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Plasmons in a two-dimensional nonsymmorphic nodal-line semimetal
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Recent experiments have established a type of nonsymmorphic symmetry-protected nodal lines in the family
of two-dimensional (2D) composition-tunable materials NbSixTe2. Here, we theoretically study the plasmonic
properties of such nonsymmorphic nodal-line semimetals. We show that the nonsymmorphic character endows
the plasmons with extremely strong anisotropy. There exist both intraband and interband plasmon branches. The
intraband branch is gapless and has a q1/2 dispersion. It is most dispersive and is independent of carrier density
in direction normal to the nodal line, whereas along the nodal line, its dispersion is largely suppressed and
its frequency scales linearly with carrier density. The interband branches are gapped and their long-wavelength
limits are connected with Van Hove singularities of the band structure. We find that the single-particle excitations
are strongly suppressed in such systems, which decreases the Landau damping of plasmons. These characters
are further verified by first-principles calculations on 2D NbSixTe2. Interesting features in static screening of
charged impurity are also discussed. Our result reveals characteristic plasmons in a class of nonsymmorphic
topological semimetals and offers guidance for its experimental detection and possible applications.
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I. INTRODUCTION

In topological semimetals (TSMs), the Fermi surface con-
sists of symmetry-protected band degeneracies, such that the
low-energy electronic states can have distinct characters in
their energy dispersion, pseudospin structure, and interband
coherence [1–4]. This leads to many interesting physical
properties, different from conventional metals or doped semi-
conductors. Clearly, the dimensions of the system as well
as of the degeneracy manifold play important roles in the
physics of TSMs. For instance, in three-dimensional (3D)
materials, stable degeneracy manifolds may take the form of
nodal points [5–11], nodal lines [12–15], or nodal surfaces
[16–18]. In recent works, the possible protected band degen-
eracies were systematically classified for all magnetic space
groups [19–23].

The TSM physics has also been actively explored in two-
dimensional (2D) materials [24], which is another research
focus in the past two decades [25,26]. In fact, graphene is
a prominent example of 2D nodal-point TSMs [27], and
studies on graphene drove the whole field of topological ma-
terials [28]. Meanwhile, there has been a lot of interest in
2D nodal-line semimetals [29,30]. Many candidate materials
were proposed [24]. However, most of the proposals suffer
one or more of the following drawbacks. (1) The nodal line
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is far away from the Fermi level. (2) Points on the nodal line
have a large variation in energy. (3) There are other extraneous
bands coexisting at Fermi energy. (4) The material is hypo-
thetical, or is not stable at ambient condition. Points (1)–(3)
make it difficult to probe signatures of nodal-line states, and
point (4) poses a challenge for experimental studies as well as
possible applications.

Recently, a series of theoretical and experimental works
have established a good TSM state in the NbSixTe2 family
of materials [31–36]. These materials were first synthesized
in the 1990s [37]. In the 3D bulk form, they are van der
Waals layered materials, so 2D ultrathin layers can be readily
obtained via mechanical exfoliation [38]. It was shown that
the bulk material possesses hourglass nodal loops, whereas
the 2D monolayer is an almost ideal nodal-line semimetal
protected by a nonsymmorphic symmetry [31]. More inter-
esting, this family belongs to so-called composition-tunable
materials, i.e., there exist a series of stoichiometric members
with the formula Nb2n+1SinTe4n+2, or equivalently NbSixTe2

with x = n/(2n + 1) ∈ [1/3, 1/2] [37,39–41]. While the spe-
cific band dispersion varies with n, all these members in 2D
feature the nonsymmorphic nodal line [34]. It was found that
the low-energy bands that make the nodal line are mainly
from an array of NbTe2 chains, which can be well cap-
tured by a 2D Su-Schrieffer-Heeger (SSH) -like model [36].
Evidently, the NbSixTe2 family materials offer a promis-
ing platform for studying the physics of 2D nodal-line
TSMs.
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Among various physical properties, plasmons, the collec-
tive modes associated with density oscillations of electron
liquid, could directly manifest the distinct characters of low-
energy electronic states. Indeed, plasmons of graphene and
other TSMs have attracted great interest [42–52]. However,
plasmons associated with nodal-line states were mainly stud-
ied in 3D systems, and the line is often assumed to have
the shape of a perfect ring in Brillouin zone (BZ) [53–55].
This is not the case for the nonsymmorphic nodal line in
2D NbSixTe2, which traverses the BZ along a straight path
and exhibits strong anisotropy [34,36]. Thus, it is desirable to
find out how this nonsymmorphic nodal-line state impacts the
plasmon properties.

