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Anomalous Josephson current through a driven double quantum dot
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Josephson junctions based on quantum dots offer a convenient tunability by means of local gates. Here we
analyze a Josephson junction based on a serial double quantum dot in which the two dots are individually
gated by phase-shifted microwave tones of equal frequency. We calculate the time-averaged current across the
junction and determine how the phase shift between the drives modifies the current-phase relation of the junction.
Breaking particle-hole symmetry on the dots is found to give rise to a finite average anomalous Josephson
current with phase bias between the superconductors fixed to zero. This microwave gated weak link thus realizes
a tunable “Floquet ϕ0 junction” with maximum critical current achieved for driving frequencies slightly off
resonance with the subgap excitation energy. We provide numerical results supported by an analytical analysis
for infinite superconducting gap and weak interdot coupling. We identify an interaction-driven 0-π transition of
anomalous Josephson current as a function of driving phase difference. Finally, we show that this junction can
be tuned so as to provide for complete rectification of the time-averaged Josephson current-phase relation.
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I. INTRODUCTION

The Josephson junction (JJ) has become a ubiquitous de-
vice serving in a wide range of applications, including the
superconducting qubits which have led to impressive ad-
vances in quantum computing during the past two decades
[1–5]. The weak link coupling the two superconductors can
either be a plain insulating tunnel barrier, or it may exhibit
internal structure such as a normal region, a quantum point
contact, a magnetic tunnel barrier, or a quantum dot (QD),
which all host subgap states which may strongly influence
the current-phase relation (CPR) of the junction [6–12]. In
this way, electrically gatable links such as quantum dots or
semiconductors offer a certain tunability of the JJ charac-
teristics [13–16], a feature which has been employed in the
design of a hybrid gatemon [17–19], adding gate control to the
superconducting transmon qubit [20,21], which has already
demonstrated its efficiency in solid state quantum computing
[22–24].

Whereas normal Josephson junctions carry no current at
zero phase bias, ϕsc = ϕL − ϕR, a weak link which breaks both
time-reversal and chiral symmetry may carry an anomalous
Josephson current between two superconductors maintained
at zero phase bias [25]. A number of proposals [25–38] have
been made for such ϕ0 junctions with an anomalous Josephson
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current, I (ϕsc) = IC sin(ϕsc + ϕ0), at least two of which have
already been realized experimentally [39,40]. Of particular
relevance to the present work is the proposal by Zazunov
et al. [25] to use a multiorbital QD with interorbital (spin-
orbit) tunneling and an external field. With such a link in
the JJ, traversing electrons pick up different phases, depend-
ing on the tunneling direction, giving rise to an anomalous
Josephson current. This proposal has since been realized in an
experiment by Szombati et al. [40], using an InSb-wire QD
contacted by superconducting NbTiN leads. Here, we propose
a nonequilibrium version of the multiorbital QD considered
in Ref. [25], based on the device illustrated in Fig. 1. In
this Josephson junction, the two superconductors are coupled
by a serial double quantum dot (DQD) where the two dots
are driven by individual ac gate voltages with a common

FIG. 1. Sketch of a Josephson junction with a structured weak
link (gray region) based on a driven double quantum dot. The super-
conductors (blue) are maintained at a fixed phase bias ϕsc = ϕL − ϕR,
and the weak link is driven by two microwave gates with the same
amplitude and frequency, A,�, shifted in phase by θd = θL − θR. The
internal and the two external tunneling amplitudes are denoted by td ,
tL , and tR, respectively.
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amplitude, A, and microwave frequency, �. This endows each
of the QDs with Floquet sidebands, which play the roles of
the additional spin-orbit coupled orbitals in Ref. [25]. As we
demonstrate below, the phase difference between the two drive
voltages, θd = θL − θR, can have a strong influence on the
time-averaged JJ CPR, and with QD levels tuned away from
particle-hole symmetry it gives rise to anomalous current,
which in the limit of weak tunnel couplings reduces to a
simple ϕ0 junction, with ϕ0 = θd . Since the time-averaged
critical current is maximized when the microwave frequency
is close to the energy for exciting both of the subgap states
induced in the two proximitized quantum dots, this device
comprises a nonadiabatic Cooper pair pump, or more aptly
a “Floquet ϕ0 junction.”

The undriven DQD Josephson junction with individual gat-
ing of the two dots has already been realized experimentally
[16,41–43], and understood to constitute a strongly correlated
transport problem involving the formation of subgap states,
which depend strongly on the charge configuration of the
(Coulomb blockaded) dots [12,16,32,44–49]. Here we cir-
cumvent a number of these complications by replacing each
of the dots with a noninteracting resonant level. Whereas this
would clearly be a poor description of Coulomb blockaded
QDs in many other respects, the two models do share the cru-
cial features of the mechanism we wish to illustrate, namely,
the presence of subgap states with a strong gate dependence.

As a weak link for a JJ, the resonant level model behaves
much like a quantum point contact (QPC) with a CPR which
reflects the phase dispersion of the subgap Andreev bound
states (ABS) [8,44,50]. A JJ based on a Coulomb blockaded
QD, however, is known to exhibit a transition from a ϕ0 = π

to a ϕ0 = 0 phase [9,10,12,14,47,48], and the results pre-
sented below are therefore of greater direct relevance for a
realistic Coulomb blockaded QD in its ϕ0 = 0 phase stabi-
lized for strong tunnel couplings [51], or for a long normal
junction with a finite dwell time [52]. Nevertheless, the effects
discussed here rely merely on the breaking of time-reversal
and chiral symmetry by the phase-shifted drives, and should
apply quite generally to the fully interacting system. This is
confirmed for the interacting infinite-gap limit, considered in
the Appendix.

Dating back to the seminal work on photon-assisted tunnel-
ing by Tien and Gordon [53], the problem of nonadiabatically
(microwave) driven Josephson junctions has been expanded
to include also junctions with QPC, QD, DQD, or mag-
netic adatom weak links [54–63]. Experimentally, the ABS
in such junctions have been measured and manipulated us-
ing microwave spectroscopy [64–69], and these techniques
are by now becoming widely available. Recently, Venitucci
et al. [61] demonstrated that phase-shifted microwave volt-
ages applied to each of the superconductors in a JJ with
a single resonant level as the weak link can give rise to
photon-assisted Cooper pair transfer and a tunable ϕ0 junc-
tion. Similarly, Soori and Sivakumar [70] have studied a
finite-size tight-binding model of a superconductor/normal
conductor/superconductor (SNS) junction and found that a
phase-shifted drive on the two sites comprising their normal
region leads to anomalous Josephson current. The model stud-
ied here is similar in spirit but not equivalent to these two
studies.

We consider the driven DQD itself as a highly tunable weak
link and map out its time-averaged anomalous CPR. This
reveals a highly nontrivial dependence on the time average
as well as the phase shift of the two oscillating gate volt-
ages, including a complete rectification of the time-averaged
Josephson current. We employ the infinite-gap limit to un-
derstand the detailed weak-coupling behavior near resonant
driving, including a closed analytical expression for the ϕ0

phase shift. We also use a numerically exact Floquet solu-
tion in the infinite-gap limit to establish the symmetries of
the time-dependent Josephson current, to explore the effects
of interactions, and to assess the sensitivity to initial condi-
tions which are conveniently circumvented in the steady-state
Green’s functions approach.

The paper is organized as follows. In Sec. II we present
the model. In Sec. III we define the relevant Nambu-Floquet-
Keldysh Green’s functions and provide an expression for the
time-averaged steady-state current to be calculated. In Sec. IV
we study the limit of infinite gap, in which the main effect of
the ϕ0 junction can be established analytically in the limit of
weak interdot tunnel coupling. Section V contains the numer-
ical results for the current and the CPR for the driven junction.
Section VI briefly summarizes the main conclusions. The
Appendix provides a supplementary analysis for the infinite-
gap limit using Floquet theory, which allows us to also
investigate the effects of local Coulomb interactions, and to
confirm the rectification of the time-averaged supercurrent.

