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Squashed entanglement in one-dimensional quantum matter
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Squashed entanglement and its universal upper bound, the quantum conditional mutual information, are
faithful measures of bipartite quantum correlations defined in terms of multipartitions. As such, they are sensitive
to the fine-grain structure of quantum systems. Building on this observation, we introduce the concept of
quantum conditional mutual information between the edges of quantum many-body systems. We show that this
quantity characterizes unambiguously one-dimensional topological insulators and superconductors, being equal
to Bell-state entanglement in the former and to half Bell-state entanglement in the latter, mirroring the different
statistics of the edge modes in the two systems. The edge-to-edge quantum conditional mutual information
is robust in the presence of disorder or local perturbations, converges exponentially with the system size to
a quantized topological invariant, even in the presence of interactions, and vanishes in the trivial phase. We
thus conjecture that it coincides with the edge-to-edge squashed entanglement in the entire ground-state phase
diagram of symmetry-protected topological systems, and we provide some analytical evidence supporting the
claim. By comparing them with the entanglement negativity, we collect further indications that the quantum
conditional mutual information and the squashed entanglement provide a very accurate characterization of
nonlocal correlation patterns in one-dimensional quantum matter.
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I. INTRODUCTION

Identifying entanglement-based order parameters able to
characterize a large variety of quantum phases and at the
same time to discriminate between different forms of quantum
orders has remained a major challenge in condensed matter
physics for the last two decades. The block von Neumann
entanglement entropy [1–3] and the block entanglement spec-
trum [4–7] in simple bipartite systems have become central
tools for the characterization of quantum collective behav-
iors, including topologically ordered phases [8–18]. Indeed,
nontrivial topological order in two-dimensional systems has
been identified by means of the subleading term to the block
von Neumann entanglement entropy, the so called topological
entanglement entropy [13,19,20].

When considering either one-dimensional or higher-
dimensional systems with bulk-edge correspondence, both
the block von Neumann entanglement entropy and the block
entanglement spectrum fail to discriminate between topologi-
cally ordered and standard Ginzburg-Landau ordered phases,
associated with spontaneous symmetry breaking and nonva-
nishing order parameter. In fact, these measures based on
simple bipartitions of a system into two parts (blocks) cannot
account for the different physical properties of the bulk and of
the edges between topologically trivial and topologically non-
trivial phases of quantum matter [6]. Moreover, for all open
quantum systems in or out of equilibrium in any dimension,
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block entropies and entanglement spectra necessarily include
contributions from both classical and quantum fluctuations
and thus cease to be valid and meaningful measures of nonlo-
cal quantum correlations.

Following some preliminary efforts to address the prob-
lem [21–23], recently two well-defined multipartion-based
measures of bipartite entanglement and bipartite correla-
tions, respectively, the squashed entanglement (SE) and the
quantum conditional mutual information (QCMI), have been
introduced as possible efficient tools in the study of one-
dimensional quantum matter, given their ability to detect
the fine-grain structures of quantum systems and thus, in
particular, to discriminate between the different bulk and
edge contributions to the long-distance correlation patterns
in topologically trivial and topologically nontrivial quantum
many-body systems [24]. These two quantities are intimately
related, as the SE is defined as the infimum of the QCMI over
all possible state extensions. Therefore, the QCMI is always
an upper bound to the SE.

Specifically, for many-body systems with open boundary
conditions we introduced the edge-to-edge QCMI, thus being
an upper bound to the SE between the system edges, and
we found that it defines the natural quantized, nonlocal or-
der parameter for Kitaev topological superconductors in one
spatial dimension and in quasi-one-dimensional geometries
[24]. For such systems, the QCMI exhibits the correct scaling
at the quantum phase transition, is stable in the presence of
interactions and robust against the effects of disorder and
local perturbations. We introduced two distinct multipartition-
based forms of the QCMI: the tripartition-based edge-edge
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QCMI I(3)(A : B |C) corresponding to a edge A - entire bulk
C - edge B tripartition, which leads to a phase diagram
equivalent to that of the corresponding spin chain obtained
via a Jordan-Wigner transformation, and the quadripartition-
based edge-edge QCMI I(4)(A : B |C1), corresponding to a
edge A - bipartite bulk C = C1C2 - edge B quadripartition
and a partially traced-out bulk (e.g., by tracing out C2), which
discriminates between symmetric topological regimes and or-
dered phases with spontaneously broken symmetries [25–27].

