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As a quantum-informative window into quantum many-body physics, the concept and application of the
entanglement renormalization group (ERG) have been playing a vital role in the study of novel quantum phases
of matter, especially long-range entangled (LRE) states in topologically ordered systems. For instance, by
recursively applying local unitaries as well as adding and removing qubits that form product states, the 2D
toric code ground states, i.e., the fixed point of Z2 topological order, are efficiently coarse-grained with respect
to the system size. As a further improvement, the addition and removal of 2D toric codes in the ground states
of the 3D X-cube model is shown to be indispensable and, remarkably, leads to well-defined fixed points of a
large class of fracton orders that are non-liquid-like. Here, we present a substantially unified ERG framework
in which general degrees of freedom are allowed to be recursively added or removed. Specifically, we establish
an exotic hierarchy of ERG and LRE states in Pauli stabilizer codes, where the 2D toric code and 3D X-cube
models are naturally included. In the hierarchy, LRE states like 3D X-cube and 3D toric code ground states
can be added or removed in ERG processes of more complex LRE states. In this way, a large group of Pauli
stabilizer codes are categorized into a series of state towers; within each tower, in addition to local unitaries
including CNOT (controlled-NOT) gates, lower LRE states of level-n are added or removed in the level-n ERG
process of an upper LRE state of level (n + 1), connecting LRE states of different levels and unveiling complex
relations among LRE states. As future directions, we expect this hierarchy can be applied to more general LRE
states, leading to a unified ERG scenario of LRE states and exact tensor-network representations in the form of
more generalized branching multiscale entanglement renormalization ansatz.
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I. INTRODUCTION

For the past few decades, the goal of classification and
characterization of quantum phases of matter has been in-
dispensably intertwined with surprisingly rapid progress on
many-body quantum entanglement [1–16]. This line of ef-
fort significantly reshapes modern many-body physics from
the emphasis of entanglement structure instead of local cor-
relation functions and local order parameters. For instance,
the topologically ordered ground states of, e.g., fractional
quantum Hall liquids [17], chiral spin liquids [18], the toric
code [19], and string-net models [20] have been identi-
fied as long-range entangled (LRE) states [9] that cannot
be adiabatically connected to (unentangled) product states
by local unitary (LU) transformations, i.e., disentanglers. In
contrast, short-range entangled states (SRE) can always be
connected to product states by LU transformations. In par-
ticular, symmetry-protected topological states (SPTs) [21],
e.g., the Haldane spin chain, are a special class of SRE
states in which all above-mentioned LU transformations in-
evitably break the global symmetry that protects SPT order.
Remarkably, a series of stabilizer code models realizing
topological orders are found to be fixed points of certain
entanglement renormalization group (ERG) transformations
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[4,5,7] that simultaneously lead to an efficient representa-
tion of the topologically ordered ground state in terms of
a tensor network, the multiscale entanglement renormaliza-
tion ansatz (MERA) [6–8]. The idea of ERG provides a
remarkable quantum-informative framework that significantly
revolutionizes the traditional real-space and momentum-space
renormalization-group treatments of quantum many-body sys-
tems and quantum field theory. More specifically, during the
process of ERG transformations, LU transformations and the
addition and removal of product states are recursively per-
formed, such that the number of qubits (i.e., the system size)
and short-range entanglement can be coarse-grained while the
long-range entanglement patterns (e.g., braiding and fusion
data of 2D anyon systems) stay unaltered.

Recently, the concept of ERG transformations has been
substantially advanced to unveil the quantum entanglement
structure and fixed points of fracton orders—an exotic class
of topologically ordered nonliquids [22–33]. In contrast to
pure topological orders (e.g., the fractional quantum Hall
states) that are liquid states, fracton orders are a kind of
non-liquid-like LRE states whose local Hamiltonians support
ground state degeneracy (GSD) that not only is locally in-
distinguishable (thus topologically ordered) but also grows
subextensively with respect to the system size. For example,
the GSD of X-cube model—the prototypical example of type-
I fracton order—on a 3-torus satisfies that log2GSD grows
linearly with the linear system size L [34]. Immediately, it has
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FIG. 1. Illustration of state towers that exhibit a hierarchy of
entanglement renormalization and long-range entangled states. For
concreteness, a class of Pauli stabilizer codes are studied, each of
which is labeled by four integers. [0,1,2,2], [1,2,3,3], and [0,1,2,3]
are, respectively, 2D toric code, 3D toric code and 3D X-cube mod-
els. |[· · · ]〉 refers to a ground state of a certain model (i.e., a state
in the stabilizer subspace, see Appendix B). There are a series of
state towers denoted by upward arrows, and along each arrow a
lower LREn state can be added or removed in the ERGn process of the
upper LREn+1 state as demonstrated in Eq. (1). To unify the notation,
SRE states (including unentangled product states) are symbolically
denoted as LRE0.

been discovered that, to consistently define quantum phases
and fixed points of fracton orders in the framework of entan-
glement renormalization, not only product states (i.e., SRE
states) but also pure topological orders (i.e., a kind of LRE
states) defined on lower dimensional space should be added
or removed, such that two X-cube ground states of different
system sizes can be adiabatically connected [22]. Despite the
success of such ERG generalization, whether or not there is a
much deeper mechanism towards a unified ERG framework is
yet to be investigated.

In this paper, through exactly solvable models, we present
a unified ERG framework via a hierarchical structure of ERG
as well as the associated LRE states, where the above ERG
transformations of original definition [4,5,7] and that of the X-
cube model [22] are naturally included. To be more specific, as
shown in Fig. 1, we construct ERG transformations for a series
of Pauli stabilizer code models [35] proposed in Ref. [36],
such that the models are fixed points of ERG transformations.
All models we will study in this paper are uniquely denoted
by four integers, i.e., [dn, ds, dl , D], where a subset labeled
by [d, d + 1, d + 2, D] is found to be a Pauli stabilizer code
model with emergent Z2 gauge symmetry (see Sec. II for
more details). The familiar 3D X-cube model is denoted as
[0,1,2,3]. We also successfully incorporate toric code models
of all dimensions into the labeling system, which has not been
included in Ref. [36]. For example, the 2D toric code model
is labeled by [0,1,2,2]. Remarkably, in the ERG transforma-
tions of these Pauli stabilizer codes, we find a hierarchical
structure summarized in Fig. 1: In an ERG transformation
connecting two [d, d + 1, d + 2, D] states (i.e., the ground
states of [d, d + 1, d + 2, D] model as lattice Hamiltonian)
with D > d + 2 of different sizes, [d, d + 1, d + 2, D − 1]
states are added or removed in addition to local unitaries
(e.g., CNOT), such that all Pauli stabilizer codes are fixed
points of the ERG transformations. While the log2 GSD of
these topological nonliquid models grows polynomially with

respect to the linear system size [37], such ERG transforma-
tions are found to keep the GSD formulas consistent in differ-
ent length scales. All in all, the ERG relation can be symbol-
ically expressed as follows: |[d, d + 1, d + 2, D]〉 ∼ |[d, d +
1, d + 2, D]〉′ ⊗ |[d, d + 1, d + 2, D − 1]〉, where |[d, d +
1, d + 2, D]〉 and |[d, d + 1, d + 2, D]〉′ are [d, d + 1, d +
2, D] states of different sizes, and ∼ means the two sides can
be connected by an LU transformation.

In the unified framework, ERG transformations obey the
following rules:

(1) In the ERG transformations on Pauli stabilizer codes
considered here, LRE states are categorized into different
levels, denoted as LREn with the level index n = 0, 1, 2, · · · .
Unentangled product states and more general SRE states are
dubbed level-0 LRE states (denoted as LRE0 symbolically) for
the notational convenience.

(2) ERG transformations where level-n LRE states are
added or removed are dubbed level-n ERG (denoted as ERGn

symbolically) transformations. Unless otherwise specified, n
is the highest level of added or removed LRE states;

(3) States of the same stabilizer code with different sizes
that can be connected by level-n ERG transformations are
identified as LREn+1.

Then an ERGn transformation can be symbolically ex-
pressed as follows:

ERGn : LREn+1 ∼ LREn+1 ⊗ LREn, (1)

which explicitly shows a hierarchy of ERG transformations
as well as LRE states along each upward arrow in Fig. 1.
For example, the ERG of the 2D toric code is given by ERG0

[4,5,7,14]:

ERG0 : LRE1 ∼ LRE1 ⊗ LRE0, (2)

where a toric code ground state is denoted as LRE1 and product
states denoted as LRE0 are added or removed (note that SRE
states are also symbolically denoted as LRE0 for notational
convenience). Similarly, the ERG of the 3D X-cube model is
given by ERG1 [22]:

ERG1 : LRE2 ∼ LRE2 ⊗ LRE1, (3)

where an X-cube ground state is denoted as LRE2 and the 2D
toric code ground state LRE1 is added or removed.

We also note that the above rules are established in the
concrete stabilizer codes studied in this paper. In fact, Eq. (1)
may be, in principle, a concrete realization of the following
more general level-m ERG transformation denoted as ERGm:

ERGm : LREn ∼ LREn ⊗ LREm, (4)

where m < n is generally required. Assuming the existence
of such ERGm transformations, a natural conjecture is that the
level of LRE states may be decided by the ERGm transfor-
mations of the highest possible level. We leave such general
ERG transformations as well as implied MERAs to further
exploration.

The reminder of this paper is organized as follows. In
Sec. II, we introduce some very useful geometric notations
used in this paper and give a brief introduction to the [d, d +
1, d + 2, D] models that include the 2D toric code model and
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the 3D X-cube model as special examples. Especially, we
explain how to incorporate toric codes into the labeling sys-
tem. Section III is dedicated to a detailed demonstration of
some concrete ERG transformations. In Sec. III A, as a warm-
up, we perform the ERG transformations on the 2D toric
code model (denoted as [0,1,2,2]), while an alternative ap-
proach was reviewed in Appendix D by following Ref. [14].
In Sec. III B, we review the ERG transformations on the 3D
X-cube model (denoted as [0,1,2,3]). Then, we concretely
construct the ERG transformations of different levels for
[0,1,2,4] and [1,2,3,4] models, respectively, in Secs. III C
and III D. Section IV is dedicated to ERG transformations
in general [d, d + 1, d + 2, D] models. In Sec. IV A, we
demonstrate a general recipe for the ERG transformations of
general [d, d + 1, d + 2, D] models. In Sec. IV B, we prove
that the models are indeed fixed points of corresponding
ERG transformations. Then, we demonstrate how these ERG
transformations lead to the concept of a hierarchy of ERG
transformations and LRE states in Sec. IV C. A summary and
outlook is given in Sec. V.

