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Electrostatic screening in a wire medium
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We extensively study screening in anisotropic artificial media formed by arrays of parallel metal wires both
analytically and experimentally. Our findings show that the electrostatic potential distribution produced by probe
charge is spherically symmetrical in the vicinity of the source. We also derive a boundary condition for the
wire medium and confirm its validity experimentally. Despite the finite dimensions of the wire arrays, the field
symmetry near the charge remains unaffected, but a local maximum potential is produced at the boundary. The
screening depth of the wire medium is determined by its geometrical parameters and is proportional to the
plasma frequency, which leads us to propose an experimental method for defining plasma frequency through
static E-field measurement.
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I. INTRODUCTION

It is widely appreciated that static dielectric screening leads
to substantial modification of Coulomb interaction potential
in nanostructured and low-dimensional media. Probably one
of the most famous examples is the Keldysh-Rytova potential
[1,2] emerging due to static dielectric screening in thin semi-
conducting film, which drastically affects electronic transport
and optical properties in low-dimensional materials such as
graphene and transition metal dichalcogenides [3,4]. Electro-
static screening also plays a crucial role in nanostructured
media such as solutions, gels, and colloidal crystals [5–9].

At the same time, the idea that one can control transport
properties by the artificial engineering of electrostatic screen-
ing is relatively new, and has so far been mostly developed in
the context of two-dimensional materials and van der Waals
heterostructures. This is rather surprising, since the meth-
ods to control dynamical fields, electromagnetic radiation by
nanostructuring, have been thoroughly explored, which lead
to the emergence of the now-established area of metamaterials
[10,11].

In this article, we will consider an electrostatic response of
paradigmatic metematerial wires—a so-called wire medium
[12]. This is an artificial material formed by long parallel
metal wires periodically arranged in a square grid [Fig. 1(a)].
In the long wavelength limit the dielectric permittivity tensor
of the wire medium is nonlocal and diagonal with components
given by [13]

ε(ω, kz ) = diag

[
1, 1, 1 − k2

p

k2
0 − k2

z

]
, (1)

where k0 = ω/c is the free space wave vector; kp is the
effective plasma wave vector, which is defined by the meta-
material geometry; z is the direction of the wires; and kz is
a component of the wave vector along the wires. As it can
be seen, the permittivity tensor is uniaxial, which reflects the
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highly anisotropic geometry of the wire medium. Notably, it
has been recently shown that in the electrostatic limit ω0 = 0,
the effect of the wire medium results in the spherically sym-
metrical screening of the Coulomb potential. Namely, it has
been shown [14] that potential φ(r) created by the charge Q is
given by

φ(r) = Qe−kpr/r, (2)

coinciding with the screened Coulomb potential in isotropic
plasma. For this reason, the wire medium has properties
similar to those of plasma systems, namely, the potential is
described by the Yukawa formalism [15]. Yukawa screening
is a phenomenon in which the electric field produced by a
charged particle is attenuated as it passes through a medium.
This attenuation is caused by the interaction of the electric
field with the medium, which contains other charged particles
that can respond to the field. In our case, shielding is real-
ized via surface density of free electrons on the wires. The
shielding effect is important in understanding the behavior of
atoms in electric fields; particularly, it plays a role in con-
densed matter physics [16] and plasma physics [17], including
interaction between charged particles [18]. As is mentioned in
our manuscript, we proposed wire medium as a platform for
realization of artificial plasma with screening depth defined
by geometrical parameters. In particular, we validate a spher-
ically symmetrical potential profile experimentally and show
that the measurement of the electrostatic E field can be used
for precise determination of the effective plasma frequency.

II. FINITE LAYER APPROACH

While Eq. (2) may be adequate for the description of an
infinite wire medium, the finite size effects should definitely
substantially modify the shape of the potential. Indeed, the
wire medium is an ideal uniaxial conductor, and thus when a
probe charge is placed inside a wire medium, there should
emerge a surface charge suppressing the the electric field
inside the medium. At the same time, since the metamaterial
is conducting only along one direction, the field will not be
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FIG. 1. (a) Geometrical problem concerning an unbounded layer in the xy plane composed of wires with finite length. (b) Analytically
obtained potential distribution produced by the probe charge centered in the wire medium layer, dotted lines are boundaries. (c) Charge density
distribution inside the layer.

totally suppressed. In order to get the quantitative distribu-
tion of potential and electric field in a finite slab of wire
medium, one needs adequate boundary conditions (BC) for
the displacement and field at the wire edges. While there were
several suggestions for additional BC for the wire medium
surface [19,20] for electromagnetic fields, they cannot be
used in the electrostatic limit since they do not account for
the charge accumulation at the surface of the metamaterial
slab. We derive a BC which accounts for the surface charge
accumulation and check its validity experimentally. One of
the consequence of the surface charge accumulation is the
nonmonotonous profile of the potential produced by a point
charge, as shown in Fig. 1(b).