Motivated by these results, in the present work we pro-
vide an in-depth study of the edge-to-edge QCMI and
SE and show that they characterize topological quantum
phase transitions in one-dimensional systems. Specifically,
we investigate and compare the two paradigmatic models
describing one-dimensional topological insulators and su-
perconductors, respectively, the Su-Schrieffer-Heeger (SSH)
insulating chain [28] and the Kitaev superconducting wire
[29]. For these systems we show that the edge-to-edge
bipartite QCMI identifies the correct nonlocal order param-
eter that singles out the phase transitions, characterizes the
topologically ordered phases of topological insulators and
superconductors, and discriminates between them.

The edge-to-edge QCMI is robust under variations of the
sample conditions due to disorder or local perturbations, and
scales exponentially with the size of the system, converging
to a quantized, topologically invariant value even in the pres-
ence of interactions. Crucially, the QCMI is sensitive to the
different nature of the edge modes. Indeed, it takes different
quantized values, respectively, to Bell-state entanglement and
half Bell-state entanglement, depending on the statistics of the
topological edge modes, respectively, Dirac fermions in the
SSH chain and Majorana fermions (“half-Dirac fermions”) in
the Kitaev wire.

Having found that the edge-to-edge QCMI in low-
dimensional topological systems exhibits the same behavior
expected for the genuine SE between the system edges, we
conjecture that the two quantities do actually coincide, and for
small-size systems we provide further supporting analytical
evidence to this statement. In general, while the computational
effort in the evaluation of the SE is strongly dependent on the
system size and generically a NP-hard problem, evaluating
the QCMI requires only a limited amount of computational
resources. This feature of the QCMI between the edges of a
topological system is due to the fact that in the latter the bulk
does not contribute to the quantum correlations between the
edges. Therefore the QCMI is insensitive to different parti-
tions of the bulk and to the system size as soon as the latter
exceeds a (small) critical threshold value.

We also compare the edge-to-edge QCMI with the entan-
glement negativity, a measure of bipartite entanglement that is
widely used in the study of quantum statistical mechanics and
quantum matter because of its simplicity and computability
[30]. We identify some possible failures of the latter and
provide further evidence that multipartition-based measures
such as the edge-to-edge SE and QCMI are indeed the nat-
ural framework for the characterization of one-dimensional
quantum matter. Finally, we discuss the perspectives for
the experimental accessibility of SE/QCMI as well as
their generalization to many-body systems in higher spatial
dimensions.

The paper is organized as follows. In Sec. II we intro-
duce the QCMI, the SE and the two fundamental forms of
upper bounds of SE based on the QCMI, I3 and I4. We also
review the main properties of the one-dimensional SSH and
Kitaev models. In Sec. III we study the main features of the
QCMI in the two systems, including the effects of interac-
tions, and compare the behavior of the QCMI with that of
the entanglement negativity. In Sec. IV we investigate and
discuss the conjectured equivalence between the QCMI and
the SE. In Sec. V we discuss our results, consider possible
experimental protocols to measure the QCMI and the SE, and
discuss generalizations and further applications in the study of
two-dimensional quantum matter. Technical details and math-
ematical methods used throughout the paper are reported in
the Appendices. Finite-size scaling at phase transition bound-
aries and robustness against disorder of the QCMI in the
topological phases are reported, respectively, in Appendices A
and B, while in Appendix C we analyze the Jordan-Wigner
transformation applied to the two systems and discuss the
phase diagrams of the interacting SSH model.

