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Monte Carlo simulation of the topological quantities in fractional quantum Hall systems
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Generally speaking, for a fractional quantum Hall (FQH) state, the electronic occupation number for each
Landau orbit could be obtained by numerical methods such as exact diagonalization, density matrix renormal-
ization group, matrix product state, or algebraic recursive schemes (Jack polynomial). In this paper, we apply a
Metropolis Monte Carlo method to calculate the occupation numbers of several FQH states in cylinder geometry.
The convergent occupation numbers for more than 40 particles are used to verify the chiral bosonic edge theory
and determine topological quantities from momentum polarization or dipole moments. The guiding center spin,
central charge, and topological spin of different topological sectors are consistent with theoretical values and
other numerical studies. In particular, we obtain the topological spin of a e/4 quasihole in Moore-Read and
331 states. Lastly, we calculate the electron edge Green’s functions and analyze the position dependence of the
non-Fermi liquid behavior.
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I. INTRODUCTION

Since the discovery of the fractional quantum Hall (FQH)
effect [1,2], its rich physical connotations and novel topo-
logical properties have attracted extensive attention. Different
from the integer quantum Hall (IQH) state, the FQH state is
embedded with quantum topological order which manifests
novel properties including fractional charge excitation, frac-
tional statistics, topological ground state degeneracy, gapless
chiral edge excitation, and topological entanglement entropy,
etc. [3–6]. It is worth mentioning that the fractional statistics
of the anyonic excitations in FQH have been recently iden-
tified experimentally by either the Fabry-Pérot interference
or anyon collisions near the quantum point contacts (QPCs)
[7–11]. The quantum Hall bulk is an incompressible insula-
tor with which it is difficult to provide measurable signals
in experiments. However, its conducting gapless edge mode
provides a tool to detect the topological properties due to
the bulk-edge correspondence mechanism [3,12]. In the early
1990s, the physics of edge excitation was considered ex-
tremely important to the FQH [4,13–15]. It is known that most
of the FQH edges can be treated as a chiral Luttinger liquid
(χLL) instead of a noninteracting Fermi liquid [16]. In exper-
iments, one can measure the non-Fermi liquid behavior via a
nonlinear I ∝ V α relation in the tunneling experiment from
Fermi liquid to FQH liquid. The Tomonage-Luttinger (TL)
exponent α could be calculated from the edge Green’s func-
tion G(|�r1 − �r2|) = 〈ψ†(�r1)ψ (�r2)〉 ∝ |�r1 − �r2|−α . The edge
electron propagator also describes the entanglement of two
particles on the edge. Wen’s effective theory [4] demonstrated
that the spatial decay of the electron propagator involves a
non-Fermi-liquid exponent α = q for ν = 1/q Laughlin state
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and α = 3 for the Moore-Read (MR) state and 331 state. For
a realistic system with Coulomb interaction, the values of α

are not that universal. This has attracted a lot of theoretical
and experimental attention [16–28], such as the influence
of edge reconstruction, sample qualities, and the emergence
of a neutral mode. Recently, it was verified that the FQH
in suspended graphene could avoid those obstructive factors
and realize the universal edge physics [29–32]. Similarly, the
occupation numbers near the edge obey limk→edge nk ∝ kβ

in the continuum limit, as predicted by chiral boson edge
theory [33]. At the same time, the information of the bulk
magnetoroton excitation has been claimed to be embodied in
the oscillation of the occupation numbers near the edge [34].

In a correlated FQH system, the density deviates from the
bulk filling ρ = ν

2π l2
B

near the edge and thus results in an
extra intrinsic dipole moment which is related to the guiding-
center Hall viscosity [35–37]. It is worth mentioning that
Hall viscosity is characterized by a rational number and a
metric tensor that defines distances on an incompressibility
length scale, and its magnitude provides a lower bound to
the coefficient of the O(q4) small-q limit of the guiding cen-
ter structure factor. The Hall viscosity is also related to the
momentum polarization [38,39] of the system while rotating
half of the system and maintaining another half invariant.
In fact, momentum polarization is the subleading term of
the average value of a partial translation operator. Therefore,
the calculation of the intrinsic dipole moment, or momentum
polarization, averages the momentum operator of a subsys-
tem in a bipartition. Interestingly, topological quantities of
the FQH state, such as guiding-center spin, central charge,
and topological spin of the quasiparticle excitation, could
also be determined from the coefficients and corrections of
the momentum polarization [35,40–42]. The guiding-center
spin is related to the nondissipative response of the metric
perturbation in FQH liquids. Its coupling with the geometric
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curvature of the underlying manifold gives the topological
shift of the FQH states in spherical geometry. The topologi-
cal spin and central charge are the elements of a modular-T
matrix that are used to describe the topological order of the
FQH state [43]. Meanwhile, the central charge determines the
heat current IE = π

6 cT 2 at a given temperature T [44] and is
also related to the gravitational anomaly of the edge [45].

In numerical calculations, the density fluctuations of the
quantum Hall edge affect several Landau orbits, and the range
of its influence becomes larger for small bulk density. For
example, the edge of the ν = 1/5 Laughlin state affects more
orbits than that of the ν = 1/3 Laughlin state. Moreover, in
the case of realistic long-range Coulomb interaction, the edge
oscillates deeper into the bulk than the short-range model
interaction. A criterion for obtaining a complete profile of
the edge state is that the bulk density should be stable at the
filling factor ν/2π l2

B. This is usually beyond the reach of exact
diagonalization or the Jack polynomial, which are limited by
the small size of Hilbert space. The inaccurate momentum
polarization calculation of the small system size cannot give
convergence of physical quantities or even incorrect results
at some time. The developments to solve this problem were
the density-matrix renormalization group (DMRG) [34,42]
and the infinite DMRG based on the Matrix product state
representation [41]. In this paper, we develop the Monte Carlo
simulation method in cylinder geometry to calculate occupa-
tion numbers for several FQH states. From these occupation
numbers, we explore momentum polarization and its related
topological quantities with high accuracy. The edge Green’s
function is also calculated for a large system, and the pa-
rameter of the chiral Luttinger liquid theory is determined
with higher accuracy than previous studies. Comparing to
the iDMRG method [41], which deals with an infinite cylin-
der with translational symmetry. The topological quantities
were extrapolated from the momentum polarization via the
modular transformation T . It is similar to the entanglement
spectrum method [35] based on the wave function in the bulk.
Here we directly use the edge density profile to calculate the
momentum polarization similar to the finite DMRG method
[42] and, of course, a larger system size could be reached
by Monte Carlo method. Because of the bulk-edge correspon-
dence, these results are intercomparable.