II. MODEL

We consider a noninteracting serial double quantum dot
with on-site energies modulated by individual ac gate voltages
and tunnel coupled to two (left/right) superconducting leads
(cf. Fig. 1). The Hamiltonian reads

H (t ) =
∑

α=L,R

Hsc,α + Hd(t ) + Ht, (1)

with superconducting leads described by BCS Hamiltonians

Hsc,α =
∑
k,σ

[ξαkc†
αkσ cαkσ + (	eiϕα cαk↑cα−k↓ + H.c.)], (2)

for α = L, R. The two leads are kept at the same chemical
potential and are assumed to have the same gap magnitude,
	 > 0, with different phases, ϕL,R = ±ϕsc/2. Both leads are
represented by a featureless band structure near a common
chemical potential, i.e., ξαk = εαk − μ, corresponding to a
common density of states, νF , near the Fermi level. The time-
dependent Hamiltonian of the double quantum dot system
reads

Hd(t ) =
∑

σ ;α,α′∈L,R

d†
ασ

[
εdα (t )τ 0

αα′ + tdτ
x
αα′

]
dα′σ , (3)

with individual ac gate voltages given as εdα (t ) = εd +
A cos(�t + θα ), in terms of common (time) average energies,
εd , driving amplitudes, A, frequencies, �, and two inde-
pendent phase constants, θα . Here, τ i denotes the ith Pauli
matrix, τ 0 the Kronecker delta, and td is the interdot tunneling
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amplitude. The tunneling Hamiltonian reads

Ht =
∑

k,σ,α=L,R

tαc†
αkσ dασ + H.c. (4)

Written in terms of Nambu spinors, ψ
†
αk = (c†

αk↑, cα−k↓) and

φ†
α = (d†

α↑, dα↓), the full Hamiltonian reads

H (t ) =
∑
αk

ψ
†
αk(ξαkσz − 	σx )ψαk

+
∑
αα′

φ†
α

(
εdα (t )τ 0

αα′ + tdτ
x
αα′

)
σzφα′

+
∑
αk

(ψ†
αkTαφα + φ†

αT ∗
α ψαk ), (5)

where the phase of the superconducting leads has been gauged
into the tunneling matrix, Tα = tασzeiσzϕα/2. For simplicity, we
assume below that tunneling amplitudes to the leads are real
and equal, i.e., tL = tR ≡ t .

As discussed in the Introduction, we neglect the charging
energies of both quantum dots, except for the limiting case
of infinite gap considered in the Appendix, and consider this
noninteracting resonant level model as an effective model for
a proximitized quantum dot.

III. KELDYSH FLOQUET GREEN’S FUNCTIONS

To calculate the current through the ac-driven device,
we employ the nonequilibrium Green’s function technique
[71–73]. Dealing with a harmonic drive, it is convenient to use
Floquet-Keldysh Green’s functions [74,75], which offer a rep-
resentation of the two-time Green’s functions, which, besides
being convenient for numerical calculations, allows for some
degree of physical interpretation of the elementary transport
process in terms of Floquet sidebands. The time-dependent
charge current from dot α to lead α for this driven junction is
found as [73]

Iα (t ) = 2(−e)Tr

{
σzRe

[ ∫
dt ′ (

GR
d,αα (t, t ′)�<

α (t ′, t )

+ G<
d,αα (t, t ′)�A

α (t ′, t )
)]}

, (6)

with e = |e|, and where the trace is taken in Nambu space with
Nambu/lead (η/α) matrix Green’s functions for the quantum
dots defined as

GR,A
αη,α′η′ (t, t ′) = ∓ iθ (±t ∓ t ′)〈{φαη(t ), φ†

α′η′ (t ′)}〉, (7)

G<
αη,α′η′ (t, t ′) = i〈φ†

α′η′ (t ′)φαη(t )〉,
G>

αη,αη′ (t, t ′) = − i〈φαη(t )φ†
α′η′ (t ′)〉, (8)

with self-energies, which are exact to second order in dot-lead
tunneling,

�R,A,<
α (t ) =

∑
k

T ∗
α gR,A,<

αk (t )Tα, (9)

where gαk denotes the Nambu Green’s function in lead α.
From this self-energy, the dot Green’s functions can be found
by solving the steady-state Dyson equations,

GR/A(t, t ′) = GR/A(0)(t, t1) +
∫

dt1dt2GR/A(0)(t, t1)

× �R/A(t1 − t2)GR/A(t2, t ′), (10)

G<(t, t ′) =
∫

dt1dt2GR(t, t1)�<(t1 − t2)

× GA(t2, t ′), (11)

with matrix products between Green’s functions implied.
With a periodic drive, it is convenient to transform these

two-time Green’s functions into Floquet matrices [75]

Onm(ω) =
∫ ∞

−∞
dt ′ 1

T

∫ T

0
dt ei(ω+n�)t−i(ω+m�)t ′

O(t, t ′), (12)

defined with ω ∈] − �/2,�/2]. This transformation pre-
sumes that the Green’s functions are periodic in both time
arguments, with the driving period T = 2π/�, and thereby
rests on the assumption that the system has reached a nonequi-
librium steady state (NESS). In this way, the time-averaged
current, J = JL = −JR, may be found from the zeroth Floquet
components,

Jα = 1

T

∫ T

0
dt Iα (t )

= 2(−e)Tr

{
σzRe

[ ∫ �/2

−�/2
dω

(
GR

d,αα (ω)�<
α (ω)

+ G<
d,αα (ω)�A

α (ω)
)]}

. (13)

Here, the Green’s functions and self-energies are matrices in
Nambu, and Floquet space and the trace is performed over
both. The components of the self-energy in dot, and Floquet
space are given by

�R,A,<
α,nm (ω) =T ∗

α gR,A,<
α (ω + n�)Tαδnm, (14)

where the momentum-summed lead Nambu Green’s functions
are given explicitly as

gR,A
α (ω) = πνF

−(ω ± i0+)σ 0 + 	σ x√
	2 − (ω ± i0+)2

, (15)

g<
α (ω) = nF (ω)

(
gA

α (ω) − gR
α (ω)

)
, (16)

where nF denotes the Fermi function. Henceforth, tempera-
ture is assumed to be zero.

Finally, using the Dyson equation (10), the retarded
double-dot Green’s function is found by inverting the follow-
ing infinite-dimensional Floquet matrix of 4 × 4 matrices in
Nambu-dot space:(

GR,A
d (ω)

)−1

αα′,nm = { − tdσ
zτ x

αα′ + [
(ω + n�)σ 0

− T ∗
α gR,A

α (ω + n�)Tα − εdσ
z
]
τ 0
αα′

}
δnm

− A

2
(e−iθα/2δn−m,1 + eiθα/2δm−n,1)σ zτ 0

αα′ .

(17)
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From the resulting retarded and advanced Green’s functions,
the lesser function is found from Eq. (11) by simple matrix
multiplication.

IV. INFINITE-GAP LIMIT WITH WEAK INTERDOT
TUNNEL COUPLING

It is instructive to first consider the analytically tractable
limit of an infinite superconducting gap. This limit prohibits
quasiparticle tunneling altogether and transport therefore
takes place only via Cooper pairs. It captures much of the
physics of the bound states, including a singlet to doublet
ground state transition in the presence of interactions [45,51].
In the infinite-gap limit, the retarded QD self-energy becomes

T ∗
α gR,A

α (ω + n�)Tα ≈ −�e−iσzϕασx, (18)

with � = πνF |t |2, corresponding to an effective Hamiltonian
describing a proximitized quantum dot with an induced super-
conducting gap of �:

H∞(t ) =
∑

α=L,R

φ†
α[εdα (t )σ z − �σ x]φα

+ φ
†
LTdφR + φ

†
RT ∗

d φL, (19)

with a matrix of tunneling amplitudes given by Td,ηη′ =
|td |σ z

ηη′ exp(iσ z
ηη′ϕsc/2), where ϕsc = ϕL − ϕR.