II. THEORY

Consider a quantum system G, two arbitrary subsystems A
and B, and a reminder C, such that ABC defines a tripartition
of G. Consider next a partition of the reminder: C = C1C2,
so that now ABC1C2 defines a quadripartition of G. One can
then introduce two inequivalent measures I(3) = I (A : B |C)
and I(4) = I (A : B |C1) of the QCMI between subsystems A
and B, respectively, conditioned to C and to C1 once C2 has
been traced out [24]:

I(3) = 1
2 [S(ρAC ) + S(ρBC ) − S(ρABC ) − S(ρC )], (1)

and

I(4) = 1
2

[
S
(
ρAC1

) + S
(
ρBC1

) − S
(
ρABC1

) − S
(
ρC1

)]
, (2)

where S(ρ) is the von Neumann entropy of the quantum state
ρ. The expressions I(3) and I(4) are the only two inequivalent
QCMIs corresponding to the same reduced state ρAB obtained
from the global state ρG [24]. On the other hand, the SE
(Esq(ρXY )) [31,32] of a bipartite system X ∪ Y is defined in
terms of the QCMI as

Esq(ρXY ) = inf
ρXY Z

{I (X : Y |Z )}, (3)

where infρXY Z {I (X : Y |Z )} denotes the infimum of I (X :
Y |Z ) over all quantum states ρXY Z of all possible exten-
sions X ∪ Y ∪ Z , with fixed subsystems X and Y . Given
a state ρG of the entire system G, then ρAC = TrB(ρG),
ρBC = TrA(ρG), ρC = TrAB(ρG), ρAC1 = TrBC2 (ρG), ρBC1 =
TrAC2 (ρG), ρABC1 = TrC2 (ρG) and ρC1 = TrABC2 (ρG) are the
reduced states of the subsystems involved. SE is the “perfect”
measure of entanglement on all quantum states as it is the only
entanglement monotone that is also convex, additive, asymp-
totically continuous, faithful, monogamous, and reduces to the
von Neumann entanglement entropy on pure states, thus satis-
fying all the required properties for a bona fide entanglement
measure [24,33,34].
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FIG. 1. (a) and (b) System multipartitions associated to the def-
inition of the corresponding bipartite, edge-to-edge SE and QCMIs.
(a) Tripartition of a quantum chain into two edges A and B and a
bulk C. (b) Quadripartition of the same chain, with a bipartite bulk
C = C1C2 and part C2 of the bulk traced out. (c) Standard biparti-
tion of the same chain in two blocks (halves) for the study of the
block entanglement negativity. (d) and (e) Sketch of the tight-binding
models of the SSH and of the Kitaev chains. In (d) a and b are
the two fermionic on-site species in the unit cell of the SSH model
Hamiltonian.

In complete generality, it trivially holds that I(3) �
Esq(ρAB) and I(4) � Esq(ρAB). On the other hand, if A and B
are the edges of a one-dimensional many-body system with
open boundary conditions, we will find that a further chain
inequality appears to hold: I(3) � I(4) � Esq(ρAB). Actually,
as discussed in Sec. IV below, one can show numerically
that equality holds at least for symmetry-protected topological
systems of limited size: I(3) = I(4) = Esq(ρAB). In Sec. IV we
also propose further arguments supporting the conjecture that
the equality I(3) = I(4) = Esq(ρAB) between the edge-to-edge
QCMIs and the edge-to-edge SE holds for all one-dimensional
symmetry-protected topological systems of arbitrary size. We
will thus discuss the topological properties of the systems
under investigation by considering I(3) and I(4) whenever they
coincide and whenever they are expected to be equal to the
exact SE Esq.

In Figs. 1(a) and 1(b), we provide a sketch of the above
multipartitions for a quantum system on a one-dimensional
lattice. Subsystems A and B identify the system edges; C iden-
tifies the full bulk. When the bulk is bipartite, i.e., C = C1C2,
we denote by C1 the part of the bulk that remains after part C2

is traced out. Without loss of generality one can set the size of

C1 as LC1 = 1 and identify it with the site adjacent to edge A.
We also fix the length of the edge partitions to �L/3�, which
is, for the system sizes considered, of the order of the decay
length of the edge modes in the bulk.