II. LABELING SYSTEM OF PAULI STABILIZER CODES

This section is dedicated to the introduction of some back-
grounds, including geometric notations and a family of Pauli
stabilizer code models denoted by [d, d + 1, d + 2, D]. We
especially notice that [D − 2, D − 1, D, D] models can be
regarded as a D-dimensional generalization of the 2D toric
code model.

A. Geometric notations and lattice Hamiltonians

In this paper, we need to involve some discussion about
high dimensional geometric objects, so we believe it is ben-
eficial to first introduce some relevant notations. For the
hypercubic lattice discussed in this paper, unless otherwise
specified, we set the lattice constant to be 1. Then, we intro-
duce the concept of n-cubes denoted by γn, that simply refers
to n-dimensional analogs of a cube. For example, a γ0 (0-
cube) is simply a vertex, a γ1 (1-cube) is a link, a γ2 (2-cube)
is a plaquette, and a γ3 (3-cube) is a conventional cube. In a
D-dimensional hypercubic lattice, with the above notations,
we can use the coordinates of the center of a γn (n � D is
assumed) to refer to the γn itself, as such a γn can be uniquely
determined by the coordinates. In addition, we can see that
the coordinate representation of a γn in a D-dimensional hy-
percubic lattice is always composed of n half-odd integers
(or half integer in shorthand) and (D − n) integers. For ex-
ample, in a 3D cubic lattice, the coordinate representation
of a γ2 (i.e., plaquette), such as ( 1

2 , 1
2 , 0) and ( 7

2 , 5, 1
2 ), al-

ways contains two half integers and one integer. What’s more,
following the terminology in Ref. [36], we say an n-cube
γn = (x1, x2, · · · , xD) and an m-cube γm = (y1, y2, · · · , yD) to
be nearest to each other when |x1 − y1| + |x2 − y2| + · · · +
|xD − yD| = |m−n|

2 for m �= n. Specially, when m = n, we say
they are nearest to each when |x1 − y1| + |x2 − y2| + · · · +
|xD − yD| = 1. We can check that such a definition of being
nearest is consistent with the usual conventions.

Next, we give a brief review of the definition of
[d, d + 1, d + 2, D] Pauli stabilizer code models. As lattice

FIG. 2. Hamiltonians of some representative [d, d + 1, d +
2, D] models. (a) and (b), respectively, demonstrate the Hamiltonian
terms of the [0,1,2,2] (2D toric code) and the [0,1,2,3] (3D X-cube)
model. In each subfigure, spins are represented by bars on links (aka
γ1’s), and we draw spins acted by an A term with red, and spins acted
by a B term with blue. As we can see, in [0,1,2,2] and [0,1,2,3]
models, A terms are, respectively, defined on plaquettes (aka γ2’s)
and cubes (aka γ3’s). In (b), we only draw a single Bx

v term on vertex
(aka γ0) v that is composed of the four spins that are not only nearest
to vertex v but also located in a plane perpendicular to x̂ direction.
Such four spins are denoted as i ∈ vx in (b).

Hamiltonians, [d, d + 1, d + 2, D] models is a subset of
[dn, ds, dl , D] models proposed in Ref. [36]. In general, a
[dn, ds, dl , D] model is defined on a D-dimensional hypercu-
bic lattice, with one 1

2 -spin defined on each ds-cube (i.e., γds ).
And the Hamiltonian is given as follows:

H[dn,ds,dl ,D] = −
∑
γD

AγD −
∑
γdn

∑

l

Bl
γdn

, (5)

where a Bl
γdn

term is the product of the z components of the
spins (a) being nearest to the dn-cube γdn and (b) living in
a dl -dimensional subsystem given by index l , and an AγD

term is the product of the x components of the spins being
nearest to the D-cube γD. Here for simplicity, all coefficients
of terms have been set to be −1. The ground states of the
[d, d + 1, d + 2, D] subset of models can be obtained in a
similar manner as for the 2D toric code model (see Ap-
pendix B). Some concrete examples of model Hamiltonians
are illustrated in Fig. 2. In Ref. [36], dn < ds < dl < D is
assumed, while in this paper, we allow the case dl = D to give
a more complete picture of the hierarchy of ERG transforma-
tions and LRE states. More details of this case are given in
Sec. II B.

B. Incorporating toric codes

In this paper, we primarily focus on [d, d + 1, d + 2, D]
models (i.e., we set dn = d , ds = d + 1, dl = d + 2). Here,
we notice that 2D and 3D toric code models can also be
included into the above model series as [0,1,2,2] and [1,2,3,3]
models, respectively. In fact, generally a [D − 2, D − 1, D, D]
model can be recognized as a D-dimensional generalization
of 2D toric code model. Here, because [D − 2, D − 1, D, D]
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FIG. 3. Duality of [0,1,2,2] and [1,2,3,3] models. Here we show
two examples of the duality between original [D − 2, D − 1, D, D]
models (on left-hand side) and corresponding dual models (on right-
hand side). (a) and (b), respectively, demonstrate the duality of
[0,1,2,2] and [1,2,3,3] models. In (a), the spins are defined on links
(i.e., γ1’s) on both sides, thus we use bars on links to refer to spins;
an Aγ2 Hamiltonian term highlighted with red originally defined on
a plaquette (i.e., γ2) is mapped to an Av term defined on a vertex
(i.e., γ0), and a Bγ0 term highlighted with blue originally defined on a
vertex is mapped to a Bp term defined on a plaquette. In (b), the spins
are, respectively, defined on plaquettes in the original model and
links in the dual model, thus we do not explicitly show all the spins
for clarity; an Aγ3 Hamiltonian term highlighted with red originally
defined on a cube (i.e., γ3) is mapped to an Av term defined on a
vertex, and a Bγ1 term highlighted with blue originally defined a link
is mapped to a Bp term defined on a plaquette.

models do not satisfy the dl < D condition, now the super-
scripts of B terms are redundant and a BγD−2 term is simply
the product of the z components of the four spins nearest to
the γD−2.

To see the equivalence between a [D − 2, D − 1, D, D]
model and a D-dimensional toric code model, we can con-
sider a duality, where γn’s are mapped to γD−n’s, that can
be concretely realized by shifting the coordinates of all γn’s
by ( 1

2 , 1
2 , · · · , 1

2 ). For a given [D − 2, D − 1, D, D] model,
upon the duality, we obtain a dual model that is still defined
on a D-dimensional hypercubic lattice, but 1

2 -spins originally
defined on γD−1’s are now defined on γ1’s (aka links). As for
the Hamiltonian terms, the original AγD terms defined on γD’s
are mapped to Av terms defined on γ0’s (aka vertices), and the
original BγD−2 terms defined on γD−2’s are mapped to Bp terms
defined on γ2’s (aka plaquettes).

In summary, the Hamiltonian of the dual model defined
on a D-dimensional hypercubic lattice is given by Hdual =
−∑

v Av − ∑
p Bp, where each link is assigned with a 1

2 -spin,
Av is the product of x components of spins nearest to the
vertex v, Bp is the product of z components of spins nearest
to the plaquette p (see Fig. 3 for the pictorial demonstration
of some examples). Such a Hamiltonian is a D-dimensional
generalization of the 2D toric code model [38], and the ground
states of which are regarded as LRE1 states realized in dif-
ferent spatial dimensions (i.e., D). Note that the dual models
themselves are not a part of [d, d + 1, d + 2, D] models, thus
in this paper the original [D − 2, D − 1, D, D] models are
more involved.

III. HIERARCHY OF ERG TRANSFORMATIONS
AND LRE STATES

In this section, we concretely demonstrate the ERG trans-
formations of some [d, d + 1, d + 2, D] states. First, in
Secs. III A and III B, we perform the ERG transformations of
[0,1,2,2] (2D toric code) and [0,1,2,3] (3D X-cube) models,
respectively. Then, in Secs. III C and III D, we, respectively,
construct the ERG transformations of [0,1,2,4] and [1,2,3,4]
models.

A. Level-0 ERG transformation of [0,1,2,2] (2D toric code) states

The ERG transformations of [0,1,2,2] states have been
proposed and studied previously [5,7,14]; see the review in
Appendix D. For consistency, here we perform an ERG0 trans-
formation of [0,1,2,2] states in an explicitly different way.
This alternative ERG process is very useful for designing
ERG transformations of other [d, d + 1, d + 2, D] models to
be discussed in this paper.

First, we give an intuitive picture of the [0,1,2,2] states
based on the general discussion in Appendix B. In the
[0,1,2,2] (aka 2D toric code) model, spins are located at links
of a 2D square lattice. In a superposed configuration of a
[0,1,2,2] state, a Bj term requires that vertex j can only have
zero, two, or four flipped nearest spins, thus flipped spins
must form closed strings. An Ai term flips the four spins on
the links of plaquette i, thus contractible closed strings can
freely fluctuate in a ground state. We will see that the ERG
transformation indeed preserves this closed strings pattern of
[0,1,2,2] states.