In order to illustrate the basic microwave-assisted Cooper
pair transport mechanism within this infinite-gap model, we
calculate here the weak-coupling tunneling charge current
from right, to left dot, to second order in the interdot coupling
td , given by the perturbative expression [76]

I (t ) = 2(−e)|td |2Re

[ ∫ t

0
dt ′σ z

η′η′e
i
(
σ z

η′η′−σ z
ηη

)
ϕsc/2

× (G>
Lη,Lη′ (t, t ′)G<

Rη′,Rη(t ′, t )

− G<
Lη,Lη′ (t, t ′)G>

Rη′,Rη(t ′, t ))

]
. (20)

The driving enters this expression through the time-dependent
correlation functions, G<,>

αη,αη′ (t, t ′), describing the dynamics
of the QD proximitized by lead α = L, R.

The perturbative expression for the current requires the
Green’s functions for td = 0, and in this case the Hamiltonian
(19) describes two independent quantum dots. It is readily di-
agonalized by the time-dependent Bogoliubov transformation
(suppressing the QD index, α = L, R):

χν = Uνηφη, χ†
ν = φ†

ηU −1
ην , (21)

with Nambu spinors

χ =
(

γ↑
γ

†
↓

)
, φ =

(
d↑
d†

↓

)
, (22)

and time-dependent unitary transformation matrix

U (t ) =
(

u(t ) −v(t )
v(t ) u(t )

)
, U −1(t ) = U T (t ), (23)

with Ed (t ) =
√

ε2
d (t ) + �2 and real coherence factors

given by

u(t ) =
√

[1 + εd (t )/Ed (t )]/2,

v(t ) =
√

[1 − εd (t )/Ed (t )]/2. (24)

Notice that we omit the α = L, R subscript for clarity since
it only enters in the two different phase shifts, θα , and can
readily be reinstalled. This transformation diagonalizes the
Hamiltonian for each of the two different proximitized levels,

H0
∞(t ) = φ†[εd (t )σ z − �σ x]φ = χ†Ed (t )σ zχ , (25)

and endows the quasiparticles with dynamics governed by the
equation of motion,

i
d

dt
χν (t ) =

[
Ed (t )σ z

νν ′ + A�� sin(�t + θ )

2E2
d (t )

σ
y
νν ′

]
χν ′ (t ),

(26)

where the last term has been obtained as

−iUνη(t )

(
d

dt
U −1

ην ′ (t )

)
= A�� sin(�t + θ )

2E2
d (t )

σ
y
νν ′ . (27)

The corresponding transformation of the correlation functions
reads

G<
ηη′ (t, t ′) = iU −1

ην (t )Uν ′η′ (t ′)〈χ†
ν ′ (t ′)χν (t )〉,

G>
ηη′ (t, t ′) = − iU −1

ην (t )Uν ′η′ (t ′)〈χν (t )χ†
ν ′ (t ′)〉. (28)

The many-body eigenstates of the uncoupled and undriven
QD are the empty QD, |0〉, the single-electron doublet, |σ 〉 =
d†

σ |0〉, and the doubly occupied QD, |2〉 = d†
↑d†

↓|0〉, with en-
ergies 0, εd , εd , and 2εd , respectively. For the proximitized
QD, the BCS-like ground state becomes |0̃〉 = u|0〉 + v|2〉,
the excited doublet, |σ 〉, remains unchanged, and the highest
excited state becomes |2̃〉 = u|2〉 − v|0〉, with energies 0, Ed ,
Ed , and 2Ed , respectively [cf. Fig. 2(a)].

When the system is driven with low amplitude, A  Ed ,
close to resonance, i.e., � ≈ 2Ed , transport can take place as
indicated in Fig. 2(b) to second order in td . Since the mixing
term (27) is already proportional to driving amplitude, A, we
shall neglect the time dependence of Ed (t ) in its denomi-
nator and in coherence factors u and v, assuming that A 
max(εd , �). This allows us to include the mixing term (27)
within a rotating-wave approximation (RWA), which leads to
the following equation of motion:

i
d

dt
χν (t ) ≈ [

Edσ
z
νν ′ + ge−i(�t+θ )σ z

νν σ x
νν ′

]
χν ′ (t ), (29)

where g = A��/(2Ed )2. This equation is readily solved by

χν (t ) = e−iσ z
νν (�t+θ )/2Ũ −1

νμ ζμ(t ), (30)

with a secondary unitary transformation as

Ũ −1
νν ′ =

(
ũ ṽ

−ṽ ũ

)
νν ′

, (31)
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FIG. 2. (a) A schematic of the four many-body eigenstates of a
single proximitized undriven QD. The ground state has zero energy,
the excited doublet has energy Ed , and the two-quasiparticle state
has energy 2Ed . (b) Diagram illustrating the path of a Cooper pair
through the driven DQD junction in progression from panels 1–5.
Driving the microwave gates with � ∼ 2Ed induces a near resonant
transition from |0̃〉 to |2̃〉 in the left QD (1 and 2), followed by a
two-step excitation transfer to the right QD via td (2–4), which finally
decays via its own microwave gate (4 and 5).

defined in terms of

ũ =
√

(1 + δ/Ẽ )/2, ṽ =
√

(1 − δ/Ẽ )/2. (32)

Here, δ = Ed − �/2 is the detuning, and the Rabi energy Ẽ =√
δ2 + g2 captures the slow time evolution of the corotating

Nambu spinor

ζμ(t ) = ζμ(0)e−iẼtσ z
μμ, (33)

with initial condition ζμ(0) = eiσ z
ννθ/2Ũμνχν (0).

For concreteness, we assume both proximitized quantum
dots to be in their ground state, |0̃〉, at time t = 0. Using the
relations

χν (0)|0̃〉 = δν,2| ↓〉, χ†
ν (0)|0̃〉 = δν,1| ↑〉, (34)

the time-evolved states are found as

χν (t )|0̃〉 = Xν (t )| ↓〉, χ†
ν (t )|0̃〉 = iτ y

νν ′Xν ′ (t )| ↑〉, (35)

with

X (t ) =
(

e−i�t/2e−iθ i(g/Ẽ ) sin(Ẽt )
ei�t/2

(
cos(Ẽt ) + i(δ/Ẽ ) sin(Ẽt )

))
. (36)

Reinstating the lead index α on θ and inserting this into
Eq. (28), one finally arrives at the correlation functions

G<
αη,αη′ (t, t ′) = i(bα (t ), aα (t ))η(b∗

α (t ′), a∗
α (t ′))η′ ,

G>
αη,αη′ (t, t ′) = −i(a∗

α (t ),−b∗
α (t ))η(aα (t ′),−bα (t ′))η′ , (37)

with generalized time-dependent coherence factors,

aα (t ) = eiθα/2(−v, u)νXαν (t ),

bα (t ) = eiθα/2(u, v)νXαν (t ), (38)

satisfying |aα (t )|2 + |bα (t )|2 = 1. The time-dependent cur-
rent in Eq. (20) may now be expressed as

I (t ) = 4(−e)|td |2Re

[
a∗

L(t )b∗
R(t )

∫ t

0
dt ′(aL(t ′)bR(t ′)

+ bL(t ′)aR(t ′)e−iϕsc ) − (L ↔ R, ϕsc ↔ −ϕsc)