In order to obtain the expressions for the potential distri-
bution, we consider an infinite slab consisting of finite-length
wires. The slab thickness coinciding with the the wires length
is d . The z axis is aligned with the wires, and assumes that the
probe charge Q is placed in the center. To find the potential
distribution we need to solve the Poisson equation

div[ε̂∇rφ(r, r′)] = 4πQδ(r − r′), (3)

where ε̂ = 1 equals 1 for |z| > d/2 and is given by the Fourier
transform of Eq. (1) otherwise. The plasmonic wave vector kp

reads [21]

k2
p = 2π/a2

log(a/2πr0) + 0.5275
, (4)

where a is a period of the structure and r0 is the radius of the
wires.

We assume that the charge is inside the wire medium
and want to obtain the potential distribution in all space. We
first exploit the translational symmetry of the problem in the
xy plane and take the Fourier transform along the x and y
axes. The resulting one-dimensional differential equation can
be further solved separately in three regions, z > d/2, |z| <

d/2, z < −d/2. After applying the condition that the poten-
tial should decay at z → ±in f inity, we are left with four
unknown coefficients Aq, Bq,Cq, Dq corresponding to the po-
tential decaying exponentially in the outer regions, and two
amplitudes inside the wire medium. Therefore, one needs two
BC at each boundary to unambiguously define the potential. It
should be noted that unlike the electrodynamical case, there is
no additional wave inside the wire medium and thus additional
BC is not required. The first [eq. (5)] BC is the continuity
of the tangential components of the electric field, i.e., ∂φ/∂x

should be continuous at z = ±d/2. The second BC [Eq. (6)]
corresponds to the continuity of the normal component of the
electric displacement field.

E in
x,y(z = ±d/2) = Eout

x,y (z = ±d/2), (5)

Din
z (z = ±d/2) = Dout

z (z = ±d/2), (6)

where indexes in and out correspond to location inside and
outside the wire medium (WM) boundary, respectively. The
electric displacement field having the nonlocal nature of per-
mittivity is given by

Din
z =

∫ d/2

−d/2
dz′′ε̂zz(z − z′′)∂z′′φq(z′′, z′),

ε̂zz(z − z′) = 1

2π

∫
dkze

−ikz (z−z′ )εzz(k)

= δ(z − z′) − k2
p

2
|z − z′|, (7)

where ε̂zz(z − z′) is the Fourier transform of the z compo-
nent of Eq. (1), |z|, |z|′ < d/2. The Fourier transform can be
taken analytically, and the displacement can be algebraically
expressed via the unknown amplitudes. Due to the spatial dis-
persion of the medium, a charge of the same sign as the probe
charge is induced at the ends of the wires. The presence of
such a surface charge density forces us to write the boundary
condition in the form of Eq. (6), where the presence of induced
charges on the interface of the medium is taken into account
in the vector D, and since there are no external charges at the
ends of the wires, the normal component of the field D must
be continuous.

In order to find the distribution of potential, it is convenient
to write explicitly partial waves which are produced by the
probe charge and boundaries in the ansatz:

φin = 2πQ
∑
kx,ky

eikx (x−x′ )eiky (y−y′ )·

×
[

e−|z−z′ |κ

κ
+ Aq(kx, ky)e−κz + Bq(kx, ky )eκz

]
,

φ
up
out = 2πQ

∑
kx,ky

eikx (x−x′ )eiky (y−y′ )Cq(kx, ky)e−q(z−d/2),

φdown
out = 2πQ

∑
kx,ky

eikx (x−x′ )eiky (y−y′ )Dq(kx, ky)eq(z+d/2), (8)
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where Aq, Bq,Cq, Dq are partial waves produced by bound-
aries and q2 = k2

x + k2
y is the in-plane wave vector,

κ2 = q2 + k2
p.