We start with a ground state |ξi〉 of the [0,1,2,2] model
defined on a square lattice of the size Lx × Ly with periodic
boundary condition (PBCs), and obtain a ground state |ξ f 〉 on
a square lattice of the size Lx × (Ly + 1) with PBCs by the
following transformations:

First, we choose a T 1 1-torus, aka loop) composed of the
centers of parallel links along direction ŷ with the same ŷ
coordinate, and regard the T 1 as a cut: All links intersecting
with the T 1 are cut into two links. Without loss of generality,
we assume the T 1 is located at y = 1

2 , which means the cut
links are of the form (i, 1

2 ), where i are integers. After that,
we apply a rescaling. For each cut link l = (i, 1

2 ), we double
the length of l to 2. Then, we can see that l is cut into links
l1 = (i, 1

2 ) and l2 = (i, 3
2 ) of length 1, and now the cut T 1 is

located at y = 1. We assign the original spin on l to l1.
Second, for each l2, we put an additional spin of the state

|0〉 on it. It means that we enlarge the Hilbert space by taking
the tensor product of the original one and the added spins,
and add a series of −σ z

l2
terms to the Hamiltonian to make all

the added spins in the state |0〉 (since a term −σ z
l2

requires a
ground state |φ〉 to satisfy σ z

l2
|φ〉 = |φ〉). Then, for each orig-

inal cut link l , we apply a CNOT (controlled-NOT) gate with
the original qubit on l1 as control qubit and the added one on
l2 as target [see Fig. 4(b)]. By conjugate action of CNOT gates,
the added −σ z

l2
terms are mapped to −σ z

l1
σ z

l2
terms (see Ap-

pendix A). As a result, given a cut link l , for an arbitrary Ising
configuration | · · · σl · · · 〉 from |ξi〉 (σl = 0 or 1), we have
| · · · σl · · · 〉 → | · · · σl1σl2 · · · 〉, where σl1 = σl2 = σl . The
ground state transformed by steps above is denoted as |ξ1〉.
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FIG. 4. ERG transformation of the 2D toric code model labeled
by [0,1,2,2]. This ERG transformation is denoted as ERG0 in Eq. (2).
In (a), a closed string configuration in the original lattice is illus-
trated, where |0〉 spins on the links are denoted by blue bars, and
|1〉 spins forming strings are highlighted with red. In (b), we illus-
trate the string configuration after the addition of spins in state |0〉,
and the added spins have been transformed by CNOT gates such
that the strings (formed by |1〉 spins) are still closed. These CNOT

gates targeting on the additional spins are denoted by orange arrows
pointing from control qubits to target qubits. In (c), we show the
inserted |ξp〉 state and the CNOT gates applied on |ξ2〉, where added
spins of state |→〉 are denoted by green bars and CNOT gates are also
denoted by orange arrows. In (d), we illustrate an Ising configuration
of |ξ f 〉, where a concrete configuration of |ξp〉 is picked, and the
target spins have been correspondingly transformed by the CNOT

gates. We can see that in such a configuration, flipped spins also form
closed strings. In addition, an assignment of labels to the four vertices
around a shadowed plaquette is also presented.

Third, we insert a product state |ξp〉 = | →→ · · · →〉 of
size Lx on the cut T 1 given in the first step, where | →〉 =

1√
2
(|0〉 + |1〉) is the eigenstate of σ x with eigenvalue 1. That

is to say, the spins composing the inserted state are located
on links of the form (i + 1

2 , 1) in the rescaled lattice [see
Fig. 4(c), note that there are no spins on such links before
this step]. Then, we denote the tensor product of |ξ1〉 and |ξp〉
as |ξ2〉 = |ξ1〉 ⊗ |ξp〉.

Finally, we act a series of CNOT gates on |ξ2〉 as illustrated
in Figs. 4(c) and 4(d). The CNOT gates are organized in a trans-
lational invariant manner, thus we only need to specify them
for a specific plaquette. Without loss of generality, we take
γ2 = ( 1

2 , 1
2 ) and denote the vertices of γ2 by letters as shown

in Fig. 4(d). Concretely, we have d = (0, 0), c = (1, 0), a =
(0, 1), and b = (1, 1). Then, the CNOT gates can be explicitly
specified as follows:

σab → σbc, σcd , σda,

where σxy refers to the spin located on the link between x and
y vertices, → points from the control qubit to target qubits.

We can straightforwardly check that after the application
of the CNOT gates on |ξ2〉, we obtain |ξ f 〉 that preserves the

closed strings pattern of [0,1,2,2] states. To see this, we show
that the by conjugate action, the CNOT gates generate all sta-
bilizer generators we need to obtain [0,1,2,2] states on the
enlarged lattice. First, by regarding |ξp〉 as stabilized by a
series of σ x stabilizers with y = 1 (i.e., for each σ x stabilizer,
the link where the stabilizer is defined satisfies y = 1), under
the conjugate action of CNOT gates, a σ x stabilizer with y = 1
is mapped to an A term with y = 1

2 ; then, a σ z
l1
σ z

l2
stabilizer

obtained in the second step above is mapped to a B term
with y = 1; finally, as we can note that also in the second
step above, an A term with y = 1

2 in the original lattice is
mapped to a six-spin term composed of the x components
of all spins around a rectangle [see Fig. 4(b)], by taking the
product of such a modified A term and an A term with y = 1

2 ,
an arbitrary A term with y = 3

2 can be obtained. Therefore, the
|ξ f 〉 is indeed a [0,1,2,2] state on the enlarged lattice. Or, from
another perspective, the [0,1,2,2] model is a fixed point of the
ERG0 transformation, as symbolically expressed in Eq. (2).

B. Level-1 ERG transformation of [0,1,2,3] (3D X-cube) states

In this subsection, we review the ERG1 transformation of
the [0,1,2,3] states following the recipe in Ref. [22]. Again,
we first give an intuitive picture of the [0,1,2,3] states based
on the general discussion in Appendix B. In [0,1,2,3] (aka
3D X-cube) model, spins are located at links of a 3D cubic
lattice. In this case, 3 Bl

j terms with perpendicular l , where l
denotes a plane containing vertex j, require j can only em-
anate three perpendicular strings composed of flipped spins;
see Fig. 5(a)]. Intuitively, string configurations satisfying such
constraints can be recognized as being composed of “cages”
[39] in a manifold with trivial topology. An Ai term flips
the 12 spins on the links of cube i, that can be regarded as
forming a basic cage, thus such cages can freely fluctuate in a
ground state. We will see that the ERG transformation indeed
preserves this cage-net pattern of [0,1,2,3] states.

We start with a ground state |ξi〉 of the [0,1,2,3] model
defined on a cubic lattice of size Lx × Ly × Lz with PBCs,
and obtain a ground state |ξ f 〉 on a cubic lattice of the size
Lx × Ly × (Lz + 1) with PBCs by the following transforma-
tions:

First, we choose a T 2 (2-torus) composed of the centers of
parallel links along direction ẑ with the same ẑ coordinate, and
regard the T 2 as a cut: All links intersecting with the T 2 are
cut into two links. Without loss of generality, we assume the
T 2 is located at z = 1

2 , which means the cut links are of the
form (i, j, 1

2 ), where i, j are integers. After that, we apply a
rescaling. For each cut link l = (i, j, 1

2 ), we double the length
of l to 2. Then, we can see that l is cut into links l1 = (i, j, 1

2 )
and l2 = (i, j, 3

2 ) of length 1, and now the cut T 2 is located at
z = 1. We assign the original spin on l to l1.

Second, for each l2, we put an additional spin of state |0〉
on it. It means that we enlarge the Hilbert space by taking the
tensor product of the original one and the added spins, and
add a series of −σ z

l2
terms to the Hamiltonian to make all the

added spins in the state |0〉. Then, for each original cut link l ,
we apply a CNOT gate with the original qubit on l1 as control
qubit and the added one on l2 as target. By conjugate action
of CNOT gates, the added −σ z

l2
terms are mapped to −σ z

l1
σ z

l2
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FIG. 5. ERG transformation of the 3D X-cube model labeled by
[0,1,2,3]. This ERG transformation is denoted as ERG1 in Eq. (3). We
use red bars to denote spins occupied by strings in a configuration,
and blue bars for the unoccupied ones. In (a), we demonstrate a
configuration around the cube γ3 = ( 1

2 , 1
2 , 1

2 ) in the original |ξi〉 state.
In (b), we demonstrate the configuration obtained by cutting links of
the form (i, j, 1

2 ), rescaling the cut links, adding additional spins and
applying a series of CNOT gates (i.e., a configuration from |ξ1〉). In (c),
we demonstrate a configuration after further inserting a [0,1,2,2] (2D
toric code) state |ξgs〉 (i.e., a configuration from |ξ2〉 = |ξ1〉 ⊗ |ξgs〉).
In (d), we demonstrate the CNOT gates applied on |ξ2〉. Here, we use
a different notation for clarity. The control qubits, i.e., spins from the
inserted [0,1,2,2] state on plane z = 1 (in the rescaled lattice), are
denoted by blue links, while other spins are denoted by black links.
The orange arrows point from control qubits to corresponding target
qubits. Some vertices are denoted by letters.

terms (see Appendix A). As a result, given a cut link l , for an
arbitrary Ising configuration | · · · σl · · · 〉 from |ξi〉 (σl = 0 or
1), we have | · · · σl · · · 〉 → | · · · σl1σl2 · · · 〉, where σl1 = σl2 =
σl [see Fig. 5(b)]. The ground state transformed by steps above
is denoted as |ξ1〉.

Third, we insert a [0,1,2,2] (2D toric code) state |ξgs〉 of the
size Lx × Ly on the cut T 2 given in the first step. That is to say,
the spins composing the inserted state are located on links of
the form (i + 1

2 , j, 1) and (i, j + 1
2 , 1) in the rescaled lattice

[see Fig. 5(c), note that there are no spins on such links before
this step]. Then, we denote the tensor product of |ξ1〉 and |ξgs〉
as |ξ2〉 = |ξ1〉 ⊗ |ξgs〉. As [0,1,2,2] (2D toric code) model
on a T 2 is fourfold degenerated, this step has four possible
outcomes corresponding to four possible inserted [0,1,2,2]
states.