]
,

(39)

involving time-local interdot pair amplitudes like

aL(t )bR(t ) = i(u2eiθd /2 − v2e−iθd /2)(g/Ẽ ) sin(Ẽt )

× [cos(Ẽt ) + i(δ/Ẽ ) sin(Ẽt )]

+ uv
{

e−i(�t+θ )(g/Ẽ )2 sin2(Ẽt )

+ ei(�t+θ )[cos(Ẽt ) + i(δ/Ẽ ) sin(Ẽt )]2
}
, (40)

with θd = θL − θR and θ = (θL + θR)/2.
This result relies on the weak-amplitude assumption of

neglecting the time dependence of Ed (t ) in Eq. (26) and the
subsequent RWA, which is expected to hold only close to res-
onance, i.e., for δ, g  � [54]. In the undriven limit, g → 0,
the product in Eq. (40) reduces to

aL(t )bR(t ) = uvei(2Ed t+θ ),

which leads to the time-dependent current

I (t ) = e|td |2�2

ε2
d + �2

sin(ϕsc)Re

[
2ie−2iEd t

∫ t

0
dt ′e2iEd t ′

]

= e|td |2�2(
ε2

d + �2
)3/2 sin(ϕsc)[1 − cos(2Edt )]. (41)

The time-dependent part, which derives from the t = 0 limit
of the integral, vanishes under long-time averaging leaving
only the equilibrium supercurrent

J = lim
tI →∞

1

tI

∫ tI

0
dt I (t ) = e|td |2�2(

ε2
d + �2

)3/2 sin(ϕsc). (42)

In the other limit, where δ = 0, the system is driven exactly
at resonance, and one finds that all terms in I (t ) become
sinusoidal and the long-time average of the current vanishes
altogether. Notice that this is regardless of ϕsc, meaning that
to leading order in td the resonant drive washes out the equi-
librium supercurrent carried by the undriven system.

In the general case of finite coupling, g, and finite detuning,
δ, the last two terms in Eq. (40) will generally be suppressed
by the fast oscillating phase factors, and we may therefore
retain only the first slowly oscillating term, which carries no
information about θ and only depends on the phase difference,
θd . These products reduce to

aL(t )bR(t ) ≈ − f (θd )h(t ),

aR(t )bL(t ) ≈ − f (−θd )h(t ), (43)

with

f (θd ) = εd

Ed
cos(θd/2) + i sin(θd/2),

h(t ) = δg

Ẽ2
sin2(Ẽt ) − i

g

2Ẽ
sin(2Ẽt ). (44)
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Finally, introducing κ (θd , ϕsc) = f (θd )eiϕsc/2 = κ ′ + iκ ′′, the
current takes the following form:

I (t ) ≈ 8(−e)|td |2Re

[
κ∗(θd , ϕsc)h∗(t )

∫ t

0
dt ′h(t ′)

]
κ ′(θd , ϕsc)

− (θd ↔ −θd , ϕsc ↔ −ϕsc)

= − 2e|td |2 δg2

Ẽ4
κ ′(θd , ϕsc)κ ′′(θd , ϕsc)

[2Ẽt sin(2Ẽt ) − sin2(2Ẽt ) − 4 sin4(Ẽt )]. (45)

The long-time average becomes

lim
tI →∞

1

tI

∫ tI

0
dt (sin2(2Ẽt ) + 4 sin4(Ẽt ) − 2Ẽt sin(2Ẽt ))

= 2 + cos(2ẼtI ), (46)

which still depends on the integration time, tI , but with a well-
defined long-time average deriving from the first term, which
leads to

J = 4e|td |2 δg2

Ẽ4
κ ′′(θd , ϕsc)κ ′(θd , ϕsc)

≈ 4e|td |2A2�2

E2
d

(2Ed − �)

[(2Ed − �)2 + (A�/Ed )2]2

×
[(

ε2
d

E2
d

cos2(θd/2) − sin2(θd/2)

)
sin(ϕsc)

+
(

εd

Ed
sin(θd )

)
cos(ϕsc)

]

= 4e|td |2A2�2

E2
d

(2Ed − �)

[(2Ed − �)2 + (A�/Ed )2]2

×
(

1 − �2

E2
d

cos2(θd/2)

)
sin(ϕsc + ϕ0), (47)

with the phase shifted by

ϕ0 = arctan

(
2εd Ed tan(θd/2)

ε2
d − E2

d tan2(θd/2)

)

+ πθ (Ed | tan(θd/2)| − εd ). (48)

This expression is valid to leading order in td , close to reso-
nance, |� − 2Ed |  �, and for weak drive amplitude A� 
�2. The fast rotating terms which we have neglected in this
expression are formally smaller by factors δ/� and g/� and
provide for the following correction to the long-time average
current (47):

δJ = 4e|td |2δ
16E2

d (g2 + δ2)2[4(g2 + δ2) − �2]

×
(

16g�(g2 + δ2) cos(θ )[Ed cos(ϕsc/2) sin(θd/2)

+ εd sin(ϕsc/2) cos(θd/2)]

+ �2 sin(ϕsc)[2g2δ(3δ − 4�)

− 9g4 + δ3(15δ − 8�)]
)
, (49)

which tends towards the undriven result, Eq. (42), in the limit
of g → 0 with g  δ  �.

The time-averaged current in Eq. (47) switches sign, when
tuning the drive across resonance at � = 2Ed from red (δ >

0), to blue (δ < 0) detuning. This can be traced back to the fact
that each of the driven quantum dots Rabi oscillates between
states |0̃〉 and |2̃〉, with time-averaged probabilities of finding
the QD in either state given by P0̃/2̃ = (1 ± δ2/Ẽ2)/2.

Since the time-dependent current in Eq. (39) has opposite
sign when choosing the initial state to be |2̃〉, this implies that
the total current averages to zero when the system is driven
at resonance, δ = 0. Likewise, the long-time average of the
interdot pair amplitude (40) comprising the current in Eq. (41)
reduces to

〈aLbR〉 = lim
tI →∞

1

tI

∫ tI

0
dt aL(t )bR(t )

= − gδ

2Ẽ2
f (θd ), (50)

which is linear in the detuning and vanishes at resonance.
The average current attains its maximum for � = 2Ed ±
A�/(

√
3Ed ) with

〈I〉max ≈ 3
√

3e|td |2Ed

4A�

(
ε2

d

E2
d

cos2(θd/2) + sin2(θd/2)

)

× sin(ϕsc + ϕ0). (51)

One should keep in mind that the counter-rotating terms ne-
glected within the RWA will lead to a Bloch-Siegert shift [54]
of the resonance frequency of the order of A2/Ed  1, and
for strong enough drive amplitudes the RWA breaks down
altogether.

Tuning the levels away from the Fermi level, i.e., for
|εd | � �, we have Ed ≈ |εd | and the current becomes

J ≈ 4e|td |2A2�2

ε2
d

(2|εd | − �) sin[ϕsc + ϕ0(θd )]

[(2|εd | − �)2 + (A�/εd )2]2
, (52)

which is a Floquet ϕ0 junction with

ϕ0(θd ) = sgn(εd )θd + π θ [− cos(θd )], (53)

exhibiting a sharp sign change in current when cos(θd ) passes
through zero.

In the opposite limit, where the two levels are close to the
Fermi levels of the two superconducting leads, i.e., |εd |  �,
we have Ed ≈ � and arrive at

J ≈ 4e|td |2A2 (2� − �) sin2(θd/2)

[(2� − �)2 + A2]2
sin(ϕsc), (54)

which corresponds to a normal Josephson 0 junction below
resonance (� < 2�), and a π junction above resonance (� >

2�). In this limit, the phase shift of the two drives, θd , serves
only to modulate the amplitude, attaining maximum critical
time-averaged current when the drives are shifted by θd = π ,
and blocking it altogether for θd = 0.