In this work, we undertake this task and investigate the
plasmons of nonsymmorphic nodal-line TSMs. First, by using
the 2D SSH-like model, we show that the plasmon spec-
trum contains two parts, denoted as intraband and interband
plasmons. The intraband plasmon branch is gapless and has
a q1/2 dispersion. The scaling of plasmon frequency with
carrier density n (or Fermi energy) depends on the propaga-
tion direction, which crosses over from ∼n0 normal to the
nodal line to ∼n along the line. Meanwhile, the two interband
branches are gapped and are connected to the Van Hove sin-
gularities of the band structure. All plasmon branches exhibit
strong anisotropy and a characteristic angular dependence.
The single-particle excitations are strongly suppressed in such
systems, such that the plasmons may enjoy less damping
and longer lifetime. By using first-principles calculations, we
show that the key features obtained from the model study can
indeed manifest in monolayer NbSixTe2, which distinguish
the system from conventional metals and doped semiconduc-
tors. In addition, we show that the screening charge density
induced by a charged impurity also exhibits an interest-
ing signature owing to the nonsymmorphic nodal line. Our
work reveals characteristic plasmon modes in a class of 2D
TSMs and offers guidance for further experimental study on
NbSixTe2 family materials.

II. DIRAC SSH MODEL

In order to capture the nonsymmorphic nodal line in
NbSixTe2 family materials, a minimal lattice model was pro-
posed by some of the current authors in Ref. [36]. In this
section, we briefly introduce this model and discuss its main
features.

As illustrated in Fig. 1(a), the model is defined on a 2D
rectangular lattice, with each unit cell containing two sites
A and B. It is more illuminating by viewing the model as
consisting of an array of zigzag chains running along the x
direction [see Fig. 1(a)]. Physically, each zigzag chain cor-
responds to a NbTe2 chain in NbSixTe2 [34]. The crucial
symmetries that constrain the system are the glide mirror
M̃y = {My| 1

2 0} and the time-reversal symmetry T . The glide
mirror is a nonsymmorphic symmetry which involves half-
lattice translations along the mirror line. We shall see that
these two symmetries determine the existence of the nodal
line.

The model can be constructed in two steps. First, one
writes down the Hamiltonian for a single zigzag chain

FIG. 1. (a) Schematic diagram of the lattice model. The unit cell
is indicated by the black rectangle. (b) Brillouin zone (BZ) of the
model. The nodal line at the boundary of BZ is highlighted in red.
(c), (d) Band structure of the model. Here, energy is in units of t , we
set t ′ = 0.3t , and kx (ky) is in units of �−1

x (�−1
y ).

labeled by j:

H j
chain =

∑
i

(ta†
i, jbi, j + ta†

i, jbi−1, j + H.c.), (1)

where ai, j and bi, j are the particle operators for A and B
sites in a unit cell labeled by the index (i, j). We suppress
spin indices in the model, because the spin-orbit coupling
strength in NbSixTe2 is found to be weak [33,34,36]. This
one-dimensional model is similar to the famous SSH model
[56]. However, in the SSH model, the two t’s in the paren-
theses of (1) are typically of different values, allowing for a
dimerization pattern. In comparison, here, the two hopping
amplitudes must be equal, as dictated by the M̃y symmetry.
It follows that the spectrum of model (1) must be gapless,
with two bands crossing at a Dirac node at the BZ boundary
k = π/�x, where k is the wave vector along the chain and �x

is the lattice constant along x.
The second step is to add the interchain coupling to form

a 2D model. As illustrated in Fig. 1(a), the coupling is added
between the nearest sites of two neighboring chains, described
by

Hinter =
∑

i j

(t ′a†
i, j+1bi, j + t ′a†

i+1, j+1bi, j + H.c.). (2)

Again, the two t ′’s in (2) are dictated by M̃y to be equal. In real
materials, the interchain coupling is typically much smaller
compared to the intrachain coupling. This will be assumed in
the following discussion.

Combining the two parts gives the whole model

H =
∑

j

H j
chain + Hinter. (3)

It is important to note that adding the interchain coupling does
not open a gap in the spectrum. This feature is solely dictated
by symmetry. Consider the algebraic relation satisfied by M̃y:

M̃2
y = T10 = e−ikx�x , (4)

115168-2



PLASMONS IN A TWO-DIMENSIONAL NONSYMMORPHIC … PHYSICAL REVIEW B 107, 115168 (2023)

where T10 is the unit lattice translation along x (the chain
direction). Since [T , M̃y] = 0 and T 2 = 1 here, we have

(T M̃y)2 = e−ikx�x . (5)

Importantly, each point on the BZ boundary path kx = π/�x

(X -M) is invariant under the antiunitary symmetry T M̃y, and
(T M̃y)2 = −1 there. Therefore, the bands on the X -M path
must be doubly degenerate, and this dictates the presence of
a nodal line along this path, as indicated in Fig. 1(b). In the
current model, this nodal line must be formed by the crossing
of the two bands. This also means that the Dirac node we
noticed in (1) is not destroyed by the interchain coupling,
instead, it extends into a Dirac line at the BZ boundary in the
2D model. In order to stress this important difference from the
conventional SSH model, model (3) was termed as the Dirac
SSH model in Ref. [36].