The rest of the paper is organized as follows. In Sec. II,
we calculate the occupation numbers for several FQH states
in cylinder geometry and revisit the exponents of the edge
chiral boson theory (CBT). In Sec. III, we calculate topo-
logical quantities from edge dipole moment and momentum
polarization. In Sec. IV, we obtain the TL exponent α from
equal time Green’s function and discuss the validity of the TL
theory. The MR and 331 states are also considered. Section V
gives the conclusions and discussions.

II. THE OCCUPATION NUMBER
AND ITS SCALING BEHAVIORS

We first introduce the occupation number calculation by
Metropolis Monte Carlo which was previously implemented
in disk geometry [46–48]. The disk geometry in a symmet-
ric gauge has unequally spaced orbits which evolves many
more orbitals for the edge profile and induces slowing the

FIG. 1. The sketch map of cylinder model with Lx and Ly in
two directions. Ly = 2πR is the circumference of cylinder, and the
reciprocal of the radius is defined as γ = 1/R.

convergence of the bulk density. In this paper, as shown in
the sketch of Fig. 1, we use the cylinder geometry which has
advantages that the space between adjacent Landau orbits is
homogeneous and the length of the edge of the two ends is
tunable by varying the aspect ratio Lx/Ly while keeping the
surface area invariant. The normalized N-electron Laughlin
wave function |ψc

1/q〉 at filling ν = 1/q is [49,50]

∣∣ψc
1/q

〉 = 1√
N!

1

(2πγ −1
√

π )N/2
exp

(
−9

2
γ 2

N−1∑
j=0

j2

)

×
∏
j<k

(eγ z j − eγ zk )qe− 1
2

∑N
i=1 x2

i e− ∑
i

qγ

2 (N−1)zi , (1)

in which zi = (xi + iyi )/lB is the coordinate of the ith particle,
lB is the magnetic length lB = √

h̄/eB which we set to one,
and the Landau orbital space γ = 2π/Ly = 1/R where R is
the radius of the cylinder. The last term is a global shift which
lets the FQH state be symmetric around the center of cylinder
at x = 0. The average occupation of the mth single-particle
state is

〈c†
mcm〉1/q =

〈
ψc

1/q

∣∣c†
mcm

∣∣ψc
1/q

〉〈
ψc

1/q

∣∣ψc
1/q

〉
=

∫
d2z1d2z2ρ1/q(z1, z2)φc∗

m (z1)φc
m(z2), (2)

where ρ1/q is the one-particle density matrix [51] and φc
m(z) =

1√
π1/2Ly

eikye−(x−k)2/2 is the wave package of the lowest Landau

level in a Landau gauge with wave vector k = 2πm
Ly

. Now

the y direction translation momentum quantum number m′s
are symmetrically distributed in range [− q(N−1)

2 ,
q(N−1)

2 ]. The
one-particle density matrix is

ρ1/q(za, zb) = N
∫

d2z2 · · ·
∫

d2zNψc
1/q(za, z2 · · · zN)

× ψc∗
1/q(zb, z2 · · · zN)

/∫ N∏
i=1

d2zi
∣∣ψc

1/q

∣∣2
. (3)

Because φc
m and |ψc

1/q〉 conserve the translation momentum
operator along y, the one-particle density matrix could be
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written in second quantized form:

ρ1/q(za, zb) =
∑

m

〈c†
mcm〉1/qφ

c
m(za )φc∗

m (zb). (4)

In the special case of za = x + iy and zb = x + i(y + y j ),
namely, za and zb have the same x and a shift yi in y:

ρ1/q(z, z + iy j ) =
∑

k

〈c†
kck〉1/q

∣∣φc
k (z)

∣∣2
eiky j . (5)

Since 〈c†
kck〉1/q is nonzero over a contiguous, finite, and

known range k ∈ [− 2π
Ly

q(N−1)
2 , 2π

Ly

q(N−1)
2 ], the summation over

k can be restricted to this range without any uncertainty. Then
the above relation could be explained as a discrete Fourier
transformation from momentum space k to real space conju-
gate y. The inverse transformation has the following form:

〈c†
kck〉1/q

∣∣φc
k (z)

∣∣2 = 1

Norb

q(N−1)∑
j=0

e−iky j ρ1/q(z, z + iy j ), (6)

where y j = Ly

Norb
j, and Norb = qN − q + 1 is the number of or-

bits. Note that Eq. (6) is only true for − q(N−1)
2 � m � q(N−1)

2 .
In principle, Eq. (6) is valid for any value of z, but practically
the resulting uncertainty in the occupation number will be a
minimum when r is near the maximum in |φc

k (z)|2, which
occurs at z ∼ mγ lB. We evaluate the occupation number by
integrating Eq. (6) over z to get

〈c†
kck〉1/q = 1

Norb

Norb−1∑
j=0

e−iky j ρ1/q(y j ), (7)

where ρ j = ρ1/q(y j ) = ∫
d2zρ1/q(z, z + iy j ). Then the occu-

pation at any k (within the appropriate range) can be found
after evaluating ρ j for all j = 0, . . . , Norb − 1. From Eq. (3),
we have

ρ j = N
∫ ∏N

i=1 d2ziψ
c
1/q(z1 − iyj, . . . zN)ψc∗

1/q(z1, . . . zN)∫ ∏N
i=1 d2zi

∣∣ψc
1/q

∣∣2 .