Finally, we act a series of CNOT gates on |ξ2〉 as illustrated
in Fig. 5(d). The CNOT gates are organized in a translational
invariant manner, thus we only need to specify them for a spe-
cific cube. Without loss of generality, we take γ3 = ( 1

2 , 1
2 , 1

2 )
and denote the vertices of γ3 by letters as shown in Fig. 5(d).
For example, we have e = (0, 0, 0) and c = (1, 1, 1). Then,
the CNOT gates can be explicitly specified as follows:

σbc → σb f , σcg, σ f g,

σad → σae, σdh, σeh,

σab → σe f ,

σdc → σhg,

FIG. 6. ERG transformation of the [0,1,2,4] model. In (a), we
give a schematic picture of a 4-cube cut by a T 3, where the inter-
section of the T 3 and the original 4-cube is denoted by the dashed
3-cube; for clarity, the intersection of the T 3 and corresponding links
are denoted by gray dots. In (b), we demonstrate the CNOT gates
applied on |ξ2〉 following the same rules as in Fig. 5(d), while we
use another way to illustrate the 4-cube to show the CNOT gates more
clearly; here, we use blue links to denote control qubits from the
inserted [0,1,2,3] (3D X-cube) state on the cut T 3 with x4 = 1 and
black links for the target qubits. For simplicity, orange arrows point-
ing from control qubits to target qubits are only presented for three
control qubits along different directions. As we can see, these CNOT

gates satisfy all conditions given in the general recipe in Sec. IV B.

where σxy refers to the spin located on the link between
x and y vertices, → points from the control qubit to
target qubits. Intuitively, we can see that by conjugate ac-
tion (see Appendix A), the CNOT gates map the Ap =
σ x

abσ
x
bcσ

x
cdσ

x
da stabilizer of the inserted [0,1,2,2] state to Ac =

σ x
abσ

x
bcσ

x
cdσ

x
daσ

x
e f σ

x
f gσ

x
ghσ

x
heσ

x
aeσ

x
b f σ

x
cgσ

x
dh that is a stabilizer of

the [0,1,2,3] (3D X-cube) state. Similarly, we can check that
the CNOT gates generate all stabilizer generators we need to
obtain [0,1,2,3] states on a lattice of the size Lx × Ly × (Lz +
1) with PBCs (see Sec. IV B for a more detailed demonstra-
tion).

Therefore, after the application of the CNOT gates on |ξ2〉,
we obtain |ξ f 〉, which is a ground state of [0,1,2,3] (3D X-
cube) model on a lattice of the size Lx × Ly × (Lz + 1) with
PBC. Pictorially, we can see the transformed state preserves
the cage-net pattern of [0,1,2,3] states.

Due to the fact that there are four possible choices of |ξgs〉
in the third step, for a given |ξi〉, we have four possible |ξ f 〉
outcomes. As a result, if we require the GSD formula to be
symmetric for Lx, Ly, and Lz, the GSD of [0,1,2,3] model
has to satisfy log2 GSD = 2Lx + 2Ly + 2Lz + C, where C is
a constant. This result is consistent with the exact result given
in Ref. [34,37]. In addition, based on this method to obtain
the GSD, it has been shown in Ref. [22] that the coefficients
of linear terms in the log2 GSD are directly related to the
topology of the 2D subsystems (dubbed as leaves) of [0,1,2,3]
model.

C. Level-2 ERG transformation of [0,1,2,4] states

In this subsection, we demonstrate the ERG2 transforma-
tion of [0,1,2,4] states, with some essential steps pictorially
shown in Fig. 6. Similar to the [0,1,2,3] model, here we give
an intuitive picture of [0,1,2,4] states based on the general
discussion in Appendix B. In the [0,1,2,4] model, spins are
located at links of a 4D hypercubic lattice. In this case, 6 Bl

j
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terms with perpendicular l , where l denotes a plane containing
vertex j, require j can only emanate four perpendicular strings
composed of flipped spins. An Ai term flips the 32 spins on
the links of hypercube i. Similar to the cage-net pattern of
[0,1,2,3] states [39], if we regard the links of a 4D hyper-
cube as forming a 4D analog of a cage, we can intuitively
understand the pattern of [0,1,2,4] states as where such 4D
analogs of cage can freely fluctuate. We will see that the ERG
transformation indeed preserves the pattern of [0,1,2,4] states.

Again, we start with a ground state |ξi〉 of the [0,1,2,4]
model defined on a lattice of the size L1 × L2 × L3 × L4 with
PBCs and obtain a ground state |ξ f 〉 on a lattice of the size
L1 × L2 × L3 × (L4 + 1) with PBC.s The ERG2 transforma-
tion can be described as follows:

First, we choose a T 3 (3-torus) composed of the centers of
parallel links along direction x̂4 with the same x̂4 coordinate
and regard the T 3 as a cut: All links intersecting with the
T 3 are cut into two links [see Fig. 6(a)]. Without loss of
generality, we assume the T 3 is located at x4 = 1

2 , which
means the cut links are of the form (i, j, k, 1

2 ), where i, j, k
are integers. After that, we apply a rescaling. For each cut link
l = (i, j, k, 1

2 ), we double the length of l to 2. Then, we can
see that l is cut into links l1 = (i, j, k, 1

2 ) and l2 = (i, j, k, 3
2 )

of length 1, and now the cut T 3 is located at x4 = 1. We assign
the original spin on l to l1.

Second, for each l2, we put an additional spin of the state
|0〉 on it. It means that we enlarge the Hilbert space by taking
the tensor product of the original one and the added spins
and add a series of −σ z

l2
terms to the Hamiltonian to make

all the added spins in state |0〉. Then, for each original cut
link l , we apply a CNOT gate with the original qubit on l1 as
control qubit and the added one on l2 as target. By conjugate
action of CNOT gates, the added −σ z

l2
terms are mapped to

−σ z
l1
σ z

l2
terms (see Appendix A). As a result, given a cut link

l , for an arbitrary Ising configuration | · · · σl · · · 〉 from |ξi〉
(σl = 0 or 1), we have | · · · σl · · · 〉 → | · · · σl1σl2 · · · 〉, where
σl1 = σl2 = σl . The ground state transformed by the steps
above is denoted as |ξ1〉.

Third, we insert a [0,1,2,3] (3D X-cube) state |ξgs〉 of
the size L1 × L2 × L3 on the cut T 3 given in the first step.
That is to say, the spins composing the inserted state are
located on links of the form (i + 1

2 , j, k, 1), (i, j + 1
2 , k, 1),

and (i, j, k + 1
2 , 1) in the rescaled lattice (note that there are

no spins on such links before this step). Then, we denote the
tensor product of |ξ1〉 and |ξgs〉 as |ξ2〉 = |ξ1〉 ⊗ |ξgs〉. As the
[0,1,2,3] (3D X-cube) model on the T 3 satisfies log2 GSD =
2L1 + 2L2 + 2L3 − 3, this step has 22L1+2L2+2L3−3 possible
outcomes corresponding to 22L1+2L2+2L3−3 possible inserted
[0,1,2,3] states.

Finally, we act a series of CNOT gates on |ξ2〉 as illustrated
in Fig. 6(b). The CNOT gates are organized in a translational
invariant manner, thus we only need to specify them for a
specific 4-cube. Without loss of generality, we take γ4 =
( 1

2 , 1
2 , 1

2 , 1
2 ) and denote the vertices of γ4 by letters as shown

in Fig. 6. Then, the CNOT gates can be explicitly specified as
follows:

σ f g → σ f n, σno, σog,

σbc → σb j, σ jk, σkc,

σad → σai, σil , σld ,

σeh → σem, σmp, σph,

σe f → σmn,

σab → σi j,

σdc → σlk,

σhg → σpo,

σcg → σko,

σb f → σ jn,

σae → σim,

σdh → σl p,

where σxy refers to the spin located on the link between x
and y vertices; → points from the control qubit to target
qubits. Intuitively, we can see that by conjugate action (see
Appendix A), the CNOT gates map the

Ac = σ x
abσ

x
bcσ

x
cdσ

x
daσ

x
aeσ

x
b f σ

x
cgσ

x
dhσ

x
e f σ

x
f gσ

x
ghσ

x
he

stabilizer of the inserted [0,1,2,3] state to

Aγ4 = σ x
abσ

x
bcσ

x
cdσ

x
daσ

x
aeσ

x
b f σ

x
cgσ

x
dhσ

x
e f σ

x
f gσ

x
ghσ

x
heσ

x
i jσ

x
jkσ

x
klσ

x
li

× σ x
imσ x

jnσ
x
koσ

x
l pσ

x
mnσ

x
noσ

x
opσ

x
pmσ x

aiσ
x
b jσ

x
ckσ

x
dlσ

x
emσ x

f nσ
x
goσ

x
hp

that is a stabilizer of [0,1,2,4] ground state. Similarly, we can
check that the CNOT gates generate all stabilizer generators
we need to obtain [0,1,2,4] ground states on a lattice of size
L1 × L2 × L3 × (L4 + 1) with PBCs (see Sec. IV B for a more
detailed demonstration). Therefore, after the application of the
CNOT gates on |ξ2〉, we obtain |ξ f 〉, which is a ground state of
[0,1,2,4] model on a lattice of size L1 × L2 × L3 × (L4 + 1)
with PBCs.

Similar to the [0,1,2,3] model, we can see that the
GSD of [0,1,2,4] model has to satisfy log2 GSD = (2L1 +
2L2 + 2L3 − 3)L4 + C(L1, L2, L3), where C(L1, L2, L3) is
a function of L1, L2 and L3. When we require the GSD
formula to be symmetric for L1, L2, L3 and L4, then we have
log2 GSD = 2L1L2 + 2L1L3 + 2L1L4 + 2L2L3 + 2L2L4 +
2L3L4 − 3L1 − 3L2 − 3L3 − 3L4 + C′, where C′ is a constant.
This result is consistent with the result obtained by ground
state decomposition in Ref. [37].

D. Level-1 ERG transformation of [1,2,3,4] states

For comparison, in this subsection, we demonstrate the
ERG1 transformation of [1,2,3,4] states, with some essential
steps pictorially shown in Fig. 7. We will see that, though the
[1,2,3,4] model has the same spatial dimension as the [0,1,2,4]
model, in the ERG transformation of its ground states, we only
need to add or remove LRE1 rather than LRE2 states. Before
the demonstration, here we also give an intuitive picture of
[1,2,3,4] states based on the general discussion in Appendix B.
In the [1,2,3,4] model, spins are located at plaquettes of a 4D
hypercubic lattice. In this case, three Bl

j terms with perpen-
dicular l , where l denotes a 3D subsystem containing link j,
require j can only emanate three perpendicular membranes
composed of flipped spins. An Ai term flips the 24 spins on
the plaquettes of hypercube i. Again, similar to the cage-net
pattern of [0,1,2,3] states [39], if we regard the plaquettes of a
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FIG. 7. ERG transformation of the [1,2,3,4] model. Here we follow a similar notation as in Fig. 6(b) to demonstrate the CNOT gates applied
on |ξ2〉. Again, we set qubits nearest to the cube specified by abcde f gh as from the inserted [1,2,3,3] (3D toric code) state on the cut T 3

with x4 = 1. For clarity, here we only demonstrate three control qubits and their associated CNOT gates. In (a)–(c), we use three transparent
plaquettes highlighted with blue to denote three different control qubits and present orange arrows pointing from control qubits to target ones.
Here it should be noticed that two different plaquettes may share the same center in these pictures, like abcd and e f gh. As we can see, these
CNOT gates satisfy all conditions given in the general recipe in Sec. IV B.