After Fourier transform to momentum space, we have

H(k) = t

[
0 1 + e−ikx�x

1 + eikx�x 0

]

+ t ′
[

0 e−iky�y (1 + e−ikx�x )

eiky�y (1 + eikx�x ) 0

]
, (6)

where the first term corresponds to the intrachain coupling,
and the second term corresponds to the interchain coupling.
The model can be easily diagonalized and its spectrum is
given by

Es(k) = 2s cos
kx�x

2
[t2 + 2tt ′ cos(ky�y) + t ′2]1/2, (7)

with s = ±1. The result confirms a nodal line at kx = π/�x,
where the two bands cross at zero energy. The band structure
of the model is plotted in Figs. 1(c) and 1(d), from which
one can visualize the nodal line at the BZ boundary. One may
expand (7) at a point k∗ = (π/�x, ky) on the nodal line. Then,
to the linear order in q, i.e., the deviation from k∗, we have

Es,k∗ (q) ≈ −sh̄vF (k∗)qx, (8)

where

vF (k∗) = �x[t2 + 2tt ′ cos(ky�y) + t ′2]1/2/h̄ (9)

is the Fermi velocity along the kx direction at the k∗ point.
This confirms the Dirac-type linear band crossing at the nodal
line.

In this work, we always assume the model is around half
filling, i.e., the Fermi energy is not far away from the Dirac
line. One can easily calculate the density of states (DOS)

D(E ) = g
∫

[dk]δ[E − Es(k)] (10)

for the Dirac SSH model, where g = 2 is the spin degeneracy,
and [dk] ≡ ∑

s d2k/(2π )2 is a shorthand notation. At low
energies E , the DOS can be obtained by using Eq. (8) as

D(E ) = g

π�t

2

π (1 + ζ )
K

[
4ζ

(1 + ζ )2

]
≈ g

π�t

(
1 + 1

4
ζ 2

)
.

(11)

Here, � = �x�y is the area of a unit cell, ζ = t ′/t < 1 is a
small number by our assumption, K is the complete elliptic
integral of the first kind, and in the second step, we made
a series expansion in ζ to the second order. As a common
feature for nodal lines in 2D, the DOS is independent of
energy E . This is similar to the usual 2D electron gas, but
is distinct from 2D nodal-point TSMs (like graphene) whose
DOS D(E ) ∼ E [27]. From result (11), the carrier density at
low doping is given by

n(EF ) = DEF , (12)

where EF is the Fermi energy.
Before proceeding, we comment that in 2D systems, be-

sides nonsymmorphic symmetry, a nodal line may also be
protected by a horizontal symmorphic mirror plane. For that
case, the nodal line typically has the shape of a ring centered
around a high-symmetry point in BZ. In comparison, here
the nonsymmorphic nodal line in the Dirac SSH model is
enforced to be located on a path at the BZ boundary, and this
distinct shape manifests a strong in-plane anisotropy. In fact,
the two different shapes of nodal lines, i.e., a ring around a
point or a line traversing BZ, correspond to different topo-
logical classes. As shown in Ref. [57], they are distinguished
by the fundamental (homotopy) group of BZ π1(T 2), which
describes the winding of a loop around the BZ torus. Clearly,
a nodal ring does not wind around the BZ, whereas the nodal
line in Fig. 1(b) winds through the BZ once along the ky

direction. This strong anisotropy of the nodal line in the Dirac
SSH model will manifest in the plasmon properties, as we will
discuss below.

III. PLASMONS IN DIRAC SSH MODEL

Plasmons can be identified as the zeros of the dynamical
dielectric function ε(q, ω) of the system. Here, we evaluate
ε(q, ω) for our 2D Dirac SSH model using the random-phase
approximation (RPA), so that

ε(q, ω) = 1 − vqχ0(q, ω), (13)

where vq = 2πe2

κq is the Fourier component of Coulomb poten-
tial in 2D, κ is the background dielectric constant, and χ0 is
the single-particle polarization function. Explicitly, we have

χ0(q, ω) = g
∑
ss′

∫
d2k

(2π )2

( fsk − fs′k+q) · F k,k+q
ss′

Es(k) − Es′ (k + q) + h̄ω + iη
,

(14)
where fsk is the Fermi distribution function for the band eigen-
state |usk〉, F k,k+q

ss′ = |〈usk|us′k+q〉|2 is the overlap form factor,
and η is a small positive number related to the quasiparticle
lifetime.