Using this ansatz and the material property [Eq. (7)]
of wire medium, we can rewrite both boundary conditions
as

e−dκ/2 + κAe−κd/2 + κBκd/2 = κC,

e−dκ/2 + κBe−κd/2 + κAeκd/2 = κD,

Aκe−κd/2 − Bκeκd/2 + e−κd/2 + k2
p

κ
(A + B)sh(κd/2) − k2

pd

2
(Aeκd/2 + Be−κd/2) + k2

p

κ2
[1 − (1 + κd/2)e−κd/2)] = qC,

Aκeκd/2 − Bκe−κd/2 − e−κd/2 − k2
p

κ
(A + B)sh(κd/2) + k2

pd

2
(Ae−κd/2 + Beκd/2) − k2

p

κ2
[1 − (1 + κd/2)e−κd/2)] = −qD.

Now we can find the Fourier transform for all amplitudes:

A = 1

κ

k2
p − e− 1

2 κd
[
κ
(
q + 1

2 k2
pd

) − q2
]

e− 1
2 κd

[
κ
(
q + 1

2 k2
pd

) − q2
] + e

1
2 κd

[
κ
(
q + 1

2 k2
pd

) + q2
] ,

B = A,

C = 1

κ

2
[
q2 + k2

pch
(

1
2κd

)]
e− 1

2 κd
[
κ
(
q + 1

2 k2
pd

) − q2
] + e

1
2 κd

[
κ
(
q + 1

2 k2
pd

) + q2
] ,

D = C. (9)

This allows to analytically solve the equation for the amplitudes and yields the final expression for the potential

φin(ρ, z, ρ ′, z′ = 0) = Qe−kp|r−r′ |

|r−r′| + Q
∫

dqJ0(q|ρ − ρ ′|) q

κ

[
2
{
k2

p − e− 1
2 κd

[
κ
(
q+ 1

2 k2
pd

) − q2
]}

e− 1
2 κd

[
κ
(
q + 1

2 k2
pd

) − q2
]+e

1
2 κd

[
κ
(
q + 1

2 k2
pd

) + q2
]
]

cosh(κz),

(10)

φ
up
out (ρ, z, ρ ′, z′ = 0) = Q

∫
dqJ0(q|ρ − ρ ′|) q

κ

2
[
q2 + k2

p cosh
(

1
2κd

)]
e− 1

2 κd
[
κ
(
q + 1

2 k2
pd

) − q2
] + e

1
2 κd

[
κ
(
q + 1

2 k2
pd

) + q2
]e−q(z−d/2). (11)

The expression is written for the particular case when the
probe charge is placed in the center of the slab (z′ = 0). The
results of Eqs. (10) and (11) are plotted in Fig. 1(b). As can be
seen, while in the bulk of the structure the potential of the fi-
nite slab almost coincides with that of the infinite structure, in
the vicinity of the boundary the potential is nonmonotonous,
with a local minimum close to the boundary and a local
maximum exactly at the boundary. The nonmonotonous be-
havior of the potential is due to the volumetric charge density
induced by the probe charge. Figure 1(c) shows charge density
distribution inside the layer obtained as ∇2φin(x, z, y = 0),
while ∇2φ

up,down
out (x, z, y = 0) = 0. As can be seen, a volumet-

ric charge of the opposite sign is concentrated in the region of
the probe charge, which provides shielding. The finite size of
the medium results in a significant influence of the boundaries
on the charge distribution within the layer, expressed as an
increase in the charge density near the boundary and a local
minimum in the middle. As a result, the electric field compo-
nent along the wires changes sign [Fig. 2(b)], caused by the
minimum of potential inside the layer [Fig. 2(a)].

III. EXPERIMENTAL MEASUREMENTS

The theoretical predictions have been validated experimen-
tally through the electric field measurements along and across

the wires. The static electric field meter �3 − 80 − E [22]
[Fig. 3(a)] was arranged as an asymmetric metal plate rotated
with a constant frequency around a certain axis. The stationary
metal disk was located below. Both parts were connected to
the signal amplifier. As a result, the modulated electrostatic
field was processed as an ac signal by an Ecophysics-110A

un
its

)

un
its

)

FIG. 2. (a) Electrostatic potential and (b) E field along the layer
depth. Potential experiences the local maximum at the boundary,
which leads to a reversal E-field [dashed line in (b)] far from the
probe charge. The blue lines are the infinite wire medium solutions.
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FIG. 3. Experimental details. (a) E-field meter interior; the rotating top and the stationary base are connected to the ac processing device.
(b) Measurement setup consists of the wire medium sample (a = 60 mm), a probe charge, a dc voltage source, and the E-field meter.
(c) Measured E field along and across the wires compared to theoretical results [Eq. (2)] for the best-fit parameter kp case [Eq. (12)].

device [22]. The resulting device measured the average E field
as |E| = √

E2
x + E2

z , where x − z is the rotational plane. The
absolute value of the E field is normalized by the reference
charges of the manufacturer. The instrumental error of the
device is claimed as ±15%. A three-dimensional (3D) scanner
was used to move the E-field meter.