4D hypercube as forming a 4D analog of a cage (note that the
4D analog here is different from the case of [0,1,2,4] states),
we can intuitively understand the pattern of [1,2,3,4] states as
where such 4D analogs of cage can freely fluctuate. We will
see that the ERG transformation indeed preserves the pattern
of [1,2,3,4] states.

Again, we start with a ground state |ξi〉 of the [1,2,3,4]
model defined on a lattice of size L1 × L2 × L3 × L4 with
PBCs and obtain such a ground state |ξ f 〉 on a lattice of size
L1 × L2 × L3 × (L4 + 1) with PBCs. The ERG1 transforma-
tion can be similarly described as follows:

First, we choose a T 3 (3-torus) composed of the centers of
parallel links along direction x̂4 with the same x̂4 coordinate
and regard the T 3 as a cut: All plaquettes intersecting with
the T 3 are cut into two plaquettes. Without loss of generality,
we assume the T 3 is located at x4 = 1

2 , which means the cut
plaquettes are of the form (i, j, k, 1

2 ) + 1
2 In, where n = 1, 2, 3,

In is the unit vector along the x̂n direction, i, j, k are inte-
gers. After that, we apply a rescaling. For each cut plaquette
p = (i, j, k, 1

2 ) + 1
2 In, we double the linear size of p along the

x̂4 direction to 2. Then, we can see that p is cut into plaquettes
p1 = (i, j, k, 1

2 ) + 1
2 In and p2 = (i, j, k, 3

2 ) + 1
2 In with linear

sizes along x̂4 direction equal to 1, and now the cut T 3 is
located at x4 = 1. We can assign the original spin on p to p1.

Second, for each p2, we put an additional spin of state |0〉
on it. Equivalently, it means that we enlarge the Hilbert space
by taking the tensor product of the original one and the added
spins, and add a series of −σ z

p2
terms to the Hamiltonian to

make all the added spins in state |0〉. Then, for each origi-
nal cut plaquette p, we apply a CNOT gate with the original
qubit on p1 as the control qubit and the added one on p2

as the target. By conjugate action of CNOT gates, the added
−σ z

p2
terms are mapped to −σ z

p1
σ z

p2
terms (see Appendix A).

As a result, given a cut plaquette p, for an arbitrary Ising
configuration | · · · σp · · · 〉 from |ξi〉 (σp = 0 or 1), we have
| · · · σp · · · 〉 → | · · · σp1σp2 · · · 〉, where σp1 = σp2 = σp. The
ground state transformed by the steps above is denoted as |ξ1〉.

Third, we insert a [1,2,3,3] (3D toric code) state |ξgs〉
of size L1 × L2 × L3 on the cut T 3 given in the first step.
That is to say, the spins composing the inserted state are
located on plaquettes of the form (i + 1

2 , j + 1
2 , k, 1), (i, j +

1
2 , k + 1

2 , 1), and (i + 1
2 , j, k + 1

2 , 1) in the rescaled lattice

(note that there are no spins on such plaquettes before this
step). Then, we denote the tensor product of |ξ1〉 and |ξgs〉 as
|ξ2〉 = |ξ1〉 ⊗ |ξgs〉. As the [1,2,3,3] (3D toric code) model on
the T 3 satisfies log2 GSD = 3 [38,40], this step has 23 possi-
ble outcomes corresponding to 23 possible inserted [1,2,3,3]
states.

Finally, we act a series of CNOT gates on |ξ2〉 as illustrated
in Fig. 7. The CNOT gates are organized in a translational
invariant manner, thus we only need to specify them for a
specific 4-cube. Without loss of generality, we take γ4 =
( 1

2 , 1
2 , 1

2 , 1
2 ) and denote the vertices of γ4 by letters as shown

in Fig. 7. Then, the CNOT gates can be explicitly specified as
follows:

σabcd → σi jkl , σab ji, σbck j, σcdlk, σdail ,

σe f gh → σmnop, σe f nm, σ f gon, σghpo, σhemp,

σab f e → σi jnm, σaemi, σb f n j,

σcdhg → σkl po, σdhpl , σcgok,

σbcgf → σ jkon,

σdaeh → σlimp,

where σxyzw refers to the spin located on the plaquette between
x, y, z, and w vertices; → points from the control qubit to
target qubits. Intuitively, we can see that by conjugate action
(see Apppendix A), the CNOT gates map the

Ac = σ x
abcdσ

x
e f ghσ

x
ab f eσ

x
bcgf σ

x
cdhgσ

x
daeh

stabilizer of the inserted [1,2,3,3] state to

Aγ4 = σ x
abcdσ

x
e f ghσ

x
ab f eσ

x
bcgf σ

x
cdhgσ

x
daeh

× σ x
i jklσ

x
mnopσ

x
i jnmσ x

jkonσ
x
kl poσ

x
limp

× σ x
aemiσ

x
b f n jσ

x
e f nmσ x

ab jiσ
x
bck jσ

x
f gon

× σ x
cgokσ

x
dhplσ

x
ghpoσ

x
cdlkσ

x
dailσ

x
hemp,

which is a stabilizer of [1,2,3,4] ground state. Similarly, we
can check that the CNOT gates generate all stabilizer generators
we need to obtain [1,2,3,4] ground states on a lattice of the
size L1 × L2 × L3 × (L4 + 1) with PBC (see Sec. IV B for a
more detailed demonstration). Therefore, after the application
of the CNOT gates on |ξ2〉, we obtain |ξ f 〉, which is a ground
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state of [1,2,3,4] model on a lattice of the size L1 × L2 × L3 ×
(L4 + 1) with PBC.

Similar to [0,1,2,3] model, we can see that the GSD
of [1,2,3,4] model has to satisfy log2 GSD = 3 × L4 +
C(L1, L2, L3), where C(L1, L2, L3) is a function of L1, L2 and
L3. When we require the GSD formula to be symmetric for L1,
L2, L3 and L4, then we have log2 GSD = 3L1 + 3L2 + 3L3 +
3L4 + C′, where C′ is a constant. This result is consistent with
the result obtained by ground state decomposition in Ref. [37].

IV. ERG OF GENERIC LEVELS

In this section, we first show a generic recipe of the con-
struction of ERGD−d−2 transformations of [d, d + 1, d + 2, D]
models with D > d + 2. After that, in Sec. IV B, we prove
that for such a [d, d + 1, d + 2, D] model, the constructed
ERG transformation indeed gives ground states of the same
model of different sizes, i.e., the models are fixed points of
the corresponding ERG transformations. Finally, in Sec. IV C,
we discuss the hierarchy of ERG transformations and LRE
states based on the constructed ERG transformations. Note
that ERG0 transformations of [D − 2, D − 1, D, D] models are
not included in this recipe.

A. Level-(D − d − 2) ERG transformation
of [d, d + 1, d + 2, D] states

In general, for a [d, d + 1, d + 2, D] model with D >

d + 2, we can demonstrate the ERGD−d−2 transformation of
[d, d + 1, d + 2, D] states. Again, we start with a ground state
|ξi〉 of [d, d + 1, d + 2, D] model defined on a lattice of size
L1 × L2 × · · · × LD with PBCs and obtain a ground state |ξ f 〉
on a lattice of size L1 × L2 × · · · × (LD + 1) with PBCs. The
ERGD−d−2 transformation can be described as follows:

(1) First, we choose a (D − 1)-torus T D−1 composed of
the centers of links with the same x̂D coordinate. Without
loss of generality, we set the chosen T D−1 to be located at
xD = 1

2 , such that it is composed of the centers of links of
the form (n1, n2, · · · , nD−1,

1
2 ), where n1, n2, · · · , nD−1 are

integers. Then we regard the T D−1 as a cut: Every γd+1

intersecting with the T D−1 is cut into 2 γd+1’s with iden-
tical spins. That is to say, for each cut γd+1, we put an
additional spin in state |0〉, and then apply a CNOT gate
with the original qubit as control qubit and the added one
as target. In consequence, given a cut γd+1, for an arbi-
trary Ising configuration | · · · σγd+1 · · · 〉 from |ξi〉 (σγd+1 = 0 or
1), we have | · · · σγd+1 · · · 〉 → | · · · σ(γd+1 )1σ(γd+1 )2 · · · 〉, where
σ(γd+1 )1 = σ(γd+1 )2 = σγd+1 . Then, we rescale the lattice by ex-
tending the linear size of the cut γd+1 along the x̂D direction
to 2, such that now the chosen T D−1 is composed of sites of
the form (n1, n2, · · · , nD−1, 1), and for a cut γd+1 = (· · · , 1

2 )
in the original lattice, the original and additional spins are,
respectively, assigned to (γd+1)1 = (· · · , 1

2 ) and (γd+1)2 =
(· · · , 3

2 ) in the rescaled lattice. The ground state transformed
by this step is denoted as |ξ1〉.

(2) Second, we put a [d, d + 1, d + 2, D − 1] ground
state |ξgs〉 of size L1 × · · · × LD−1 on the T D−1 given
in the previous step. That is to say, we can regard the
(n1, n2, · · · , nD−1, 1) sites as forming a hypercubic lattice
defined on the T D−1, and consider a [d, d + 1, d + 2, D − 1]

ground state |ξgs〉 defined on this lattice. Then, by taking the
tensor product of |ξ1〉 and |ξgs〉, we obtain |ξ2〉 = |ξ1〉 ⊗ |ξgs〉.

(3) Third, we act an LU transformation U composed of a
series of CNOT gates on |ξ2〉 (see Sec. IV B for a demonstration
of this LU transformation U ). After that, we obtain |ξ f 〉, which
is a ground state of the [d, d + 1, d + 2, D] model on a lattice
of the size L1 × L2 × · · · × (LD + 1) with PBCs.