Owing to the band structure of the Dirac SSH model and
the constraint from the overlap form factor, we shall see
that the contributions in χ0 from s = s′ and from s 
= s′ give
distinct plasmon branches and they are separated in energy.
Therefore, in the following, we shall study them separately.
The former (from s = s′) will be referred to as intraband
plasmons, and the latter (from s 
= s′) will be called interband
plasmons.
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A. Intraband plasmons

In this section, we examine the intraband plasmons arising
from the contributions with s = s′.

Let us first consider the limit with t ′ → 0, where the anal-
ysis can be greatly simplified yet the results already manifest
general features of the system. In this limit, the zigzag chains
are totally decoupled. Physically, in the NbSixTe2 family of
materials, this limit corresponds to the case with x → 1/2.

It is important to note that for this limit, we have the form
factor

F k,k+q
ss′ = δss′ , (15)

which means only intraband contribution exists, and the inter-
band contribution is totally suppressed. Then, by substituting
Eqs. (8) and (9) into (14), one can obtain

χ0(q, ω) = g
vF

π h̄�y

q2
x

ω2
− ig

qx

h̄�y
δ(ω − vF qx ), (16)

where vF ≡ �xt/h̄ is the constant Fermi velocity normal to the
nodal line in this limit.

The plasmon dispersion is found by substituting (16) into
(13) and requesting Reε(q, ω) = 0. This gives the following
intraband plasmon branch:

ωq =
√

2gαs

�
vF

√
�xq cos θq, (17)

where αs = e2/(κ h̄vF ) is the dimensionless fine-structure
constant, q = |q|, and θq is the (in-plane) polar angle for
the q vector. Here, we obtain an anisotropic dispersion ω ∼
qx/

√
q, because in Eq. (13), although the Coulomb potential

(∼1/q) is isotropic, the polarization function in (16) is highly
anisotropic and only depends on qx.

There are several notable features of this intraband plas-
mon branch. First, it is gapless with a ω ∼ √

q dispersion,
which is characteristic for 2D systems, such as 2D electron
gas and graphene. Second, the dispersion is independent of
the carrier density n (or the Fermi energy). This behavior
is in contrast to other 2D systems, such as 2D electron gas
with ω ∼ n1/2 and graphene (nodal-point TSM) with ω ∼ n1/4

[44]. To understand this behavior, we note that the intra-
band plasmon dispersion strongly depends on two factors:
the “area” of Fermi surface (which is proportional to DOS)
and the band dispersion at Fermi level. For a 2D nodal-line
semimetal and for propagation direction normal to the line,
both factors are independent of Fermi energy (hence the
carrier density), so that ω does not depend on n. Third, as
we discussed, the nonsymmorphic nodal line here exhibits a
strong anisotropy. This manifests in the dispersion through the
cos θq dependence, so that the dispersion is largest in the x
direction and is suppressed in the y direction. Finally, due to
the αs factor, the frequency explicitly involves the Planck con-
stant h̄. This is in contrast to ordinary electron liquids where
the long-wavelength plasma frequency is classical (does not
involve h̄) [58]. As noted in Ref. [44], this feature indicates
the quantum character of Dirac-type fermions.

The damping and lifetime of plasmons are closely related
to the single-particle excitation (SPE) continuum, which can
be derived from the imaginary part of the polarization func-
tion. From Eq. (16), we see that in the limit of decoupled

chains, SPE occurs only on the line ω = vF qx in the (q, ω)
parameter space. This is in sharp contrast to other 2D sys-
tems (such as 2D electron gas and graphene) where the SPE
always covers an extended region [42,58]. It follows that the
plasmons in the Dirac SSH system can be hardly damped by
SPEs and should have a long lifetime. This feature could be
beneficial for possible plasmon-based applications.

Next, we add the interchain coupling t ′ and investigate its
effects on the intraband plasmons. Again, please note that we
assume ζ = t ′/t is small. In this case, the overlap form factor
becomes

F k,k+q
ss′ = δss′ − 1

4 ss′ζ 2q2
y cos2(ky�y), (18)

where higher order correction terms of O(ζ 4) are ignored.
One observes that the second term in (18) gives a correction
for the intraband contribution. Meanwhile, it also makes the
interband contribution nonzero, which we shall discuss in the
next section.