(8)
Ignoring the normalization factor, Eq. (1) becomes

ψc
1/q(z1 − iyj, z2, . . .) = ψc

1/q(zi)Z1(y j, z), (9)

where

Zb(y j, z) =
∏
k �=b

(eγ (zb−iy j ) − eγ zk )q

(eγ zb − eγ zk )q
eiγ q(N−1)

2 y j ; (10)

thus, we have

ρ j = N
∫ ∏N

i=1 d2zi
∣∣ψc

1/q

∣∣2
Z1(y j, z)∫ ∏N

i=1 d2zi
∣∣ψc

1/q

∣∣2 . (11)

Finally, ρ j can be expressed as

ρ j =
∫ ∏N

i=1 d2zi
∣∣ψc

1/q

∣∣2 ∑N
b=1 Zb(y j, z)∫ ∏N

i=1 d2zi
∣∣ψc

1/q

∣∣2 , (12)

FIG. 2. Occupation numbers at the edge of (a) ν = 1/3 state for
50 particles, (b) ν = 1/5 state for 40 particles, (c) ν = 5/2 MR
state for 40 particles, and (d) 331 state for 80 particles (40 in each
layer). The inset plots are the linear fit in logarithmic scale for
the data near the Fermi point [labeled in red circles in n(k)]. The
slopes are r1/3 = 1.99541 ± 0.008402, r1/3 = 1.9954(84), r1/5 =
3.968(38), rMR = 1.978(34) and r331 = 1.988(46), which are exactly
the same as predicted in CBT. The results are rounded.

where we have symmetrized Zb over all particle indices to
increase the rate of convergence without loss of generality.
The above expression can be evaluated through Metropolis
sampling with high accuracy. We can then obtain the average
occupation number of the 1/q Laughlin state on cylinder after
going back to Eq. (7). In a similar scheme, we obtained the
occupation numbers for other FQH states, such as the Moore-
Read Pfaffian state and two-component Halperin 331 state.
The technical details for these states are in Appendixes A
and B.

With the occupation numbers for large systems, includ-
ing ν = 1/3, 1/5 Laughlin states, ν = 5/2 Moore-Read, and
Halperin 331 states, we verify the behavior of nk near the edge
by comparing to the CBT with high accuracy. The magnetoro-
ton minimum could also be fitted in a large range, specifically
for 1/5 and 331 states, since the size of Hilbert space is
extremely large in exact diagonalization. The bulk density is
difficult to reach the uniform density ρ = ν/2π l2

B and thus
many of the physical quantities are obscured by finite-size
effects. Figure 2 shows half of the occupation numbers for
these states due to central symmetry. The occupation numbers
are plotted as a function of the wave vector k = 2πm

Ly
rather

than the orbital index m. By properly choosing the Fermi
points [35] to assure there are N/ν orbitals between two Fermi
points, i.e., the momentum of the first nonvanishing occupa-
tion number is m0 = 3/2 for ν = 1/3, 5/2, and 331 states and
m0 = 5/2 for ν = 1/5 state, the data for different circum-
ferences Ly (the Ly takes value in the range (a) [19lB, 30lB],
(b) [25lB, 40lB], (c) [15lB, 23lB], and (d ) [20lB, 35lB] to
make sure the two edges are well separated) collapses into
a perfectly smooth curve which manifests the universality
of the FQH edge, since we now have much more data near
Fermi points and no breakpoints as compared to the results
from Jack polynomials [35]. The n(k) near the edge clearly
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demonstrates that the FQH edge is described by the CBT with
nk ∝ kr in which r = ν−1 − 1 for Laughlin states. Thus, we
take the linear fit of ln n(k) versus ln k with the first nonvan-
ishing occupation number of different Ly. For the four FQH
states we considered, the CBT predicts their exponents to
be r = 2, 4, 2, 2, respectively. Our simulation gives these fit-
ting values as r1/3 = 1.9954 ± 0.0084, r1/5 = 3.968 ± 0.038,
rMR = 1.978 ± 0.034, and r331 = 1.988 ± 0.046 as shown in
the insets of each panel in Fig. 2. They are exactly the same
as the expected value within the statistical error.

On the other hand, as in Ref. [34], we fit the oscillations of
the occupation numbers by fν (x) = cν exp(−x/εν ) cos(kνx +
θν ) + ν. It was claimed that kν is in good agreement with
the wave number of the bulk magnetoroton minimum and
εν is proportional to the bulk excitation gap. Density os-
cillation at the edge reflecting bulk excitation is a good
example of bulk-edge correspondence in the topological or-
dered phase. From our simulations of model wave functions,
the fitting parameters are ε1/3 = 1.357, k1/3 = 1.526; ε1/5 =
2.415, k1/5 = 1.212, ε5/2 = 1.185, k5/2 = 1.357 and ε331 =
1.08, k331 = 1.304, respectively. Here we should note that our
results are for model wave functions that correspond to the
eigenstates of the model Hamiltonian, such as a V1 Haldane
pseudopotential Hamiltonian for the ν = 1/3 Laughlin state.
Realistic Coulomb interaction naturally gives different results,
especially energies. Compared to the result of DMRG with
Coulomb interaction [34], the k1/3 is quite close and ε1/3 is
very different, as expected, since the wave function is quite
close and the energy should be different. Therefore, we expect
that the magnetoroton minimums for the other three FQH
states (1/5, MR, and 331) in Coulomb Hamiltonian are almost
the same as the kν we obtained.

III. TOPOLOGICAL QUANTITIES FROM
MOMENTUM POLARIZATION

It is known that quasihole mutual exchange in FQH liquids
contains rich information about its topological order. Suppose
we have a quasihole on each edge of the cylinder—rotation
along the direction of y will not give any information because
of the rotation symmetry of this manifold. However, if one can
rotate half of the cylinder (subsystem A) and keep the other
half (subsystem B) unchanged, the many-body wave function
will have a phase containing the information of the quasihole
in subsystem A. This phase is called momentum polarization
[39], which contains important topological quantities such as
Hall viscosity [38], guiding-center spin, central charge, and
topological spin (conformal dimension) of quasihole exci-
tation. Momentum polarization has previously been studied
using the entanglement entropy in cylinder geometry [39] and
modular transformation in torus geometry [40,41]. It could
also be studied in the entanglement spectrum at the bipartite
boundary in the bulk and the intrinsic dipole moment from the
density profile on the edge [35,40].