To see that this generic recipe is consistent with the GSD
results obtained by ground-state decomposition in Ref. [37],
without loss of generality, say that in the polynomial log2 GSD
of [d, d + 1, d + 2, D − 1] model on the T D−1, the coefficient
of LiL j · · · Ln term is c (here i < j < · · · < n < D is as-
sumed). Then, the above ERG transformation requires that the
number of copies of cLiL j · · · Ln contained in the log2 GSD
of [d, d + 1, d + 2, D] model grows linearly with LD. That is
to say, the polynomial log2 GSD of the [d, d + 1, d + 2, D]
model has to contain the term cLiL j · · · LnLD. This result is
consistent with the relevant results from Ref. [37].

B. [d, d + 1, d + 2, D] models as fixed points
of level-(D − d − 2) ERG transformations

In this subsection, we give the conditions that an LU
transformation U used in step 3 of the ERGD−d−2 transfor-
mation of a general [d, d + 1, d + 2, D] state should satisfy,
and prove that such an LU transformation U indeed gives
ground states of the [d, d + 1, d + 2, D] model on a lattice
of different sizes by considering the conjugate action of U on
the Hamiltonian terms. Without loss of generality, we assume
the cut T D−1 is extended along x̂1, x̂2, · · · , x̂D−1 directions,
and the location is given by xD = 1 (in the rescaled lattice).
For convenience, here we explicitly write the Hamiltonian of
a [d, d + 1, d + 2, D] model as below:

H[d,d+1,d+2,D] = −
∑
γD

AγD −
∑
γd

∑

l

Bl
γd

, (6)

where an AγD term is the product of the x components of the

( D
d + 1) × 2D−d−1 spins nearest to the γD, a Bl

γd
term is the

product of the z components of the four spins that are (a)
nearest to the γd and (b) living in the (d + 2)-dimensional
subsystem l .

We start with the conditions that the LU transformation
U should satisfy. According to the LU transformation U
of [0,1,2,3], [0,1,2,4], and [1,2,3,4] models (i.e., the CNOT

gates applied on |ξ2〉 states of corresponding subsections), we
expect such an LU transformation in the ERGD−d−2 transfor-
mation of a general [d, d + 1, d + 2, D] state to satisfy the
following conditions:

(1) First, we require U to be composed of a series of CNOT

gates around γD’s with xD = 1
2 , where all control qubits are

from the cut T D−1 (i.e., being located on γd+1’s with xD = 1).
In addition, we require U to be translational invariant, such
that the application of the CNOT gates is the same for every
applied γ D. Therefore, we only need to consider the applica-
tion of CNOT gates in a single γD to specify U . Without loss
of generality, we can focus on γ r

D = ( 1
2 , 1

2 , · · · , 1
2 ). Here the

superscript r is for reference.
(2) Second, for each γd+1 in γ r

D with xD = 0, we require
the qubit on it to be controlled by the qubit on γd+1 + ID,
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where ID = (0, 0, · · · , 0, 1) is the unit vector along the x̂D di-
rection. Obviously, the qubit on such a γd+1 is only controlled
by one control qubit in γ r

D.
(3) Third, for each γd+1 in γ r

D with xD = 1
2 , we re-

quire the qubit on it to be controlled by exactly one
nearest control qubit in γ r

D. In addition, for a pair of
nearest parallel qubits, we require them to be simul-
taneously controlled (or not) by the control qubit that
links them. For example, a pair of nearest parallel qubits,
respectively, defined on ( 1

2 , 1
2 , · · · , 1

2︸ ︷︷ ︸
d

, 0, 0, · · · , 0, 1
2︸ ︷︷ ︸

D−d

) and

( 1
2 , 1

2 , · · · , 1
2︸ ︷︷ ︸

d

, 1, 0, · · · , 0, 1
2︸ ︷︷ ︸

D−d

) are either both controlled by

( 1
2 , 1

2 , · · · , 1
2︸ ︷︷ ︸

d

, 1
2 , 0, · · · , 0, 1︸ ︷︷ ︸

D−d

) or not (here we can notice that

this control qubit is the only one that links the pair, i.e.,
simultaneously being nearest to the pair of qubits).

The existence of such LU transformations is obvious. And
we can check that when (a) d = 0, D = 3, (b) d = 0, D = 4,
and (c) d = 1, D = 4, the LU transformations U in the ERG
transformations of [0,1,2,3], [0,1,2,4], and [1,2,3,4] states all
satisfy the above conditions. In addition, here we should no-
tice that each target qubit σi with xD = 1

2 is always controlled
by two qubits. Without loss of generality, say qubit σi on
(d + 1)-cube i = ( 1

2 , 1
2 , · · · , 1

2︸ ︷︷ ︸
d

, 0, 0, · · · , 0, 1
2︸ ︷︷ ︸

D−d

) is controlled

by the qubit on ic = ( 1
2 , 1

2 , · · · , 1
2︸ ︷︷ ︸

d

, 1
2 , 0, · · · , 0, 1︸ ︷︷ ︸

D−d

), accord-

ing to the translational invariance of the LU transformation,
the qubit on i′ = i − Id+1 = ( 1

2 , 1
2 , · · · , 1

2︸ ︷︷ ︸
d

,−1, 0, · · · , 0, 1
2︸ ︷︷ ︸

D−d

)

must be controlled by the qubit on i′c = ic − Id+1 =
( 1

2 , 1
2 , · · · , 1

2︸ ︷︷ ︸
d

,− 1
2 , 0, · · · , 0, 1︸ ︷︷ ︸

D−d

); after that, as i and i′ are paral-

lel (d + 1)-cubes connected by i′c, σi must also be controlled
by the qubit on i′c. Then, we can notice that an arbitrary γD

nearest to i has the form ( 1
2 , 1

2 , · · · , 1
2︸ ︷︷ ︸

d

,± 1
2 ,± 1

2 , · · · ,± 1
2 , 1

2︸ ︷︷ ︸
D−d

),

thus it must be either nearest to ic or i′c. Since a target qubit
can only be controlled by one control qubit from a nearest
γD as required by the conditions above, no other qubits in the
T D−1 can control σi. In conclusion, for any target qubit σi with
xD = 1

2 , there are always two qubits that control it.
Then we show that though the concrete form of the LU

transformation U has not been specified, the above conditions
can make sure that U produces the ground states as expected.
That is to say, for an LU transformation U satisfying the
conditions above, a |ξ f 〉 = U |ξ2〉 is indeed a ground state of
the [d, d + 1, d + 2, D] model.

First, we notice that U is applied on the |ξ2〉 given in
Sec. IV A, and |ξ2〉 can be obtained as a ground state of the
following Hamiltonian:

H1 = HdddD + HdddD−1 + Hzz, (7)

where HdddD refers to the terms in the original [d, d + 1, d +
2, D] model with some modifications according to the cut
γd+1’s (see below), HdddD−1 refers to the terms of the [d, d +

1, d + 2, D − 1] Hamiltonian on the cut T D−1, and Hzz =
−∑

i σ
z
i σ z

i+ID
is added to make each pair of spins on a cut

γd+1 identical, where i refers to a (d + 1)-cube with xD = 1
2

in the rescaled lattice. Note that the AγD terms in HdddD near
the T D−1 are modified to A′

γD
= AγD AγD+ID to be consistent

with the cut γd+1’s, where AγD and AγD+ID have the same form
as an ordinary A term from the original [d, d + 1, d + 2, D]
model, and γD satisfies xD = 1

2 . As a concrete example, in the
[0,1,2,4] model, where d = 0, D = 4, such a modified Aγ4 , de-
noted as A′

γ4
, is given by A′

1
2 , 1

2 , 1
2 , 1

2
= A 1

2 , 1
2 , 1

2 , 1
2
A 1

2 , 1
2 , 1

2 , 3
2
, where

operators A 1
2 , 1

2 , 1
2 , 1

2
and A 1

2 , 1
2 , 1

2 , 3
2

themselves do not present in
HdddD. Furthermore, for a Bγd term from HdddD with xD = 2
that involves qubit σi with xD = 1

2 , we can replace it by the
product of the B term itself and a corresponding σ z

i σ z
i+ID

term, such that σ z
i in the B term is replaced by σ z

i+ID
. This

modification makes such B terms connected. For example,
in the [0,1,2,3] model, due to our assignment that for a cut
link the original qubit is put on a link of the form (· · · , 1

2 ), in
the rescaled lattice, we would have B terms such as Bx

(0,0,2) =
σ z

(0, 1
2 ,2)

σ z
(0,− 1

2 ,2)
σ z

(0,0, 5
2 )

σ z
(0,0, 1

2 )
, that is not connected, without

such modifications. Similarly, we can freely add Bγd terms
with xD = 3

2 to H1 as such terms can be directly obtained
by taking the products of Bγd terms with xD = 1

2 and corre-
sponding σ z

i σ z
i+ID

terms. In addition, HdddD contains no Bγd

terms on the T D−1. After that, we can see that all terms in
H1 still commute with each other. From another perspective,
H1 can also be obtained by considering the conjugate action
of the CNOT gates applied in the first step in Sec. IV A. A
more detailed demonstration of the terms in H1 is given in
Appendix C.

Second, because the U transformation is a product of a
series of CNOT gates, the conjugate action of U on an arbi-
trary stabilizer G can be reduced to the conjugate action of
CNOT gates on G. With the general mapping rules given by
the conjugate action of CNOT gates (see Appendix A), we
can obtain all terms in the transformed Hamiltonian H2 as
follows:

(1) First, since for an arbitrary γD−1 inside the T D−1, all
qubits that are controlled by the qubits from the γD−1 together
with the control qubits themselves form a γD with xD = 1

2 ,
AγD−1 terms in HdddD−1 are mapped to AγD terms with xD = 1

2 .
(2) Second, since an arbitrary target qubit σi with xD =

1
2 is controlled by exactly two qubits from the T D−1, each
σ z

i σ z
i+ID

term in Hzz is mapped to a four-spin term composed of
the original σ z

i , σ z
i+ID

and the z components of the two qubits
that control σi.