This average current was calculated under the assumption
of an even number of electrons occupying each of the two
levels, with the specific initial condition that the system is in
its lowest energy state at time zero. In a real system, however,
quasiparticle poisoning and relaxation will cause occasional
switching of the parity of each of the two levels, limiting
the accessible integration time, tI . With typical parity flip
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times of the order of 20–200 μs [65,77–79], a resonant drive
frequency, � ∼ 2Ed , of the order of 10 GHz, say, will take
the system through some 106 drive cycles before the parity is
flipped. The long-time average in Eq. (46) makes the current
in Eq. (45) resemble the undriven result in Eq. (41), but with
frequency down-converted from Ed to the much slower Rabi
frequency Ẽ and with amplitude given by Eq. (47). Within the
validity of the RWA, Ẽ/� ∼ 10−3, say, this down-converted
current would still oscillate through some 103 Rabi periods
between subsequent parity flips, leaving sufficient integration
time to define a long-time average. The full problem incor-
porating the stochastic parity switching dynamics poses an
interesting problem in itself, which we shall not pursue further
in this work. Instead, we shall analyze the steady-state Dyson
equation (11), in which the parity is relaxed in the infinite gap
limit by a weak coupling to a normal metallic reservoir. For
a finite gap, the Floquet sidebands of the continuum provide
the same effect and the normal metallic reservoir is no longer
needed.

Notice that the full lesser component of the Dyson equa-
tion has a second contribution [73], (1 + GR�R)G<

0 (1 +
�AGA), referring to the initial lesser function, and that this
term has been omitted altogether in Eq. (11). This omission
rests on the tacit assumption that �< contains relaxation
mechanisms, which will wash out the initial conditions,
i.e., that �< � GR,−1

0 G<
0 GA,−1

0 = (GR,−1
0 − GA,−1

0 ) f0, where
f0 denotes an initial distribution function. In the present tun-
neling problem, �< refers to quasiparticle tunneling to and
from the superconducting leads and to the weak tunneling
of electrons directly between the dots and a normal metal
reservoir. The former contribution vanishes altogether in the
infinite-gap limit, and the steady-state Dyson equation (11) as
well as the Floquet-Keldysh transformation (12) are therefore
justified in the infinite gap limit by the normal metal tunneling
rate, �m, which is large enough to dominate the finite η =
(GR,−1

0 − GA,−1
0 )/(2i) used in our numerical implementation

of the bare Green’s functions of the leads, yet small enough
not to affect the result.

V. NUMERICAL RESULTS

In this section we present the numerical results obtained
with the Floquet-Keldysh Green’s functions introduced in
Sec. III. We shall focus entirely on the time-averaged quan-
tities, which may be found as the zeroth Floquet components,
and we shall narrow down the rather large parameter space to
illustrate some of the most interesting time-averaged current-
phase relations realized by this driven junction.

In practice, the inversion of the Nambu-Floquet matrix (17)
is carried out by truncating to the nmax lowest Floquet modes,
i.e., working with square matrices of dimension 4(1 + 2nmax).
For all numerical results presented below, we ensure that nmax

is large enough that increasing it further does not affect the
results. Furthermore, we use a finite broadening in the lead
Green’s functions, replacing 0+ by η = 10−4 in Eq. (15),
which, like all energy and frequency (h̄ ≡ 1) parameters used
below (except for the infinite-gap limit), is specified in units
of 	. In order to facilitate the numerical integration over
the sharp subgap states in the infinite-gap limit, both levels
are weakly coupled to a normal metallic lead with chemical

FIG. 3. Dashed lines: Plots of the weak-coupling anomalous
Josephson (ϕsc = 0) current in Eq. (47) in the infinite-gap limit
as a function of the driving frequency, showing the maxima on
each side of the node right at resonance, � = 2Ed . Parameters are
chosen such that td = �/100, εd = �/10, and θd = π/2, together
with three different driving amplitudes (see inset). Full lines: Numer-
ical calculation of the current using Eq. (6) with the same parameters
as above and with 	 = 104, η = 10−4, and an additional broadening
of the QD states corresponding to a normal metal tunneling rate
�m = �/500.

potential aligned with the two superconducting leads, μm = 0.
This gives rise to a finite imaginary part, �m, of the d-electron
self-energies (14), which is chosen to be smaller than any
other scale in the problem, yet resolved by the discretized
numerical integrations. In practice, this corresponds to a fi-
nite parity relaxation time, which is longer than any other
timescale in the problem. As discussed in the previous section,
this also constitutes the formal justification of the steady-state
Dyson equation (11). For a finite gap, the continuum of the
superconducting leads provides the necessary broadening for
the numerical calculations, and the normal metallic lead is not
needed.

A. Infinite- and large-gap results

In order to connect to the results of the previous section, we
first consider the large-gap limit, 	 � �, in which all current
is carried by Cooper pairs, at weak tunnel coupling and close
to resonance. The resulting time-averaged current [cf. Eq. (6)]
is shown in Fig. 3 as a function of the driving frequency in a
narrow range around resonance. It is seen to match the per-
turbative results very well. Figure 4 shows the time-averaged
current as a function of the two phase differences, ϕsc and θd ,
for a fixed driving frequency slightly below resonance. We
show this together with two cuts illustrating a good match to
Eq. (47).

Increasing the amplitude of the drive and fixing the driving
phase shift at θd = π/2, gives rise to highly nontrivial CPRs,
of which a few examples are shown in Fig. 5. For a small
driving amplitude (A = 0.1� shown) the CPR is modified by
narrow dips of the current, occurring at values of ϕsc for which
an integer multiple of the driving frequency, �, becomes
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FIG. 4. (a) Density plot of the weak-coupling current vs su-
perconductor phase difference and phase shift of the two drives
obtained by numerical evaluation of Eq. (6). The current vanishes
at the black solid lines. (b) Solid lines correspond to cuts along
the dashed blue (θd = π ), and green (ϕsc = 0) lines indicated in the
upper panel, together with the corresponding analytical infinite-gap
weak-coupling current from Eq. (47) limit (dashed). In both panels,
parameters are td = �/100, A = εd = �/10, and � = 2�. In the
numerical evaluation the infinite gap was replaced by 	 = 104, while
η = 10−4 and �m = �/500.

FIG. 5. Current-phase relation in the infinite-gap limit (	 =
104�) with and without drives of amplitude A, frequency � = 2.2�,
and phase shift θd = π/2. Both levels have energy εd = 0.8� with
a weak normal metal tunneling rate �m = �/500, and are tunnel
coupled by td = 2�.

resonant with a subgap transition energy. This is similar to
what is predicted for superconducting junctions with only a
single drive [56,57], the main difference being that in the
present case (like in Ref. [61]) the CPRs are not symmetric
around ϕsc = π and the resonant dips are not current nodes.
For higher driving amplitudes (A = 0.8� shown) the current is
reduced, as for the junctions with only a single drive, but now
the CPR is severely modified with no special significance of
either ϕsc = 0 or ϕsc = π , both exhibiting finite supercurrent.

For comparison, in the Appendix we calculate the current
using the same parameters as for the blue curve (A = 0.1�) in
Fig. 5, but now using Floquet states to determine the time evo-
lution starting from the nondriven even-parity ground state.
This is done in the infinite-gap limit and with no coupling
to a normal metal (�m = 0), and the long-time average of
the resulting current shows excellent correspondence with
the steady-state current in Fig. 5 (cf. Fig. 10). Furthermore,
intradot Coulomb interactions are straightforwardly included
in this approach and are shown in Fig. 10 to remove the sharp
dips in the current when the interaction strength becomes of
the order of the driving frequency �. The systematic behavior
relies on many parameters, but the main effect of the interac-
tions is to change the resonance condition for the drive. In a
real system with parity relaxation, increasing the interaction
strength will of course stabilize an odd-parity ground state for
the undriven system serving as a π junction [16,45].