Here we firstly employ the occupation numbers to calculate
momentum polarization. It can be acquired by

〈MA〉 =
∑
m∈A

m〈nm〉 − M0
A (13)

where M0
A just depends on the root occupation number, such as

1001001001 · · · , 1000010000100001 · · · , 1100110011 · · · .
Theoretically, momentum polarization contains three leading
terms as follows:

〈MA〉 = ηH

2π h̄
L2

y − hα + γ

24
, (14)

where the first term is derived from the contribution of the
guiding-center Hall viscosity. The second term hα = M0

A −
M̄A is called topological spin [39,41] or conformal spin of el-
ementary excitations that corresponds to the quasihole sector
α and depends on the position of the bipartition in the occupa-
tion space. It can be calculated for different model FQH states
by using the root configuration pattern in the Jack polyno-
mial description or the conformal field correlator of quasihole
operators as shown in Appendix D. The third leading term
γ = c̃ − ν is the difference between the (signed) conformal
anomaly (̃c = c − c̄) and the chiral charge anomaly (filling
factor) ν, which are the two fundamental quantum anomalies
of FQH fluids. The theoretical values are as follows: c = 1 for
Laughlin states, c = 3/2 for the 5/2 Moore-Read state, and
c = 2 for bilayer 331 state, and all chiral states have c̄ = 0.
Notice that γ vanishes in IQH states, which are topologically
trivial.

In the case of FQH fluid, the edge density deviates from
the uniform density ν/2π l2

B due to the electron-electron cor-
relation. This nonuniform occupation distribution gives a
quantized dipole moment px, which is related to the guiding-
center Hall viscosity (the expected value of area-preserving
deformation generators) [35,40]. The essential physics here
is the intrinsic dipole momentum coupling with the gradient
of the electric field from Coulomb interaction and confining
potential. This coupling results in an electric force that is
balanced by the guiding center Hall viscosity ηH . Moreover,
the guiding center Hall viscosity was found to have a rela-
tion to a topological quantity named the guiding-center spin.
ηab

H = − h̄
4π l2

B

s
q gab, where gab is the guiding-center metric in

Haldane’s geometric description of FQH liquid [52] and the
guiding-center spin s coupled with curvature gives the topo-
logical shift on the sphere. Finally, we have the relationship

ηH = − px

Ly
B = h̄

4π l2
B

−s

q
, (15)

where B is the strength of magnetic field and q is the flux
quantum number attached by a composite boson that is made
of p particles with q flux quanta for ν = p/q. After a simple
substitution, we have

〈MA〉 = −1

2

(
Ly

2π lB

)2 s

q
− hα + c − ν

24
. (16)

The edge dipole moment per length could be calculated
from the occupation numbers as follows:

px(k)

Ly
= − e

2π

∫ k

0
dk′k′l2

B[n(k′) − ν], (17)
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and for finite Ly, compare to Eq. (16), the integration is ap-
proximated by the sum with corrections:

px(k)

Ly
= −2π l2

Be

L2
y

(∑
m′

[n(m′) − ν]m′ + hα − c − ν

24

)
. (18)

Here we should note that the origin paper of Eq. (37) in
Ref. [35] does not have correction terms and the difference
is also discussed in detail in a recent work [40]. It is due to
the equivalence of intrinsic dipole moment and momentum
polarization, which can be considered as the same topological
quantity. On the other hand, we point out that this may also be
the reason why Figs. 16–20 in Ref. [35] are less convergent.
A slight shift between theoretical and numerical values is
clearly observed there, which is clearly not a finite-size effect.
The quantities s, hα, c contain very rich information. Guiding
center spin s is related to the nondissipative response of metric
perturbation [42]. Topological spin hα and central charge c
are elements of the modular-T matrix, which is the unitary
transformation of the ground-state manifold under modular
transformation [43].

In our simulation process, we use a self-consistent test
method to determine these topological quantities, namely, we
set the other quantities at their respective theoretical values
when calculating one of them. For example, while calculating
the central charge c, the guiding center spin and topological
spin are predetermined by their CFT values and thus

c = 24〈MA〉 + 24
L2

y

8π2

(
−1

3

)
+ 24hα + 1

3
. (19)

For the ν = 1/3 Laughlin state, the results of the topo-
logical spin strongly depend on how many quasiparticles the
subsystem has. This could be adjusted by shifting the bipar-
tite position in the root configuration of the Jack description
[53,54]. Basically, there are three topological sectors for the
1/3 Laughlin state with root 010010 · · · 010010. One is the
equal bipartition with · · · 10|01 · · · named vacuum cut, in
which case the subsystem of NA particles exactly occupies
NA/ν = 3NA orbitals and thus no quasiparicle (quasihole) ex-
citation. If one more (less) orbit is allocated to the subsystem,
such as · · · 100|1 · · · (· · · 1|001 · · · ), a quasihole (quasiparti-
cle) is created in the left subsystem. The different bipartitions
and their corresponding topological spins in other FQH states
are discussed in Appendix D. Finally, for a specific system
with a fixed number of electrons, we calculated these topolog-
ical quantities by varying the aspect ratio of the cylinder, or
changing the Ly to keep the area invariant. Therefore, each Ly

gives a set of results as shown in all of the following results.
Combining Eqs. (15) and (18), considering the contribution

of central charge c and topological spin hα [39] to the guiding-
center spin, and discretizing the momentum, we have

− s

q
= 8π2

L2
y

⎛⎝∑
m1

(n(m1) − ν)m1 + hα − c − ν

24

⎞⎠. (20)

Before calculating the guiding-center spin, we need to validate
the Luttinger’s sum rule [55], i.e., charge neutral conditions

FIG. 3. (a) n(k) and −s/q in half of the cylinder for 1/3 Laugh-
lin state with 50 particles. The n(k) converges to 0 and verifies
the electrical neutrality condition and convergence of the simulation.
(b) The −s/q converges perfectly with the expected value and thus
s = −1.