(3) Third, further considering that an arbitrary target qubit
σi with xD = 0 is only controlled by σi+ID from the T D−1, a Bγd

term in HdddD near the T D−1 should be modified as follows:
(a) for a qubit σi with xD = 0 involved in the B term, multiply
the term by σ z

i+ID
; (b) for a qubit σi with xD = 1

2 involved
in the B term, multiply the term by the z components of the
two qubits that control σi. As an example, for a Bγd term only
involving qubits with xD = 0, it is mapped to a Bγd Bγd +ID term,
where Bγd +ID is obtained by adding ID to the coordinates of all
qubits involved in Bγd .

(4) Finally, all other terms stay invariant under the conju-
gate action of U .
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We denote the Hamiltonian of [d, d + 1, d + 2, D] model
on the lattice of size L1 × L2 × · · · × (LD + 1) with PBCs as
H3 [see Eq. (6)]. Then we can notice that by taking the product
of A terms obtained in the first step and A′ terms from HdddD,
we can obtain all A terms that exist in H3 but superficially
missing in H2; by taking the product of the four-spin terms
obtained in the second step (which can be recognized as B
terms in H3), modified B terms obtained in the third step and
B terms in HdddD−1, we can obtain all B terms that exist in H3

but are superficially missing in H2. Therefore, all terms of H3

can be obtained by taking the product of terms of H2 (a more
detailed demonstration is given in Appendix C). As is also
straightforward to check the other way around, finally, we can
see that H2 and H3 are equivalent Pauli stabilizer code models
with equivalent stabilizer groups and |ξ f 〉 = U |ξ2〉 is indeed a
ground state of H3.

C. Discussions

As we have demonstrated in this section, in the ERG
transformations of different [d, d + 1, d + 2, D] states, the
added or removed states are also different LRE states. In
other words, the entanglement patterns in [d, d + 1, d + 2, D]
states with different D and a fixed d are intrinsically different,
and these models cannot be fully understood as fixed points of
a finite number of types of ERG transformations. Instead, we
need an infinite series of ERG transformations of different lev-
els to understand the more general long-range entanglement
patterns.

Therefore, we conclude the above observations by propos-
ing the concept of a hierarchy of ERG transformations, where
each transformation is assigned with an integer level. Corre-
spondingly, LRE states are assigned with integer levels as well
(see Fig. 1). For a given stabilizer code model considered in
this paper, two level-(n + 1) LRE (LREn+1) states of different
sizes can be connected by a level-n ERG (ERGn) transforma-
tion, that is composed of LU transformations combined with
addition or removal of level-n LRE states. Furthermore, if
we define product states and SRE states as LRE0 states, then
we have [0,1,2,2] (2D toric code) states as O states, [0,1,2,3]
(3D X-cube) states as LRE2 states, [0,1,2,4] states as LRE3

states and so on. In addition, we can see that low level LRE
states themselves can be recognized as trivial high-level LRE
states, just like a product state is recognized as a trivial pure
topological order. Especially, a decoupled stack of LREn states
is also a trivial LREn+1 state, as it can reduced to nothing under
a ERGn transformation.

V. SUMMARY AND OUTLOOK

In this paper, by considering a class of Pauli stabilizer
codes, we constructed a more unified ERG framework through
adding and removing more general degrees of freedom. The
well-established ERG processes of the [0,1,2,2] (2D toric
code) and [0,1,2,3] (3D X-cube) model are naturally included
as the simplest cases. All Pauli stabilizer codes considered
here are categorized into a series of state towers as shown in
Fig. 1; in each tower, lower LRE states of level n are added or
removed in the level-n ERG process of an upper LRE state of
level-(n + 1). Several future directions are listed below.

First, we may expect a more general ERG framework
shown in Eq. (4) can be constructed in other stabilizer codes.

Second, the completeness of the concept of level of LRE
states needs further exploration. For example, for type-II frac-
ton ordered states [34,41,42], such as Haah’s code [41], a
series of ERG transformations have been constructed and
studied [23,24,26], nevertheless, whether it is possible to
consistently assign a level to such type-II fracton ordered
states and corresponding ERG transformations is yet to be
determined. Some further discussion about the hierarchy of
ERG transformations may be beneficial for a more complete
understanding of the entanglement patterns in more generic
fracton orders.

Third, except for the stabilizer code models considered in
this paper, physically, we can also consider models perturbed
by external fields, which are no longer exactly solvable. Con-
structing ERG transformations for such models to investigate
their fixed points is also an interesting direction. And some
numerical techniques may also be useful in the study of such
models [43–45].

Finally, it is known that the ERG transformations are re-
lated to MERA, which is a kind of tensor network capable
of efficiently encoding the entanglement signatures of certain
quantum many-body states [6–8,46]. In Ref. [22], it has been
noted that [0,1,2,3] (3D X-cube) states bear exact branching
MERA representations. Then it is natural to ask whether LRE
states of general levels can have such tensor network represen-
tations. If so, the holographic geometries generated by such
tensor networks are also worth exploring [47–49].
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APPENDIX A: A BRIEF INTRODUCTION
OF CONTROLLED-NOT CNOT GATE

Here we give a brief introduction of the CNOT gate that is
frequently used in the main text of this paper.

By definition, a CNOT gate is a two-qubit unitary operation.
In the σ z basis, for |x〉, |y〉, where x, y ∈ {0, 1}, the CNOT

gate maps |x〉 ⊗ |y〉 to |x〉 ⊗ |y ⊕ x〉; here ⊗ means tensor
product, ⊕ means modulo-2 addition. Effectively, the CNOT

gate regards the first qubit as a control qubit and the second
qubit as a target qubit. When the control (first) qubit is |0〉,
then the CNOT gate does nothing; when the control qubit is |1〉,
the CNOT gate flips the target (second) qubit, thus the name.
For example, denoting the action of the CNOT gate as U , we
have U |01〉 = |01〉 and U |11〉 = |10〉.

For the usage in the main text, here we also introduce the
conjugate action of the CNOT gate on stabilizers (i.e., Hamilto-
nian terms of a stabilizer code model and their products). For
a state |φ〉 in the stabilizer subspace and a stabilizer G (i.e.,
G|φ〉 = |φ〉), if we apply a CNOT gate U on |φ〉, then we have
(UGU †)U |φ〉 = U |φ〉. That is to say, the transformed state
U |φ〉 is stabilized by UGU †, that is G acted by the conjugate
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action of the CNOT gate. For a specific G acting nontrivially
on some control or target qubits, the correspondence between
G and UGU † can be expressed as follows [5,22]:

ZI → ZI,

IZ ↔ ZZ,

XI ↔ XX,

IX → IX,

where the first qubit refers to the control qubit and the second
qubit refers to the target qubit. For example, if we consider
the conjugate action of a CNOT gate on a stabilizer G, where
G applies a σ x on the control qubit and applies an identity on
the target qubit, then the corresponding UGU † will apply σ x

on both qubits.

APPENDIX B: GROUND STATE WAVE FUNCTIONS
OF [d, d + 1, d + 2, D] STABILIZER CODE MODELS

In this Appendix, we show a general recipe to obtain the
ground states of [d, d + 1, d + 2, D] stabilizer code models
(including [D − 2, D − 1, D, D] models, such as 2D and 3D
toric codes) in a similar manner as in the distinguished 2D
toric code model. The lattice Hamiltonians of [d, d + 1, d +
2, D] models are all of the following form:

H = −
∑

i

Ai −
∑

j

B j, (B1)

where i and j are some kinds of spatial locations (e.g., ver-
tices, centers of links, and centers of plaquettes) depending
on the specific model, and the index l in Eq. (5) has been
formally absorbed into index j for simplicity. Here, Ai and Bj

are, respectively, local products of σ x and σ z Pauli operators,
and they all commute with each other (see Fig. 2 for examples
of [0,1,2,2] and [0,1,2,3] models). Therefore, a ground state
|φ〉 of such a Hamiltonian has to satisfy constraints Ai|φ〉 =
|φ〉, ∀i and Bj |φ〉 = |φ〉, ∀ j (respectively denoted as A and
B constraints). That is to say, for a given [d, d + 1, d + 2, D]
model, the Ai and Bj operators can be regarded as generators
of a stabilizer group, and the ground state subspace is the
corresponding stabilizer subspace [14,35], as ground states
are stabilized by all Ai and Bj operators. In this paper, as we
mainly care about the stabilizer subspaces, unless otherwise
specified, for a given model, we only consider states in its
ground state subspace. Then, for an arbitrary [d, d + 1, d +
2, D] stabilizer code model, we can obtain a ground state |φn〉
of it by the following procedures:

(1) First, we consider the σ z basis, that is to say, we use
Ising configurations, where spins are denoted by their direc-
tion along σ z, as a basis of the whole Hilbert space. For a
single qubit, we use the convention σ z|↑〉 = |↑〉 = |0〉 = (1

0),

σ z|↓〉 = −|↓〉 = −|1〉 = −(0
1) (i.e., |0〉 for spin up, and |1〉 for

spin down).
(2) Second, we can notice that |0 · · · 00〉 naturally satisfies

all B constraints. We denote |0 · · · 00〉 as the reference state.
(3) Third, we consider the equal weight superposition of

the reference state and all configurations that can be obtained
by applying a series of Ai operators on the reference state, and
denote this state as |φn〉. As all Ai and Bj operators commute

with each other, |φn〉 also satisfies B constraints. According to
our construction of |φn〉, where two configurations that can be
related by the action of Ai are always equally superposed, we
can see that |φn〉 must also satisfy A constraints. Hence, |φn〉
is a ground state of the stabilizer code model.

Similarly to the 2D toric code model, we use an intu-
itive picture to describe an Ising configuration by recognizing
flipped spins (i.e., spin of the state |1〉) as occupied by certain
geometric objects. For example, if the spins are defined on
links, then we recognize flipped spins as occupied by strings;
if the spins are defined on plaquettes, then we recognize
flipped spins as occupied by membranes. For a [d, d + 1, d +
2, D] model, other ground states can be obtained by applying
logical operators on the |φn〉 state. Here in the σ z basis, a
logical operator can be recognized as a product of a series
of σ x operators that commutes with all Bj terms and is not
equivalent to any product of a series of Ai terms. For instance,
in the [0,1,2,2] model defined on a T 2 (2-torus), such a logical
operator is a noncontractible closed string composed of σ x

operators [19].
Following this general recipe, we can see that when we

ignore the topological degeneracy by focusing on the open
boundary condition, we only need to consider the |φn〉 state,
which can be regarded as a superposition of a series of con-
figurations. For the |φn〉 state, B terms require a superposed
configuration to satisfy certain constraints, like flipped spins
forming closed strings in a [0,1,2,2] model; A terms require
configurations that can be connected by the action of A terms
to be equal-weight superposed. In Sec. III, a series of concrete
examples are demonstrated in the corresponding subsections.