Substituting (18) into (14) and considering the long-
wavelength limit with q  kF ≡ EF /(h̄vF ), we find that for
the intraband term

Im χ intra
0 ≈ 2πgω

∫
FS

[dk] v−1
sk F k,k+q

ss

×δ[Es(k) − Es(k + q) + h̄ω], (19)

where the integration is performed on the Fermi surface, and
vsk = ∇kEs(k)/h̄ is the group velocity of state |usk〉. From this
expression, the intraband SPE continuum can be derived as

h̄ω = �xqx + �yqy, (20)

where �x and �y are functions of k, given by

�x = �xt cos

(
kx�x

2

)
[1 + ζ cos(ky�y)], (21)

�y = −2�yt
′ sin

(
kx�x

2

)
sin(ky�y). (22)

It follows that the SPE continuum evolves from a line in t ′ = 0
limit to a fan-shaped region for t ′ 
= 0 in the (q, ω) space, as
shown in Fig. 2(a).

The real part of χ intra
0 can be obtained as

Reχ intra
0 ≈ g

vF

π h̄�y

1

ω2

[
q2

x − 1

4
ζ 2(q2

x − 2k2
F �2

yq2
y

)]
. (23)

Then, the dispersion of long-wavelength intraband plasmons
in the presence of interchain coupling is

ωq =
√

2gαs

�
vF

√
�xq

[(
1 − 1

4
ζ 2

)
cos2 θq

+ 1

2
ζ 2k2

F �2
y sin2 θq

]1/2

. (24)

One can see that the interchain coupling (nonzero ζ ) gives a
correction to the dispersion. In the limit of ζ → 0, this expres-
sion reduces to Eq. (17), as expected. The previously noted
features, including the

√
q dependence, the strong anisotropy,

and the quantum character (involving h̄ explicitly) are main-
tained after including the interchain coupling. The strongest
dispersion of these plasmons is still along the x direction, i.e.,
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FIG. 2. Intraband plasmons of the Dirac SSH model. (a) The
numerical (blue solid line) and analytic (black dashed line) results
of the intraband plasmon branch along the x direction. The SPE
continuum is marked by the green region. (b) Plot of the energy
loss function, which shows ω ∼ √

q behavior. In (a) and (b), we set
EF = 0. (c) Angular dependence of ω with a fixed q = 0.13/�x and
EF = 0.5t . (d) Plasmon frequency as a function of Fermi level EF

with a fixed q = 0.13/�x . In these figures, ω, qx , and EF are plotted
in units of t/h̄, �−1

x , and t , respectively. Model parameters are the
same as in Figs. 1(c) and 1(d).

the direction normal to the nodal line. Along this direction,
θq = 0 and we have

ωq =
√

2gαs

�

(
1 − 1

4
ζ 2

)
vF

√
�xq, (25)

which is still independent of the carrier density n. The inter-
chain coupling only gives a small correction to the frequency.
Meanwhile, for plasmons propagating along the direction of
the nodal line, i.e., θq = π/2, we have

ωq = √
gαsζvF kF

√
�yq. (26)

Therefore, with the interchain coupling, the intraband plas-
mons in this direction acquire finite frequency. Moreover, due
to the kF factor, the plasmon frequency scales linearly with
n (or EF ). In other words, at finite interchain coupling, there
is a crossover in the scaling of intraband plasmon frequency
from ω ∼ n0 to ω ∼ n, when θq varies from 0 to π/2. Such a
crossover behavior clearly reflects the strong anisotropy of the
nonsymmorphic nodal line.

These features are verified by our numerical calculations
on the Dirac SSH model. In the calculation, the plasmon
modes are extracted from the peaks of the energy loss function

L(q, ω) = Im

[
− 1

ε(q, ω)

]
. (27)

As shown in Fig. 2(a), the result from the numerical calcu-
lation agrees very well with the analytic formula (24). The
plasmons are quite separated from the SPE continuum which
only spans a small region. In Fig. 2(b), we plot the frequency

versus q1/2, so that one can clearly see the ω ∼ q1/2 disper-
sion. Figure 2(c) shows the angular dependence of plasma
frequency at a fixed wave vector magnitude. The frequency
is maximum at direction normal to the nodal line and is mini-
mum along the nodal line, reflecting the strong anisotropy of
the system. Finally, in Fig. 2(d), we plot ω as a function of
EF for different propagation directions, which confirms the
scaling behavior discussed above.