B. Finite-gap results

Turning to the case of a finite BCS gap, i.e., the more
realistic case where 	 is no longer much larger than all other
energy scales, we first fix the superconductor phase difference
to zero (ϕsc = 0) and plot the time-averaged current as a
function of the drive frequency in the upper panel (a) of Fig. 6.
The lower panel (b) shows the corresponding time-averaged
density of states on the proximitized double quantum dot,
exhibiting pronounced peaks at two slightly different ABS
energies, split by the interdot tunnel coupling td , together with
their weaker first, and even weaker second Floquet sidebands.
From this plot, one may now understand the various features
in the current.

Coming from large �, the small bump in the current near
the vertical grid line labeled c corresponds to a resonance
between the first sideband of the two ABS and the BCS quasi-
particle continuum near � = 	 + EABS � 1.5	. At lower
frequencies the current attains its largest magnitude slightly
off resonance, and a node right at resonance, � � 2EABS �
1.2	, near the vertical grid line labeled b. Here a positive ABS
energy matches the first sideband of a negative ABS energy
and vice versa, as illustrated in Fig. 2 for weak td . For lower
frequencies near the vertical grid line labeled a, the current
exhibits another bump, corresponding to crossings of ABS
sidebands with each other or with the continuum. Apart from
this additional structure arising from the finite gap or from
a substantial driving amplitude, the overall frequency depen-
dence of the current clearly resembles the resonant structure
found in the infinite-gap limit in Fig. 3. For the rest of the
paper, we fix the drive frequency to be slightly off the main
resonance at � � 2EABS where this anomalous supercurrent
attains it maximum.
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FIG. 6. (a) Time-averaged current at zero superconductor phase
difference (ϕsc = 0) as a function of drive frequency. (b) Correspond-
ing time-averaged density of states on the DQD. Both panels are
evaluated with 	 = 3�/2, td = �, A = 0.4�, εd = 0.1�, ϕsc =
0, θd = π/2, and nmax = 7.

To further investigate the effect of the continuum in the
anomalous current we show in Fig. 7 how the current varies
with 	 and �. Coming from high 	, the resonant min-zero-
max structure observed near � = 2EABS in Figs. 3 and 6(a)
persists down to a ratio of approximately 	/� � 2–3, with
only a slight shift in the resonance frequency. Notice also the

FIG. 7. Time-averaged current at zero superconductor phase
difference (ϕsc = 0) as a function of drive frequency and BCS
gap magnitude. Parameters are chosen as in Fig. 6: td = �, A =
0.4�, εd = 0.1�, ϕsc = 0, θd = π/2, and nmax = 7. The black
dashed line at 	 = 3� is the cut shown in Fig. 6.

faint vertical features showing up at lower frequencies, which
we ascribe to higher sideband resonances at � = 2EABS/n
with n = 2, 3, . . . . For lower 	, deviations from the infinite-
gap limit become more pronounced. The current becomes
very small and frequency independent, consistent with a weak
adiabatic pumping of normal current, similar to the case with
normal leads [80]. The line separating the two regions corre-
sponds to the condition for resonance between the continuum
and the first Floquet sideband to the negative energy ABS,
i.e., � = 	 + EABS, where the energy of the ABS itself also
depends on the superconducting gap [44,50,56]. A second
line with twice the slope is also observed. It corresponds
to a resonance between the second Floquet sideband of the
negative energy ABS and the quasiparticle continuum, beyond
which the resonances carrying supercurrent are not modified.
Interestingly, this second sideband is observed to anticross
with the first sideband of the positive energy ABS, which
gives rise to a large enhancement of the resonant current
peak at frequency just below � = 2EABS. Since this anti-
crossing involves sidebands crossing with the continuum, this
enhancement of the current is most likely due to a dissipative
quasiparticle current. On the other hand, the nearly vertical
features in this figure, including the most pronounced min-
zero-max resonance, correspond to a current of Cooper pairs,
which are being pumped across the junction by phase-shifted
resonances between subgap states and their Floquet sidebands
as indicated in Fig. 2.

C. Modified and rectifying current-phase relations

The time-averaged current can be tuned in a number of
ways. In the previous sections, we have focused on the res-
onant aspect by tuning the external driving frequency, �, and
the BCS gap, 	. In this section, we keep these parameters
fixed and study instead how the CPR of this driven DQD
Josephson junction is modified by the level position, εd , and
the driving phase shift, θd , respectively. As established in the
Appendix for single-state time evolution in the infinite-gap
limit, the symmetries of the Floquet Hamiltonian guarantee
the following symmetries of the time-averaged current:

J (ϕsc, θd , εd ) = −J (−ϕsc, θd ,−εd ), (55)

= −J (−ϕsc,−θd , εd ). (56)

As we shall see below, these symmetries are also respected
when the current is calculated from steady-state Green’s func-
tions and with a finite BCS gap.

In Fig. 8(a), we show the time-averaged current as a
function of superconducting phase difference, ϕsc, and level
position, εd , with a driving phase shift of θd = π/2. The
current is calculated using the numerical steady-state Green’s
function approach and is observed to respect the symmetry re-
lation expressed by Eq. (55). Three different cuts are shown in
the lower panel (b). For εd = 0, the vertical black dashed cut
illustrates the usual antisymmetry around ϕsc = π , and zero
anomalous current at ϕsc = 0. This symmetry breaks down for
εd �= 0 and, as indicated by the vertical green dashed cut, may
even lead to a unidirectional supercurrent, corresponding to
complete rectification. The horizontal blue dashed cut, on the
other hand, illustrates the antisymmetry of the current under
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FIG. 8. (a) Density plot of the time-averaged current vs εd and
ϕsc. The current vanishes at the black solid lines. (b) Cuts in panel
(a) for, respectively, ϕsc = 0 (blue), εd = 0 (black), and εd = 0.2	.
The green cut at εd = 0.2	 shows a completely rectified current,
which remains positive for all values of ϕsc. In both panels, param-
eters are 2� = td = 0.7	, A = 0.8	, � = 0.9	, θd = π/2, and
nmax = 7.

inversion of εd for ϕsc = 0. In Fig. 9(a), we show instead
the time-averaged current as a function of superconducting
phase difference, ϕsc, and level position, εd , with a driving
phase shift of εd = 0.8	. This plot is observed to respect
the symmetry relation expressed by Eq. (56). Again, three
different cuts are shown in the lower panel (b). The verti-
cal red dashed cut shows the anomalous relation between
time-averaged current and the driving phase shift, θd , with
the superconductor phase difference fixed at ϕsc = 0. Akin
to an ordinary π junction, the anomalous current attains its
maximum near, although not right at, θd = π/2. The three
horizontal (black, blue, and green) dashed cuts illustrate the
strongly modified CPRs for fixed θd . Switching from θd = 0
to θd = π , the driven Josephson junction is seen to switch the
current-phase relation from a π to a 0 junction, as seen in the
black and the blue curves, respectively, up to a slight anhar-
monicity in both. Once again, the green cut realizes a rectified
time-averaged current. Since the BCS gap is finite, there is
no guarantee that this completely rectified pump current is
exclusively a current of Cooper pairs. Nevertheless, as we
show in Fig. 12 in the Appendix a nearly completely rectified
current can also be obtained in the infinite-gap limit where

FIG. 9. (a) Density plot of the time-averaged current vs θd and
ϕsc. The current vanishes at the black solid lines. (b) Cuts in panel
(a) for, respectively, θd = π (blue), θd = 0 (black), and ϕsc = 0 (red).
The blue (black) cut constitutes a slightly anharmonic 0 (π ) junc-
tion. The cut at θd = 1.6π (green line) shows a completely rectified
current, which remains positive for all values of ϕsc. In both pan-
els, parameters are 2� = td = 0.7	, A = 0.8	, εd = 0.8	, � =
0.9	, and nmax = 11.

all current must be carried by Cooper pairs, indicating that
there is no fundamental obstacle to attaining a unidirectional
time-averaged supercurrent for all ϕsc.