The experimental sample is an array of 8 × 6 wires with a
length of 1 m [Fig. 3(b)] and radius r0 = 1 mm. The distance
between the adjacent wires was a = 60 mm. The wires were
attached to a wooden frame using thin plastic holders that
did not conduct electric current and showed a relatively small
ability to accumulate a surface charge. The source of the
electrostatic field was a metal ball with a radius of 10 mm with
a potential of 2 kV relative to the grounding of the device,
which was created by a constant voltage source [Fig. 3(b)].
The probe charge was placed in the center of the wire medium
and was taken as the origin of the coordinate system.

In the case of measurements along the wires E(z, x = 0) =
Ez, the component Ex is zero due to the symmetry of the
sample and the excitation. We also performed measurements
across wires E(x, z = 0) = Ex inside four unit cells sepa-
rately. In the last case, continuous movement is not possible
since the E-field meter has to cross the wires. In order to carry
out measurements in an adjacent cell, the device anchored on
the 3D scanner was removed from the sample, shifted behind
the wire, and placed back inside.

Figure 2(c) shows the experimentally obtained electric field
along and across the wires near the probe charge, which
appeared to be the same as theoretically proposed [14]. In
order to estimate the attenuation factor defined by the plasma
wave vector, we compare the analytical results for the given kp

with the measured E field in terms of minimum of normalized
deviation σ , as follows:

σ (kp) =
N∑

i=1

√[
Emeas(ri ) − Eth(ri, kp)

Eth(ri, kp)

]2

(12)

where Emeas is the measured value of the field at a distance of
ri from the probe charge, Eth is that given by ∇φ(ri, kp) from
Eq. (2). The parameter σ (kp) quantitatively shows how ana-
lytical E-field distribution with certain kp describes measured
data. The value of kp which corresponded to the minimum

σ (kp) was assumed as the resulting one. According to this
technique, we found kp parameters along and across the wires,
which values are equal 24.4 and 24.2 m−1, respectively. The
analytical value of Eq. (4), which depends only on geometrical
parameters, is 25 m−1.

At the next step we compared the measurement in the entire
spatial region E field (Fig. 4) along and across the wires set
with the analytically obtained ones. The results show that the
theoretical approach is fully confirmed by the measurements
across the wires direction [Fig. 4(a)]. In the direction along the
wires [Fig. 4(b)], the absolute value of the E field decreased
to the noise level of the measuring device (0.2 kV/m) and
increased from 220 mm to the boundary. Such a discrepancy
could be related both to the accuracy of the experiment and to
an unsuitable BC for a particular direction.

IV. PLASMA FREQUENCY EXTRACTION

The plasma frequency can be determined from the experi-
mentally obtained wave vector, fp = Ckp/2π , as 1.165 GHz,
which is in proper agreement with both theoretically obtained
1.196 GHz and numerically obtained 1.175 GHz. In the last

FIG. 4. E-field distribution obtained experimentally (a) across
and (b) along the wires. Solid and dashed lines are given by Eq. (10)
for layer thickness D = 570 and 1000 mm corresponding to the
sample size.
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case, the plasma frequency was calculated directly using the
CST Microwave Studio eigenmode solver as well as the full-
wave simulation.

It should be noted that the distance between the probe
charge and a measurement point is required to be given
precisely, which means that both parts are negligibly small.
However, in the experimental setup we measured the distance
between the surfaces of the charge and the E-field meter. In or-
der to compensate for the finite size of components, we added
the sum of the meter and the charge radii 27 mm to the dis-
tance. For verification, we carried out several measurements
with different initial distances and obtained relevant agree-
ment in results: 24.3, 24.8, and 24.3 m−1 for measurements
along the wires, and 24.2 and 25.3 m−1 for those across them.

V. CONCLUSION

In this article we have performed the measurements
of the electrostatic E field produced by a probe charge

immersed in a wire medium. We experimentally con-
firmed the spherically symmetrical potential profile in the
anisotropic medium. Moreover, for a 60 × 60-mm ar-
ray of 1-mm-thick wires we experimentally obtained the
plasma frequency of 1.165 GHz by electrostatic mea-
surements, which are in proper agreement with both the
theoretical (1.196 GHz) and numerical (1.175 GHz) ap-
proaches. Finally, the boundary condition in the finite slab
was theoretically predicted and experimentally demonstrated
to result in a nonmonotonous potential profile of the Coulomb
interaction.
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