We comment that strongly anisotropic plasmons were also
studied before in other systems, such as TTF-TCNQ [59,60].
However, TTF-TCNQ is a 3D material and its low-energy
bands are of conventional quadratic dispersion. These factors
result in gapped intraband plasmon branches, conventional
frequency scaling behavior, and extended SPE regions, which
are distinct from our system.

B. Interband plasmons

From the overlap form factor in (18), we notice that along
the x direction, only intraband plasmons exist. However, for
other directions, especially the y direction, interband contri-
butions with s 
= s′ can exist when there is nonzero interchain
coupling t ′. For these interband modes, χ0 may involve virtual
transitions between states away from the nodal line, so it is dif-
ficult to get simple analytic results. In the following, we shall
proceed with numerical calculation of the Dirac SSH model.

Figure 3(a) shows the obtained energy loss function for
q along the nodal-line (y) direction, where such interband
plasmons are most pronounced. One observes that besides
the gapless intraband branch at low frequencies, there are
two other gapped branches at much higher frequencies. They
correspond to the interband plasmons.

As we mentioned, these interband modes are related to
interband virtual transitions in the band structure. Actually,
one can see that the long-wavelength limit of the two branches
encode the information of the Van Hove singularities of the
Dirac SSH band structure. As indicated in Fig. 3(b), in the
q → 0 limit, the virtual transitions are vertical, and there are
two dominant frequencies ω1 and ω2 corresponding to the Van
Hove singularities at Y and � of BZ. It is more convenient
to visualize these two frequencies as corresponding to the
singularities in the joint density of states (JDOS), as shown
in Fig. 3(c). In the plasmon spectrum, ω1 and ω2 are exactly
the limiting values of the two interband branches in the q → 0
limit. (Here, the intensity of the peak vanishes, because the
form factor is zero in this limit.) With increasing q, the fre-
quency of the upper branch decreases and the lower branch
increases, and the two merge at q = π/�y, corresponding to
the interband transitions from � to Y or from Y to �, owing
to the particle-hole symmetry of the model. Such connection
between interband plasmons and singularities in JDOS is
generic and is observed also in many other systems, e.g., in
a recent study on twisted double bilayer graphene [61].

Another feature to be noted is that the band width of these
two interband branches is on the order of interchain coupling
t ′. This can be easily understood by noting that this width
scales with the electronic band energy variation along ky,
which is governed by t ′. In Fig. 3(d), we plot the plasmon
spectrum at a decreased value of t ′ as compared to Fig. 3(a).
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FIG. 3. (a) Energy loss spectrum along the nodal line. The two
upper branches are the interband plasmons. The peaks of the energy
loss function are highlighted by blue dashed lines. (b) The two
frequencies ω1 and ω2 associated with the Van Hove singularities at Y
and � are marked by the red arrows. (c) Joint density of states (JDOS)
of the model. The two frequencies manifest as singularities in the
plot. In (a)–(c), the model parameters are the same as in Figs. 1(c) and
1(d) (with ζ = 0.3). qy and JDOS are plotted in units of �−1

y and
1/(�t ). (d) is the same as panel (a) but with a smaller interchain
coupling ζ = 0.1.

Indeed, one observes that the interband branches become
flatter.

IV. MATERIAL RESULT

We have studied the plasmonic properties of the 2D Dirac
SSH model. In this section, we shall see whether these
properties can manifest in the real material system, i.e., the
monolayer NbSixTe2 family of materials.

Figures 4(b) and 4(c) show the crystal structure of
Nb3SiTe6 (i.e., x = 1/3). The structure consists of three
atomic layers. The Nb and Si atoms form the middle layer,
which is sandwiched by two layers of Te atoms. Within the
2D plane, the structure can be viewed as constructed by three
basic building blocks, which are conventionally named as a, b,
and c chains, as illustrated in Fig. 4(a). a and b chains contain
Si atoms, and they share the same composition of NbSi1/2Te2.
In comparison, the c chain does not contain Si, so it has a
composition of NbTe2. a and b chains are connected by the
glide mirror symmetry M̃y, and they always stick together.
In terms of these building blocks, Nb3SiTe6 in Fig. 4(c) has
the configuration of (ab)1c. Other members of the NbSixTe2

family are obtained by repeating more (ab) chain units be-
tween the c chains, so they have the general configuration of
(ab)nc [34], as shown in Fig. 4(d). In this picture, their general
chemical formula may also be written as (Nb2SiTe4)n(NbTe2).