VI. CONCLUSIONS

The microwave-enabled DQD Josephson junction studied
here offers a highly tunable superconducting circuit element,
in which the traversing supercurrent is controlled by two
phase-shifted microwave tones applied to the individual gate
voltages of each quantum dot. This driven device comprises
an effective Josephson junction with a highly nontrivial CPR
which can be tuned electronically. More specifically, the
phase-shifted microwave drives induce an alternating tunnel-
ing current between the two superconducting leads, whose
long-time average exhibits an anomalous and often highly
anharmonic relation to the superconductor phase difference.

The supercurrent response to the driving relies on nonadia-
batic resonant photon-assisted tunneling. This was established
in the infinite-gap limit by means of perturbation theory and
by time evolution of the nondriven ground state using Floquet
theory (cf. Appendix ). For a finite BCS gap, the steady-state
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time-averaged current was calculated numerically by means
of Floquet-Keldysh Green’s functions. Whereas the general
finite-gap current may include some fraction of normal current
carried by BCS quasiparticles, the main resonant pump cur-
rent arising when the drive frequency is slightly off resonance
with the energy difference between the two subgap ABS was
argued to be carried mainly by Cooper pairs.

For clarity, we have restricted our analysis to a sym-
metrically coupled device, where only the microwave phase
shift breaks the L/R-inversion symmetry. None of the salient
features demonstrated in this case rely critically on this sym-
metry, as can readily be assessed in the infinite-gap limit using
the Floquet theory employed in the Appendix . Likewise, local
Coulomb interactions, reflecting the finite charging energies
of the quantum dots, are readily included within the infinite-
gap Floquet theory and was shown in the Appendix to alter
the resonance conditions and thereby affect the time-averaged
current. Nevertheless, the anomalous Josephson effect (and
the rectification) persisted, and was found to exhibit a 0-π
transition in θd , as the interaction strength increased past a
critical value. Furthermore, the symmetry relations, Eqs. (55)
and (56), were generalized to the interacting case, and used
to infer that the anomalous current vanishes more generally at
the particle-hole symmetric point, εd = −U/2. Naturally, not
all conclusions drawn from the infinite-gap limit need hold
for the more realistic case where U � 	, which leads to the
formation of Yu-Shiba-Rusinov states [47,51] and makes the
corresponding analysis more complicated.

In light of the recent interest in Josephson diodes [81–84],
we emphasize the fact that this driven Josephson junction of-
fers complete rectification of the time-averaged supercurrent.

Note added. Recently, we became aware of a paper by
Soori [85] pointing out a Josephson diode effect present
in a nonadiabatically driven two-site SNS junction explored

also in Ref. [70]. With this work we have demonstrated that
complete rectification persists throughout a finite range of
parameters. The more detailed requirements for rectification
in driven junctions are relegated to future work.
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APPENDIX: FLOQUET ANALYSIS OF THE INTERACTING
INFINITE-GAP LIMIT

The infinite-gap limit offers relatively easy access to the
symmetries of the problem, which are also revealed by the
steady-state numerical calculations presented in the main text.
In this Appendix, we employ Floquet theory to provide a brief
supplementary analysis of this more tractable limit, in which
local Coulomb interactions on the quantum dots can readily
be included. Furthermore, since no quasiparticle excitations
are involved in the infinite-gap limit, all currents calculated
below are carried exclusively by Cooper pairs. We choose to
consider only the even-parity sector, but a similar analysis is
straightforwardly made for the odd-parity sector.

In the even-parity sector, the Hilbert space is spanned by
the basis {|00〉, |20〉, |02〉, |22〉, | ↑↓〉, | ↓↑〉}, where the left
(right) index indicates the many-body states of the left (right)
dot. In this basis the first quantized Hamiltonian reads

Ĥe,∞ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −� −� 0 0 0
−� 2εd + U 0 −� z −z
−� 0 2εd + U −� z∗ −z∗
0 −� −� 4εd + 2U 0 0
0 z∗ z 0 2εd 0
0 −z ∗ −z 0 0 2εd

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A1)

with tunneling matrix elements z = td eiϕsc/2, and with the local
intradot Coulomb interaction, U , now included. From this,
one may construct the even-parity Floquet Hamiltonian, HF

e ,
corresponding to the harmonic driving term, A cos(�t ), from
the matrix elements [86–88]

ĤF
e,mn = (Ĥe,∞ − n�Î )δmn + V̂ δn−m,1 + V̂ †δm−n,1, (A2)

where Î denotes the 6 × 6 unit matrix, and V̂ is defined as the
6 × 6 matrix with diagonal elements

A

{
0, eiθL , eiθR , eiθL + eiθR ,

eiθL + eiθR

2
,

eiθL + eiθR

2

}
, (A3)

and zeros elsewhere. Truncating this infinite-dimensional ma-
trix and solving the 6(2nmax + 1)-dimensional eigenvalue

problem

nmax∑
n=−nmax

ĤF
e,mn|un

ν

〉 = εν |um
ν

〉
, (A4)

the time-dependent Schrödinger equation is solved by the six
Floquet states,

|ψν (t )〉 = e−iεν t
nmax∑

n=−nmax

e−in�t
∣∣un

ν

〉
, (A5)

corresponding to the six quasienergies in the first Floquet
Brillouin zone, −�/2 < εν < �/2, for ν = 1, 2, . . . , 6. Ex-
pressing these six eigenstates in the original six-dimensional
even-parity basis, |un

ν〉 = ∑
i un

ν (i)|i〉, a given initial state may
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FIG. 10. Interaction dependence of the current-phase relations
for parameters as in Fig. 5 (� = 2.2�, θd = π/2, εd = 0.8�, td =
2�), with A = 0.1�. Full lines correspond to the result obtained us-
ing the methods in this Appendix. Blue (green, red) lines correspond
to U = 0 (U = �, U = 2�). Dashed black line is the same result as
Fig. 5, also for A = 0.1�.

now be expressed as

|�(0)〉 =
6∑

ν,i=1

cν

nmax∑
n=−nmax

un
ν (i)|i〉, (A6)

from where the coefficients cν are found by inverting the
square (nν) matrices un

ν (i). Finally, the solution for the full
time evolution of the state can be expressed as

|�(t )〉 =
6∑

ν,i=1

cνe−iεν t
nmax∑

n=−nmax

e−in�t un
ν (i)|i〉. (A7)

1. Time-averaged current

From this time-evolved state, the time-dependent expecta-
tion value of the charge current operator, Î = (2e)∂ϕsc Ĥe,∞, is
determined as

I (t ) = 〈�(t )|Î|�(t )〉 (A8)

= 2e
∑

μν,i j,mn

c∗
μcν

[
um

μ ( j)
]∗

un
ν (i)

× ei(εμ−εν+(m−n)�)t 〈 j|Î|i〉,
which leads to the long-time average

J = lim
tI →∞

1

tI

∫ tI

0
dt I (t )

= 2e
∑
ν,n,i j

|cν |2
[
un

ν ( j)
]∗

un
ν (i)〈 j|Î|i〉. (A9)

Using the same parameters as in Fig. 5 and choosing the
ground state of the undriven system as the initial state, one
may now calculate the matrices, un

ν (i), together with the cor-
responding coefficients, cν , and evaluate the time-averaged
current using formula (A9). The result is shown in Fig. 10,
with full blue (green, red) lines corresponding to U = 0 (U =
�,U = 2�). For comparison, the Green’s function result