APPENDIX C: PROOF OF THE EQUIVALENCE
BETWEEN HAMILTONIANS H2 AND H3

In this Appendix, we concretely demonstrate that in
Sec. IV B, all terms in H3, the Hamiltonian of [d, d + 1, d +
2, D] model on the lattice of size L1 × L2 × · · · × (LD + 1)
with PBCs, can be obtained by taking the product of terms
in H2 and vice versa, thus they are equivalent stabilizer code
models. As we can notice that H2 and H3 only have different
terms around the T D−1 with xD = 1, we only need to consider
terms defined on locations with 0 � xD � 2.

Before discussing terms in H2, we would to like to give a
detailed demonstration and classification of the terms around
the cut T D−1 in H1 = HdddD + HdddD−1 + Hzz. Such terms in
H1 can be classified as follows:

(1) BI terms: B terms with xD = 0 from HdddD that only
involve qubits with xD = 0.

(2) BII terms: B terms with xD = 0 from HdddD that si-
multaneously involve qubits with xD = 0 and xD = 1

2 .
(3) BIII terms: B terms with xD = 1

2 from HdddD.
(4) BIV terms: B terms with xD = 1 from HdddD−1 (i.e.,

such B terms only involve qubits with xD = 1).
(5) BV terms: B terms with xD = 3

2 , 2 from HdddD.
(6) AI terms: A′

γD
= AγD AγD+ID terms with xD = 1

2 from
HdddD.

(7) AII terms: AγD−1 terms with xD = 1 from HdddD−1.
(8) C terms: Cγd+1 = σ z

γd+1
σ z

γd+1+ID
with xD = 1

2 from Hzz.

115169-12



HIERARCHY OF ENTANGLEMENT RENORMALIZATION AND … PHYSICAL REVIEW B 107, 115169 (2023)

We can notice that, around the T D−1, H3 is composed of
BI , BII , BIII , BIV , BV , and the following terms:

(1) BV I terms: B terms with xD = 1 that involve qubits
with xD �= 1.

(2) AIII terms: AγD terms with xD = 1
2 , 3

2 .
Then, we consider the conjugate action of the LU transfor-

mation U on the terms in H1 that leads to terms in H2 (note
that here the superscripts of B terms are omitted, as we only
need to consider the types of terms):

(1) A BI term Bγd is mapped to Bγd Bγd +ID , the product of
the BI term itself and a BIV term Bγd +ID .

(2) A BII term Bγd is mapped to (a) the BII term itself, if
the qubits with xD = 0 and xD = 1

2 in Bγd are controlled by the
same pair of qubits from the T D−1; (b) Bγd Bγd +ID , the product
of the BII term itself and a BIV term Bγd +ID , if otherwise.

(3) A BIII term Bγd is mapped to (a) the BIII term itself,
if two perpendicular qubits in Bγd [i.e., the two qubits are
nearest and from different (d + 1)-dimensional subsystems]
share one control qubit; (b) Bγd Bγ 1

d
Bγ 2

d
, the product of the

BIII term itself and two BIV terms Bγ 1
d

and Bγ 2
d
, if two

perpendicular qubits in Bγd have control qubits nearest to the
same γd ; (c) Bγd Bγ 1

d
Bγ 2

d
Bγ 3

d
Bγ 4

d
, the product of the BIII term

itself and four BIV terms Bγ 1
d
, Bγ 2

d
, Bγ 3

d
, and Bγ 4

d
, if otherwise;

(4) BIV , BV , AI terms stay invariant.
(5) An AII term AγD−1 terms with xD = 1 is mapped to an

AIII term AγD with xD = 1
2 , where the γD is obtained by γD =

γD−1 − 1
2 ID.

(6) A C term Cγd+1 term is mapped to a BV I
term Bγd with xD = 1, where the γd is obtained
as γd = γd+1 + 1

2 ID.
Because BIV , BV , AI terms are invariant under the con-

jugate action of U (i.e., they present in H2), we can obtain
an arbitrary BI , BII , or BIII term by taking the product of the
corresponding transformed term with invariant BIV terms. An
arbitrary AIII term with xD = 1

2 can be obtained as a trans-
formed AII term, and an arbitrary AIII term with xD = 3

2 can
be obtained by taking the product of a transformed AII term
and an invariant AI term. In addition, by taking the product of
a transformed C term with a BIV term, an arbitrary BV I term
can also be obtained. Finally, because it is straightforward to
check that all terms in H2 can be obtained by taking products
of terms in H3, as two stabilizer code models H2 and H3

have equivalent sets of stabilizer generators, thus the stabilizer
subspaces should be equivalent.

APPENDIX D: ANOTHER LEVEL-0 ERG
TRANSFORMATION OF [0,1,2,2] STATES

In this Appendix, we review the ERG0 transformation
of [0,1,2,2] (2D toric code) states following the recipe in
Ref. [14]. In this 0 transformation of a [0,1,2,2] state defined
on a square lattice with PBC, we first separate vertices into A
and B sublattices. Then, we put an additional 1/2-spin in state
|0〉 on each vertex [see Fig. 8(a)]. After that, we apply an LU
transformation U1 that is composed of a series of CNOT gates:
For each additional spin, we act two CNOT gates targeting
on it. More specifically, for an additional qubit in sublattice
A, we use the qubits on the upper and left links as control

FIG. 8. Another ERG transformation of the 2D toric code model
labeled by [0,1,2,2]. This ERG transformation is denoted as ERG0 in
Eq. (2). In (a), we demonstrate how the original vertices are sepa-
rated into two sublattices. A closed string configuration is illustrated,
where |0〉 spins on the links are denoted by blue bars, and |1〉 spins
forming strings are highlighted with red. The four blue arrows on
four vertices denote four additional spins in state |0〉. In (b), we
can see the four vertices are now extended to four links connecting
plaquettes, and their corresponding additional spins, which are also
denoted by bars now, have been transformed by CNOT gates such
that the strings (formed by |1〉 spins) are still closed. These CNOT

gates targeting the four additional spins are denoted by orange arrows
pointing from control qubits to target qubits. In addition, dashed
lines connecting the centers of squares are presented. As we can see,
the action of CNOT gates couples additional and original spins in a
manner that indeed preserves the closed strings pattern of [0,1,2,2]
(2D toric code) state. By dropping all spins nearest to squares after
another LU transformation, we obtain (c), in which a square lattice
with a larger lattice constant appears and spins are located at the
centers of new links [i.e., the dashed lines in (b)]. We can see that,
now, spins on the centers of new links form a [0,1,2,2] state on a
new square lattice. In (d), we demonstrate an assignment of labels
to the eight links around a square, where diagonal links are denoted
by a, b, c, and d; links nearest to the square are denoted by i, j, k,
and l .

qubits; for an additional qubit in sublattice B, we use qubits
on the upper and right links [see Fig. 8(b)]. The action of
U1 can be understood pictorially: Recall that in any allowed
Ising configuration of a [0,1,2,2] state, there must be either
an even number or zero of |1〉 spins around each vertex, thus
flipped spins always form closed strings. Then we can notice
that the design of CNOT gates in U1 exactly preserves this con-
straint by integrating additional spins into the closed strings
pattern.

After that, we further apply an LU transformation U2 to
map the spins around each square to |0000〉 + |1111〉 (normal-
ization is omitted), and such spins can be removed out of the
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state as |0000〉 + |1111〉 can be transformed to a product state
by a LU operator. For the lattice, the LU transformation U2

and the removal of spins effectively shrinks every square to a
vertex as shown in Fig. 8(c). By noticing that in each configu-
ration there is always an even number or zero of diagonal links
around each square with qubits in |1〉, the resulting state also
has the closed strings pattern. Here, to see that U2 is indeed
an LU transformation, we can recognize U2 = ∏

s Us, which
is the product of Us operators supported around each square s.
A Us acts on the four qubits on links nearest to the square s
(denoted by i, j, k, and l) and the four qubits on the diagonal
links around s [denoted by a, b, c, and d , see Fig. 8(d)]. Here,
Us can be roughly recognized as a generalized CNOT gate: It
takes the qubits on diagonal links as control qubits and qubits
on the square as targets. For a specific configuration of the
eight qubits, the action of Us can be obtained as follows: (a) if
all control qubits are |0〉, then flip no target qubits; (b) if two
control qubits are |1〉, then flip the target qubits between them
clockwise following the alphabetical order (e.g., if qubits on
b and d are |1〉, then flip qubits on j and k); (c) if all control
qubits are in |1〉, then flip qubits on i and k. Then, Us obviously

satisfies UsUs = I, thus U−1
s = Us. Next, notice that Ising con-

figurations form a complete basis of the Hilbert space: For an
arbitrary pair of Ising configurations of the eight qubits |ψ1〉
and |ψ2〉, we can obtain that 〈ψ1|Us|ψ2〉 = 〈ψ2|Us|ψ1〉∗: We
only have 〈ψ1|Us|ψ2〉 = 1 when the control qubits in |ψ1〉 and
|ψ2〉 are all the same, and only the qubits to be flipped are
different in |ψ1〉 and |ψ2〉; otherwise, 〈ψ1|Us|ψ2〉 = 0. As a
result, U†

s = Us = U−1
s , thus Us is both unitary and Hermitian.

Since the transformations above do not change the pattern that
the state is invariant under the action of Ap terms on squares,
and Us always maps the configuration of a square to |0000〉 or
|1111〉, we can see that spins nearest to each square are indeed
mapped to |0000〉 + |1111〉.

Finally, we obtain a [0,1,2,2] state on a square lattice with
a larger lattice constant. That is to say, after an ERG trans-
formation composed of adding and removing product states
and LU transformations, the structure of the [0,1,2,2] state is
preserved. Or, from another perspective, the [0,1,2,2] model
is a fixed point of the ERG0 transformation as symbolically
expressed in Eq. (2). A pictorial demonstration of this ERG
transformation is given in Fig. 8.
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