∑
m1

[n(m1) − ν] = 0. Our numerical results are shown in
Figs. 3–6. First, we check Luttinger’s sum rule. The differ-
ence nk between the occupation number and the uniform
occupation ν converges to zero. Then, the −s/q converges to
1/3, 2/5, 1/2, 1/2, respectively, giving us the guiding-center
spin for the 1/3, 1/5 Laughlin state, 5/2 MR state, and 331
state as s = −1,−2,−2,−2, respectively.

Let us go back to Eq. (16) to calculate the other topological
quantities. We extract these topological quantities numeri-
cally for different FQH states. The results are shown in
Figs. 7–9. First, we observe that Monte Carlo simulations of
large systems actually give us much more accurate topological
quantities of FQH states. These values are in good agreement
with the theoretical predictions of the CFT. For example,
we get c = 1, 1, 3/2, 2, s = −1,−2,−2,−2 for the 1/3, 1/5
Laughlin states, Moore-Read state, and 331 state, respectively.
As for topological spin, all theoretical predictions are pre-
sented in Appendix D. Compared with the previous study by
the matrix product state with a low truncation level [35], the
accuracy of our method is prominent and the computational
cost is effective. Especially for the 1/5 Laughlin state, it is
found that the convergence of these topological quantities is
very slow compared to the 1/3 Laughlin state. For example,
Fig. 7(c) shows that the central charge has significantly larger
fluctuations than that in Fig. 7(a). The slow convergence of
1/5 is clearly shown in the range of edge density fluctuations
in Fig. 4.

From Figs. 5, 6, and 8, we can see that except for the central
charge c, all other topological quantities are the same for the
Moore-Read state and 331 state. It is known that their e/4
quasihole excitations are very different in anynonic statistics.

FIG. 4. Same as Fig. 3 for 1/5 with 40 particles. The guiding
center spin converges to s = −2.
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FIG. 5. Same as Fig. 3 for MR state with 40 particles. The guid-
ing center spin converges to s = −2.

The e/4 quasihole in the Moore-Read state is non-Abelian
because it contains a Majorana mode and that in the 331
state is trivial Abelian. Here we model these quasiholes at
the edge of the cylinder in Monte Carlo (details are shown
in Appendix E) and calculate their topological quantities as
shown in Fig. 9. From this, we find that the central charge
and guiding-center spin are the same as the ground state.
However, for topological spin of the e/4 quasihole, numer-
ical results show that hα = 1/8 for the Moore-Read state
and hα = 3/16 for the 331 state. These values are in good
agreement with their theoretical predictions, as shown in
Appendix D, which demonstrates their different topological
properties.

IV. EDGE GREEN’S FUNCTION

Owing to the existence of gapless edge states in FQH
liquids with open boundaries, current exists between two
contacts connected by an edge channel, as electrons can be
injected into or removed from the FQH edge with costing zero
energy. The standard theory for FQH edge physics is χLL
theory [3,12]. The theory predicts that a FQH droplet exhibits
a power-law behavior in the electric current-voltage charac-
teristics (I ∝ V α) when electrons tunnel through a barrier into
the FQH edge from a Fermi liquid [3,12,17,20]. Generally, α

is also a topological quantity that is related to the topological
order of the FQH liquid and immune to perturbations. For the
celebrated ν = 1/3 Laughlin state, the χLL theory predicts
a tunneling exponent α = 3 although it is controversial in
realistic systems, as we mentioned in the Introduction. The
α measured in experiments is sample dependent with a value
mostly smaller than 3 [17–20]. One of the possible causes of
this discrepancy is the existence of counterpropagating edge
modes, which result from edge reconstruction [23–27]. The

FIG. 6. Same as Fig. 3 for 331 state with 80 particles. The guid-
ing center spin converges to s = −2.

FIG. 7. Topological quantities for ν = 1/3 and ν = 1/5 Laugh-
lin states. In (a) and (c), we present the results of −s/q, c, and hα

in the vacuum cut. (b) and (d) show hα for different bipatitions. The
corresponding theoretical results are marked by horizontal dash lines.

χLL theory [14,15] also predicts the α = 5 for 1/5 Laughlin
state and α = 3 for both the Moore-Read and 331 states. The
relevant experimental and theoretical values for the Laughlin
states are in Refs. [4,18,56,57].

Numerically, we can obtain α by calculating the electron
edge Green’s function which is the electron propagator along
the edge of the FQH droplet. The scaling behavior of the edge
Green’s function has been studied in disk geometry [22–24].
As previously claimed, the disk geometry has inhomogeneous
Landau orbital space and thus the edge density profile is
always incomplete in small system sizes. Another problem
is that the edge distance is limited by the circumference of
disk and the scaling behavior suffers from strong finite-size
effects. Monte Carlo simulation in cylinder geometry could
overcome these weaknesses because the length scale of the
edge could be tuned by aspect ratio. In cylinder geometry, the

FIG. 8. Same as Fig. 7. Topological quantities for MR and 331
states. Here the quasihole/quasiparticle is e/2 charged because one
orbit is shifted in the occupation number configuration.
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FIG. 9. Topological quantities for (a) Moore-Read state and
(b) 331 state with e/4 quasihole excitation at the edge.

edge Green’s function can be defined as

Gedge(|�z − �z′|) = N
∫ ∏N−1

j=1 d2z jψ
∗(�z, { �z j})ψ (�z′, { �z j})∫ ∏N

k=1 d2zkψ∗({�zk})ψ ({�zk})
, (21)

where �z and �z′ are on the same edge of the cylinder, and they
have the same value of x coordinates. At the limit of large
distance (|�z − �z′|  1), the Green’s function behaves as

Gedge(|�z − �z′|) ∼ |�z − �z′|−α. (22)

From Appendix C, the equal-time edge Green’s function
on the cylinder can be written as

Gedge

(∣∣∣∣ 2

γ
sin

(
Y γ

2

)∣∣∣∣) =
∑

k

1

π1/2Ly
e−ikY e−(X−k)2

nk . (23)

The chord distance is | 2
γ

sin(Y γ

2 )| where Y = |y1 − y2| is the

arc length between �z and �z′ on the surface of cylinder and γ =
2π/Ly = 1/R is the inverse of the radius or space between two
continuous Landau orbits.

