atom chain:
Entanglement, breakdown of thermalization, and stability to
perturbations, Phys. Rev. B 98, 155134 (2018).

[33] S. Choi, C. J. Turner, H. Pichler, W. W. Ho, A. A. Michailidis,
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