FIG. 11. Anomalous Josephson current at ϕsc = 0 versus driving
phase difference, θd , for interaction strengths ranging from U = 0
(red) to U = 5� (blue) in steps of �. A marked sign change in current
takes place between U = 2.3� (thin black dashed) and U = 2.35�

(thin gray dashed). Other parameters are as for the red curve in
Fig. 5 (� = 2.2�, θd = π/2, εd = 0.8�, td = 2�, A = 0.7�, and
nmax = 9).

shown in Fig. 5 for A = 0.1� is included here as the black
dashed line. The two methods are in excellent agreement,
and capture the same resonances, shown here to lie on top
of the grid lines placed at the values of ϕsc at which an integer
multiple of � matches a bound state transition energy. As U is
increased, the effects of driving are diminished and at U = 3�

they are completely gone.
The red curve in Fig. 5, corresponding to A = 0.7�,

displays a finite anomalous Josephson current at ϕsc = 0.
In Fig. 11, we use the same parameters to show that this
anomalous Josephson current depends strongly on the phase
difference of the two drives, θd , as found also with a finite
BCS gap in the red curve of the right panel of Fig. 9. Here,
however, one observes also a sign change of the anoma-
lous Josephson current, corresponding to a transition from a
0-to π -junction behavior in θd , when increasing the interac-
tion strength. For the chosen parameters, this takes place at
a critical interaction strength, Uc ∼ �, but the more detailed
parametric dependence of Uc is beyond the scope of this paper.

Finally, with Fig. 12, we demonstrate that nearly complete
rectification of the time-averaged current is possible also in
the infinite-gap limit, where all current is carried by Cooper
pairs. Unlike the finite-gap results shown in Figs. 8 and 9,
parameters have been fine-tuned so as to make the current pos-
itive for all phase differences, ϕsc. Figure 12 also demonstrates
an explicit dependence of the current on the initial conditions
as a spread in curves obtained for different Floquet gauges
[89], corresponding to different values of θR. This is indicated
by a set of some 63 gray curves, corresponding to evenly
spaced values of θR between 0 and 2π , which are averaged
to obtain the blue curve. A similar spread will be obtained
for the curves in Fig. 11 (not shown for clarity), whereas in
Fig. 10, the driving amplitude is low enough that the results
depend only on the phase difference, θd . This spread increases
with driving amplitude and gives a rough indication of sensi-
tivity of the long-time average of the Floquet time-evolved
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FIG. 12. Nearly rectified time-averaged current-phase relations
in the infinite-gap limit for 63 evenly spaced values of θR ∈ [0, 2π ]
(gray curves) together with the corresponding θR-averaged (blue)
curve. Parameters are chosen to be � = 2.1�, θd = π/3, εd =
0.95�, td = 2�, A = 0.94�, and U = 0.045�.

current on initial conditions, and thereby whether they can be
expected to be valid also within a driven steady state.

2. Symmetries of the current

The time-dependent current and thereby its long-time
average obeys a few basic symmetries, which are most eas-
ily revealed by reverting to the time-dependent infinite-gap
Hamiltonian for the even sector obtained by replacing εd

by εd (t ) in Ĥe,∞. The corresponding time-dependent in-
finite gap Hamiltonian, Ĥ (εd , ϕsc, θL, θR, t ) = Ĥe,∞|εd →εd (t ),
and the current operator obey the transformation properties

ÎĤ (ϕsc, θL, θR,U, εd , t )Î = Ĥ (−ϕsc, θR, θL,U, εd , t ),

ĈĤ (ϕsc, θL, θR,U, εd , t )Ĉ
= Ĥ (−ϕsc, θL + π, θR + π,U,−εd − U, t ) +δĤ ,

(A10)

and

Î Î (ϕsc)Î = −Î (−ϕsc), Ĉ Î (ϕsc)Ĉ = −Î (−ϕsc), (A11)

with orthogonal matrices given by

Î =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Ĉ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A12)

with Î corresponding to inversion, while Ĉ is related to charge
conjugation, but defined here without the complex conjuga-

tion operator. The correction term induced by Ĉ has matrix
elements

δĤi j =
⎡
⎣4εd + 2U + 2A

∑
α=L,R

cos(θα + �t )

⎤
⎦δi j, (A13)

which merely shifts the diagonal terms, and amounts simply to
a multiplicative phase factor between the transformation part-
ner states. From the transformation properties (A10), one finds
the transformation of a given solution to the time-dependent
Schrödinger equation to be itself a solution with different
parameters, namely,

Î|�(ϕsc, θL, θR,U, εd , t )〉 = |�(−ϕsc, θR, θL,U, εd , t )〉,
Ĉ|�(ϕsc, θL, θR,U, εd , t )〉 = e−i[�(t )−�(0)]|�(−ϕsc, θL

+ π, θR + π,U,−εd −U, t )〉,
(A14)

where the common time-dependent phase factor has been
introduced as

�(t ) = 4(εd + U/2)t + 4(A/�)
∑

α=L,R

sin(θα + �t ). (A15)

Together with the transformation properties of the current
operator, this implies that

I (−ϕsc, θR, θL,U, εd , t )

= 〈�(ϕsc, θL, θR,U, εd , t )|Î Î (−ϕsc)Î
× |�(ϕsc, θL, θR,U, εd , t )〉

= −I (ϕsc, θL, θR,U, εd , t ) (A16)

and

I (−ϕsc, θL + π, θR + π,U,−εd − U, t )

= 〈�(ϕsc, θL, θR,U, εd , t )|Ĉ Î (−ϕsc)Ĉ
× |�(ϕsc, θL, θR,U, εd , t )〉

= −I (ϕsc, θL, θR,U, εd , t ). (A17)

FIG. 13. Diagram illustrating the lowest order transport pro-
cesses leading to anomalous Josephson current. The processes are
similar to those illustrated in Fig. 2, but are shown here with two
Floquet sidebands to each quantum dot level and with current carry-
ing tunneling paths in both directions, which interfere destructively
unless εd �= 0, or with interactions included, εd + U/2 �= 0.
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From these instantaneous symmetries one may infer the sym-
metries (55) and (56) of the time-averaged currents,

J (ϕsc, θd ,U, εd ) = −J (−ϕsc, θd ,U,−εd − U ), (A18)

= −J (−ϕsc,−θd ,U, εd ), (A19)

= J (ϕsc,−θd ,U,−εd − U ), (A20)

which are observed also in the noninteracting finite-gap
numerical results shown in Figs. 8 and 9. The inversion
symmetry relation (A19) alone dictates that the anomalous
Josephson current must vanish at θd = π = 2π − π , as ob-
served in Fig. 11. The particle-hole symmetry relation (A18),
and thereby (A20), holds only when the average phase of
the two drives plays no role, i.e., when either the driving
amplitude is sufficiently small or when all transients have been
erased by relaxation via the quasiparticle continuum available
for finite BCS gaps or weak tunneling to normal metals as

modeled by �m in the NESS Floquet-Keldysh Green’s func-
tion method employed in the main text.

From these symmetries, the anomalous Josephson current
at ϕsc = 0 is seen to satisfy the symmetries

J (0, θd ,U, εd ) = −J (0,−θd ,U, εd ) (A21)

= −J (0, θd ,U,−εd − U ). (A22)

This implies that the anomalous Josephson current must van-
ish for quantum dots tuned to the particle-hole symmetric
point, εd = −U/2. Within the Floquet picture, this vanishing
of the anomalous Josephson current at the particle-hole sym-
metric point can be understood as a destructive interference
between paths through respectively positive and negative Flo-
quet sidebands. This is illustrated in Fig. 13, in which the blue
and red paths need to be offset from particle-hole symmetry
in order not to interfere destructively.
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