For an N-particle FQH liquid at filling ν, the number of
Landau orbits is N/ν and thus the length of the cylinder is
2πN
νLy

= Nγ /ν. Two edges locate at ±Nγ /2ν. As shown in
Figs. 10(a) and 10(b), we plot half the density profile for the
four states. Here we set the x coordinate to X̃ = X − Nγ /2ν

FIG. 10. The density profiles (a), (b) and scaling exponents of
the edge Green’s functions at different X̃ (c), (d). Here the x-axis is
set to X̃ = X − Nγ /(2ν ), where Nγ /(2ν ) is the physical edge on
the right. The theoretical predictions of the respective FQH states are
marked as horizontal dashed lines.

FIG. 11. The edge Green’s function at X̃ = 1.2lB for (a) 1/3
Laughlin state, (b) 1/5 Laughlin state, (c) MR state, and (d) 331 state.

and then the edge on the right is positioned at X̃ = 0. First,
as we mentioned earlier, the 1/5 state has a deeper density
oscillation than that of the 1/3 state. Comparing the Moore-
Read state and 331 state with the same electron number and
Ly, the bulk density is the same since both are candidates for
the ν = 5/2 FQH state. However, it is shown that the edge
density has certain differences that demonstrates they belong
to different topological phases or have different topological
quantities such as the central charge as described in the pre-
vious section. For the Green’s function along the edge, we
fix the x position and calculate Eq. (21) in the y direction.
Because the density profile always has a tail near the edge,
we sweep the position of X̃ around X̃ = 0. For each X̃ , we
calculate the Green’s function and extrapolate the exponent
α by the data of the large distance. The results are shown in
Figs. 10(c) and 10(d). Overall, we find that α has a dependence
on X̃ . The interesting thing is that α for all four states reach
their respective theoretical values around X̃ � 1.2lB, which is
indicated by a star in Figs. 10(a) and 10(b). When X̃ > 1.2lB,
we find α always decays and becomes smaller than the theo-
retical value. We understand this result as that the edge of the
FQH liquid always has a width in the order of one magnetic
length lB. The Luttinger liquid exponent has its exact value
at the tail of the realistic edge where the electron density
is close to zero, as shown in Figs. 10(a) and 10(b). This is
acceptable because only the electrons at the tail of the edge
are on the Fermi points and have gapless excitation. Electrons
that are away from Fermi points require finite energy to excite
and therefore cannot be strictly described as gapless edge
excitation, or χLL theory.

At X̃ = 1.2lB, we show the Green’s function as a function
of chord distance in a logarithmic plot in Fig. 11. Similar to
the density profile, the edge Green’s function for different Ly

(aspect ratio) collapses into a curve with a small finite-size
fluctuation. The α shown in the figure is obtained by fitting
the data for large chord distances. The Moore-Read state and
the 331 state share the same α, which illustrates electron
tunneling, such as in the strong tunneling limit of the QPC
experiment, and cannot distinguish the two unequal states.
However, since their e/4 quasiholes have different topological
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quantities as calculated in the momentum polarization, we
expect the quasihole tunneling, such as in the weak tunneling
limit of QPC, could give their distinctions.

V. SUMMARIES AND DISCUSSIONS

In this paper, we have applied a Metropolis Monte Carlo
method to calculate the electron occupation numbers of the
Landau orbits for wave functions of the FQH model in cylin-
der geometry. We consider large systems with more than 40
electrons of ν = 1/3, 1/5 Laughlin states and two candidates
for ν = 5/2 FQH states, namely, the Moore-Read Pfaffian
state and Halperin bilayer 331 state. With smooth data near the
edge, the full density profiles of the edge states are obtained
and the CBT of the FQH edge has been verified with high
accuracy. As a first check of the effectiveness of this method,
we numerically determine the topological quantities using the
dipole moment and momentum polarization calculations. The
guiding-center spin, central charge, and topological spin of the
quasihole all converge exactly to their respective theoretical
values. Notably, due to the non-Abelian nature of MR e/4
quasihole excitation, its topological spin is very different from
its Abelian counterpart in the 331 state. We model the e/4
quasihole excitation in both states and identify their topolog-
ical spins, which are consistent with CFT predictions. With
the occupation numbers of large systems, another quantity
we recalculated is the non-Fermi liquid behavior of the elec-
tron Green’s function along the edge. Sweeping the locations,
we find that only electrons near the physical boundary have
the theoretically predicted α. Therefore, we conclude that
the χLL theory is an idealized description of the boundary
of the FQH liquid. This could be another possible mechanism
where α is not quantized and the sample is dependent on real-
istic experiments even in the absence of edge reconstruction.
This method could be easily generalized to other FQH states
or the interface between different FQH states.
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APPENDIX A: MOORE-READ STATE

The Moore-Read Pfaffian model wave function in cylinder
geometry could be written as∣∣ψc

5/2

〉 = Pf[M(eγ Z )]
∏
j<k

[exp(γ z j ) − exp(γ zk )]2

× e− 1
2

∑N
i=1 x2

i e− ∑
i

(2N−3)γ
2 zi , (A1)

where Pf[M(eγ Z )] is the Pfaffian polynomial of the antisym-
metric matrix M(eγ Z ). For four particles, it is

Pf[M(eγ Z )] = 1

exp(γ z1) − exp(γ z2)

1

exp(γ z3) − exp(γ z4)

− 1

exp(γ z1) − exp(γ z3)

1

exp(γ z2) − exp(γ z4)

+ 1

exp(γ z1) − exp(γ z4)

1

exp(γ z2) − exp(γ z3)
.