We perform first-principles calculations on the three mem-
ber materials with n = 1, 2, 3. The calculation method is
given in the Appendix. Previous works showed that the spin-
orbit coupling is weak in these materials [33,34,36], so it is
neglected in our calculation. The obtained band structures are
plotted in Fig. 5, which agree with previous results [34]. One

FIG. 4. (a) Building blocks (a, b, and c chains) of NbSixTe2

family materials. See the discussion in the text. (b), (c) Side and
top views of Nb3SiTe6, corresponding to the n = 1 case. The dashed
lines mark the unit cell. (d) Structure of general configuration (ab)nc,
n � 1, where n copies of (ab) chains are inserted between two c
chains.

observes that the three band structures share similar features,
with a nonsymmorphic nodal line close to the Fermi level on
the X -M path, formed by the crossing of two bands. Previous
studies showed that the low-energy states are mainly from the
c chains [34,35]. The intrachain coupling is strong, making
a sizable dispersion along the x direction (along the chain).
The interchain coupling is relatively weak and it naturally
decreases with increasing n. Based on the first-principles band
structures, we compute their plasmon spectra in RPA. First,

FIG. 5. (a) BZ of the NbSixTe2 family of materials. (b)–(d) Band
structures of (Nb2SiTe4)n(NbTe2) with n = 1, 2, 3.
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FIG. 6. (a)–(c) Plasmon spectra along x (normal to the nodal
line) for the NbSixTe2 family of materials. The SPE regions are
marked in green. (d)–(f) show the plot of energy loss function in this
direction and the plot is versus

√
q to explicitly show the scaling. We

take EF = 0 (i.e., undoped case) in these calculations.

consider the plasmon dispersion along x, i.e., the direction
normal to the nodal line. The results are plotted (versus
q1/2) in Fig. 6. One can see that there is a single gapless
branch with ω ∼ q1/2 in this direction, representing the in-
traband plasmons, consistent with our model result in Fig. 2.
The plasmon peaks in Figs. 6(e) and 6(f) are quite sharp,
indicating their weak Landau damping and long lifetime. In-
deed, our calculation shows that the SPE continuum for n = 2
or 3 is far separated from the plasmon branch. In comparison,
the plasmon peaks for n = 1 are smeared out for h̄ω above
50 meV [Fig. 6(d)]. This is due to the overlap with the SPE
region [see Fig. 6(a)]. The SPE continuum for n = 1 spans a
much larger region, because the material’s band structure has

a stronger deviation from the Dirac SSH model, as indicated
by the red arrows in Fig. 5(b).

In Fig. 7(a), we show the variation of the intraband plas-
mon frequency with Fermi energy. One observes that at a fixed
wave vector qx, the frequencies are almost independent of EF ,
which confirms the scaling behavior we find in the model
study.

In Fig. 7(b), we plot the angular dependence of intraband
plasmons, showing a behavior consistent with the model result
in Fig. 2(c). It confirms that the dispersion is strongest along
x (i.e., normal to the nodal line) and is suppressed along y
(parallel to the nodal line).

Next, we plot the energy loss spectra along the y direction
in Fig. 7(c). One observes the presence of interband plasmon
branches at higher frequencies. This agrees with the model
result. Nevertheless, there appear to be more than two in-
terband branches, especially for n = 2 and 3. This is due
to the presence of other nearby bands in Fig. 5, which also
contribute to the interband transitions. Consistent with our
model analysis, one can see that the width of the interband
branches decreases with n. For n = 2 and 3, these branches
become very flat, again reflecting the weak interchain
coupling.

In addition, one also observes in Fig. 7(c) that the intra-
band plasmon branch is strongly suppressed with increasing
n, which almost entirely disappears for the n = 3 case. This
again indicates that the interchain coupling is already very
small for n = 2 and 3, so the Dirac bands become almost dis-
persionless along the nodal line, which suppresses intraband
plasmons in this direction.

V. DISCUSSION AND CONCLUSION

We have discussed the distinct features of plasmons in
the class of nonsymmorphic nodal-line TSMs. The example
materials used in our study, namely, the NbSixTe2 family
materials, already exist. Their high-quality 2D ultrathin layers
have been demonstrated in experiment [38]. In addition, there
exist several other isostructural materials, including TaSixTe2,
NbGexTe2, and TaGexTe2, with the similar nodal-line band
structure [31,40,41]. We expect our theory can be readily
tested in these materials.