(A2)

In the Metropolis algorithm, we just need |Pf(M(eγ Z ))|2 =
det(M(eγ Z )). Using the same calculation method as the 1/q
Laughlin state, we have

ρ j =
∫ ∏N

i=1 d2zi

∣∣ψc
5/2

∣∣2 ∑N
b=1 Zb(y j, z)∫ ∏N

i=1 d2zi

∣∣ψc
5/2

∣∣2 , (A3)

where

Zb(y j, z) =
∏
k �=b

(eγ (zb−iy j ) − eγ zk )2

(eγ zb − eγ zk )2

× eiγ (N−3/2)y j
Pf[M(eγ R(zb→zb−iy j ) )]

Pf[M(eγ Z )]
, (A4)

where y j = Ly

Norb
j with j = 0 · · · 2N − 3 and k is from

− 2π
Ly

2N−3
2 to 2π

Ly

2N−3
2 . Similarly, we can obtain the average

occupation number of the 5/2 MR state on the cylinder by
Metropolis sampling. We use the algorithm of Ref. [58] to
implement the Pfaffian polynomial.

APPENDIX B: HALPERIN 331 STATE

For the bilayer Halperin 331 state on the cylinder, we
assume that there are N1(N2) electrons in the upper (lower)
layer. The unnormalized wave function is∣∣ψc

331

〉 =
∏

i< j,i, j∈N1

( exp(γ zi ) − exp(γ z j ))3

×
∏

k<l,k,l∈N2

( exp(γ zk ) − exp(γ zl ))3

×
∏

i∈N1,k∈N2

( exp(γ zi ) − exp(γ zk ))

× e− 1
2

∑N
i=1 x2

i e− ∑
i∈N1

γ

2 (4N1−3)zi e− ∑
i∈N2

γ

2 (4N2−3)zi ,

(B1)

where N = N1 + N2 is the total number of electrons. The total
momentum is 3N1(N1−1)

2 + 3N2(N2−1)
2 + N1N2. When N1 = N2,

the total momentum is Mtot = N (2N−3)
2 , which is the same

as that of the Moore-Read state. Each layer has filling 1/4.
Similarly, we have

ρ j =
∫ ∏N

i=1 d2zi

∣∣ψc
331

∣∣2 ∑N
b=1 Zb(y j, z)∫ ∏N

i=1 d2zi

∣∣ψc
331

∣∣2 , (B2)
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where

Zb(y j, z) =
⎧⎨⎩

∏
k �=b,k∈N1

(eγ (zb−iy j )−eγ zk )3

(eγ zb−eγ zk )3

∏
k∈N2

eγ (zb−iy j )−eγ zk

eγ zb−eγ zk
eiγ 4N1−3

2 y j , if zb ∈ N1∏
k �=b,k∈N2

(eγ (zb−iy j )−eγ zk )3

(eγ zb−eγ zk )3

∏
k∈N1

eγ zk −eγ (zb−iy j )

eγ zk −eγ zb
eiγ 4N2−3

2 y j , if zb ∈ N2

(B3)

and y j = Ly

Norb
j.

APPENDIX C: THE EDGE GREEN’S
FUNCTION ON CYLINDER

Since the single-particle wave function is φk (z) =
1√

π1/2Ly
eikye−(x−k)2/2, the edge Green’s function can be trans-

ferred to

〈φ†( �z1)φ( �z2)〉 =
∑

k

1

π1/2Ly
eik(y2−y1 )

× e−(x1−k)2/2e−(x2−k)2/2〈a†
kak〉. (C1)

The coordinates �z1 and �z2 are selected with the same position
x1 = x2 = X near the edge and have a shift in the y direction
Y = y1 − y2, so the chord distance could be expressed as
| 2
γ

sin(Y γ

2 )|. Finally, the edge Green’s function on the cylinder
could be calculated by occupation numbers as

〈φ†( �z1)φ( �z2)〉 =
∑

k

1

π1/2Ly
e−ikY e−(X−k)2

nk . (C2)

APPENDIX D: TOPOLOGICAL SPIN

The topological spin hα could be calculated from the root
configuration in the occupation space as

hα = M0
A − M̄A. (D1)

The subscript α represents different topological sectors and
depends on the location of the bipartition for subsystem A.
M̄A = − 1

2νm2
F is the total momentum for subsystem A with

uniform occupation density ν, where mF is the orbital number
in A.

Taking the four-particle system as an example, for the
1/3 Laughlin state, there are three topological sectors, vac-
uum cut sector 010010|010010, quasiparticle cut sector
01001|0010010, and quasihole cut sector 0100100|10010. So,
we have

010010|010010 hα = 0,

01001|0010010 hα = 1/6,

0100100|10010 hα = 1/6,

(D2)

where we only consider subsystem A on the left. The
first momentum near the cut is −1/2. For example, for
the quasiparticle cut sector, M0

A = − 1+7
2 = −4 and M̄A =

1
3 (− 1+3+5+7+9

2 ) = − 25
6 , so hα = −4 + 25

6 = 1
6 .

For the 1/5 Laughlin state, there are five topo-
logical sectors: vacuum cut 0010000100|0010000100,
two-quasiparticle cut 00100001|000010000100, one-
quasiparticle cut 001000010|00010000100, one-quasihole

cut 00100001000|010000100, and two quasihole cut
001000010000|10000100. So, we have

0010000100|0010000100 hα = 0,

00100001|000010000100 hα = 2/5,

001000010|00010000100 hα = 1/10,

00100001000|010000100 hα = 1/10,

001000010000|10000100 hα = 2/5,

(D3)

Then, for the MR state, there are four topological sec-
tors: vacuum cut 0110|0110, isolated fermion cut 01|100110,
e/2 quasiparticle cut 011|00110, and e/2 quasihole cut
01100|110. We have

0110|0110 hα = 0,

01|100110 hα = 1/2,

011|00110 hα = 1/4,

01100|110 hα = 1/4.

(D4)

Since the e/2 quasihole/quasiparticle is just one more/less
flux attached by electrons and both are Abelian, we assume
that the e/2 excitation in the 331 state has the same properties
as that in MR. This has been verified in the calculation of
topological spins as shown in Fig. 8.

For e/4 excitation, the MR state and 331 state are distinct.
Here we consider that each of the edges has a e/4 quasi-
hole. Then the root configuration is · · · 010101010 · · · . In
this case, there are two topological sectors: 0̄101|01010̄ and
0̄1010|1010̄. we have

0̄101|01010̄ hα = 1/8,

0̄1010|1010̄ hα = 1/8.
(D5)

For the quasihole MR state, since the total number of
orbits is odd, the Fermi points are on top of the first orbit,
which is labeled 0̄. It means that only half of this orbit be-
longs to the subsystem. For example, we consider the first
sector of quasihole MR state, M0

A = − 1+5
2 = −3, and M̄A =

1
2 (− 1+3+5+7/2

2 ) = − 25
8 , so hα = −3 + 25

8 = 1
8 . For compari-

son, from the CFT description, the e/4 quasihole operator
is expressed as σei

√
2φ/4, where σ is the Majorana fermion

field of Ising CFT and φ is the free chiral boson field. The
σ operator has a conformal dimension h = 1/16 and thus the

total dimension is hα = 1/16 + (
√

2/4)2

2 = 1/8.
For the e/4 excitation in the 331 state, we obtain its con-

formal dimension from the CFT correlator.
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The ground-state wave function could be written as [59]

ψ331({z↑}, {z↓}) = 〈V +({z↑
1 }) · · ·V +({z↑

N })V −({z↓
1 }) · · ·V −({z↓

N })〉spin

〈
2N∏
i=1

ei
√

αφc (zi )Obg

〉
charge

�
∏

1�i< j�N

(z↑
i − z↑

j )β
∏

1�i< j�N

(z↓
i − z↓

j )β
N∏
i, j

(z↑
i − z↓

j )−β
∏

1�i< j�2N

(zi − z j )
α

�
∏

1�i< j�N

(z↑
i − z↑

j )α+β
∏

1�i< j�N

(z↓
i − z↓

j )α+β

N∏
i, j

(z↑
i − z↓

j )α−β, (D6)

where the spin vertex operators are V ±(z) = e±i
√

βφs (z) and Obg is the background charge. Here the Gaussian factor has been
neglected. For the 331 state, α = 2, β = 1 and thus the electron operator (carrying charge e and spin 1/2) is

V ±(z)ei
√

αφc (z) = e±iφs (z)ei
√

2φc (z). (D7)

The Abelian e/4 quasihole is written as e±i 1
2 φs (z)ei

√
2

4 φc (z), which has conformal dimension

h = 1

2

(
1

2

)2

+ 1

2

(√
2

4

)2

= 3

16
. (D8)

The e/4 quasihole wave function (with a Lauglin quasihole in the ↑ layer) can be written with chiral CFT correlator

ψ331(w, {z↑}, {z↓}) =
〈

ei 1
2 φs (w)ei

√
2

4 φc (w)V +({z↑
1 }) · · ·V +({z↑

N })V −({z↓
1 }) · · ·V −({z↓

N })
2N∏
i=1

ei
√

2φc (zi )Obg

〉

�
N∏

i=1

(w − z↑
i )1/2

N∏
i=1

(w − z↓
i )−1/2

2N∏
j=1

(w − z j )
1/2

∏
1�i< j�N

(z↑
i − z↑

j )3
∏

1�i< j�N

(z↓
i − z↓

j )3
N∏

i, j=1

(z↑
i − z↓

j )

=
N∏

i=1

(w − z↑
i )

∏
1�i< j�N

(z↑
i − z↑

j )3
∏

1�i< j�N

(z↓
i − z↓

j )3
N∏

i, j=1

(z↑
i − z↓

j ), (D9)

which demonstrates that a Laughlin quasihole in the upper layer has been created.

APPENDIX E: e/4 QUASIHOLE STATE ON CYLINDER

Due to the pairing nature of the Majorana mode, we can only create even number of e/4 quasiholes in the MR state. For the
MR state, creating one e/4 at w means putting another at infinity. Its wave function is

∣∣ψc
5/2

〉 = Pf

(
exp(γ zi) − exp(γ w) + exp(γ zj) − exp(γ w)

exp(γ zi) − exp(γ zj)

)∏
j<k

(exp(γ z j ) − exp(γ zk ))2e− 1
2

∑N
i=1 x2

i e− ∑
i (N−1)γ zi . (E1)

If we consider a pair of e/4 quasiholes at w1 and w2, the wave function is

∣∣ψc
5/2

〉 = Pf

(
(exp(γ zi) − exp(γ w1))(exp(γ zj) − exp(γ w2)) + (exp(γ zi) − exp(γ w2))(exp(γ zj) − exp(γ w1))

exp(γ zi) − exp(γ zj)

)
×

∏
j<k

(exp(γ z j ) − exp(γ zk ))2e− 1
2

∑N
i=1 x2

i e− ∑
i (N−1)γ zi . (E2)

For the e/4 quasihole in the ↑ layer of the 331 state, the wave function is

|ψ331〉 =
∏
i∈N1

(exp(γ zi ) − exp(γ w))
∏

i< j,i, j∈N1

(exp(γ zi ) − exp(γ z j ))
3

∏
k<l,k,l∈N2

(exp(γ zk ) − exp(γ zl ))
3

×
∏

i∈N1,k∈N2

(exp(γ zi ) − exp(γ zk ))e− 1
2

∑N
i=1 x2

i · e− ∑
i∈N1

γ

2 (4N1−2)zi−
∑

i∈N2
γ

2 (4N2−2)zi .

(E3)
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