As for probing the plasmon excitations, there are several
established experimental techniques, such as electron energy
loss spectroscopy (EELS) [62,63], inelastic helium atom scat-
tering, and transmission electron microscopy. Particularly, the

FIG. 7. (a) Frequency of intraband plasmon in NbSixTe2 as a function of Fermi level EF . Here, q = 0.02 Å−1 and θq = 0. (b) Angular
dependence of the intraband plasmons for the n = 2 case with a fixed q = 0.02 Å−1. Here, we set EF = −50 meV. (c) Calculated energy loss
spectra along the y direction for the n = 1, 2, 3 cases. We set EF = 0 and the qy is in units of 2π�−1

y .
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FIG. 8. Screening charge density δn(r) induced by a charge im-
purity at the origin. (a) ζ = 0 and (b) ζ = 0.3. Here, x and y are
plotted in units of �x and �y. The model parameters are the same as
in Figs. 1(c) and 1(d) and we take EF = 50 meV.

high-resolution EELS provides a powerful tool for mapping
out the plasmon spectrum. It was demonstrated that the tech-
nique can reach a resolution of a few meV and the detected
frequency range can reach ∼1 eV [63,64]. Hence, our pre-
dicted features in 2D NbSixTe2 should be easily detectable in
experiment.

In addition, we mention that besides plasmons, the unusual
dielectric function for nonsymmorphic nodal-line TSMs may
also manifest in the screening charge distribution induced
by a charge impurity. Consider a charge impurity next in a
2D system. Its induced screening charge density δn can be
expressed as

δn(r) =
∫

dq
(2π )2

[
1

ε(q, 0)
− 1

]
next(q)eiq·r. (28)

For usual 2D electron gas, the induced charge density δn
exhibits the well-known Friedel oscillation, with δn(r) ∼
cos(2kF r)/r2. The oscillation wave vector 2kF arises from
the singularity in the static dielectric function ε(q, 0). Now,
consider the Dirac SSH model. For the t ′ → 0 limit, the Fermi
surface (at EF 
= 0) are given by two straight lines parallel to
the nodal line. From Eq. (15), singularities in ε(q, 0) arise only
from the nesting vector restricted to each piece of the Fermi
surface. Importantly, the special Fermi surface here gives not
one but a continuum of nesting wave vectors qŷ along the y
direction. After Fourier transform to real space, the induced
charge density should exhibit peaks on a straight line along x
through the charge impurity, as shown in Fig. 8(a). Increasing
t ′ to a nonzero but small value, we find that the distribution
of singular wave vectors evolve from a single line to two
lines forming a cross at q = 0. Accordingly, the screening
charge density peaks also transform from the horizontal line
in Fig. 8(a) to two almost straight lines through the charge
impurity as in Fig. 8(b).

In conclusion, we discover interesting plasmon properties
in a class of 2D nonsymmorphic nodal-line TSMs. Using

the Dirac SSH model, we show that the system possesses
two kinds of plasmons: the gapless intraband plasmons and
the gapped interband plasmons. The intraband plasmons have
a q1/2 dependence. The dispersion and the carrier density
scaling are highly anisotropic. Normal to the nodal line, the
dispersion is strongest and is independent of carrier density;
whereas along the nodal line, the dispersion is largely sup-
pressed and is linear in the carrier density. The interband
plasmons have a quite flat dispersion, with band width scaling
with the interchain coupling. Their long-wavelength limits are
connected with transitions between Van Hove singularities of
the band structure. Most these plasmons are separated from
the SPE continuum, so they should have a weak Landau damp-
ing. The revealed features are also verified in the NbSixTe2

family of materials via first-principles calculations. Our work
reveals physical consequences of a topological state of matter.
The predicted physics will also motivate further studies on 2D
nonsymmorphic nodal-line TSMs and on the NbSixTe2 family
of materials.
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APPENDIX: CALCULATION METHOD

The electronic structures of the NbSixTe2 were calculated
based on the density functional theory using the Vienna
Ab initio Simulation Package [65–67]. The ionic potentials
were treated with the projector augmented-wave pseudopo-
tentials [68], with 4p65s14d4, 3s23p2, and 5s25p4 valence
electron configurations for Nb, Si, and Te atoms, respec-
tively. The exchange-correlation energy was treated with the
generalized-gradient approximation [69] in the scheme of
the Perdew-Burke-Ernzerhof [70] approach. The plane-wave
cutoff energy was set to be 400 eV and the convergence
thresholds for energy and force were chosen to be 10−7 eV and
0.001 eV/Å, respectively. �-centered k-point meshes with
size 10 × 6 × 1 for (ab)1c and 10 × 4 × 1 for (ab)2c and
(ab)3c were used for BZ sampling. After obtaining the band
structure, ab initio tight-binding models were constructed by
using the WANNIER90 package [71]. The p orbitals of Te atoms
and the d orbitals of Nb atoms were used as the initial input
of local basis. The Wannier model was used to calculate the
dynamical dielectric function in RPA.
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