In the present work we study and compare the SSH
insulator and the Kitaev superconductor according to the mul-
tipartitions shown in Fig. 1 using the edge-to-edge QCMIs I(3)

and I(4) to characterize the phase diagram and the topolog-
ically ordered phases. Moreover, we will consider a further
estimator of bipartite entanglement, the so-called entangle-
ment negativity (N ) [30], that essentially quantifies the Peres
criterion for separability [35]. The negativity is overwhelm-
ingly used in quantum information as well as in the study of
quantum matter [36,37] for its simplicity and computability,
notwithstanding that it fails to satisfy some of the most im-
portant properties required for a valid entanglement measure.
Given a bipartition LR into two adjacent blocks (halves) L
and R, as shown in Fig. 1(c), the negativity N is defined as
the trace norm of the partial transpose ρTL of the bipartite state
ρ(LR) with respect to one of the two blocks:

N = ||ρTL ||1 − 1

2
=

∑
i

|λi|, (4)

where ||ρTL ||1 is the trace norm of ρTL and the λis are the
negative eigenvalues of ρTL . Next, we recall the SSH and
Kitaev model Hamiltonians:

HSSH = w

L∑
j=1

c†
a, jcb, j + v

L−1∑
j=1

c†
a, j+1cb, j + h.c., (5)

HK =
L−1∑
j=1

(�c†
j+1c†

j − tc†
j c j+1 + h.c.) −

L∑
j=1

μ

(
c†

j c j − 1

2

)
.

(6)

The SSH chain, Eq. (5), describes spinless fermions with
staggered hopping amplitudes w and v. The two fermionic
species a and b define the two different degrees of freedom
per unit cell. The Kiatev chain, Eq. 6, describes spinless
fermions with a p-wave superconducting pairing potential �,
an hopping strength t , and an on-site chemical potential μ.

These two models embed all the key properties of topolog-
ical insulators and superconductors: an insulating bulk with
boundary conduction, a protecting symmetry (chiral symme-
try for the SSH model; particle-hole symmetry for the Kitaev
model), and a bulk-edge correspondence. The topologically
ordered phase occurs, respectively, when w < v and when
μ < 2t , � �= 0. The crucial discriminant between the two
models is that they belong to two distinct classes of the ten-
fold classification [38], featuring topological edge modes of
different physical nature: fermionic for the SSH insulator and
Majorana for the Kitaev superconductor. When interactions
are included, the additional interaction terms read

HI,SSH =
L∑

j=1

[U1na, jnb, j + U2nb, jna, j+1], (7)

HI,K =
L∑

j=1

U (2n j − 1)(2n j+1 − 1), (8)
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FIG. 2. Phase diagrams as determined by the QCMI to Bell-state
entanglement ratio I(4)/EBS . (a) SSH chain of size Lcell = 50 unit
cells. (b) Kitaev chain of size L = 60 sites at t = 1. (c) and (d) Scal-
ing in the topological and in the trivial regimes, with t = � = 1 in
(d). Insets: log-scale plots showing for both models the exponential
convergence to the quantized ground-state value of the edge-to-edge
SE Esq.

where n j = c†
j c j . Unless otherwise stated, from now on we set

U1 = U2 = U .

III. RESULTS

In Figs. 2(a) and 2(b), we report the phase diagrams of
the two models determined by the ratio between the edge-
to-edge QCMI I(4) and the reference Bell-state entanglement
EBS = ln 2. The sizes of the two chains are identified by the
number of unit cells Lcell for the SSH insulator and by the
number of fermionic sites L for the Kitaev superconductor.
Throughout the entire topological phase I(4)/EBS = 1 for the
SSH chain and I(4)/EBS = 1/2 for the Kitaev chain, reflecting
the different statistics of the topological modes in the two
models [39–41]. The conjectured coincidence of the SE with
the QCMI implies that Esq = EBS for the SSH insulator, iden-
tifying the presence of two fermionic edge modes, while for
the Kitaev superconductor Esq = EBS/2, detecting the pres-
ence of two half-fermion Majorana edge modes. Finite-size
effects are clearly visible near the phase boundaries |w| = |v|
and |μ| = 2t .

From Fig. 2 we see that in the topological phase the
QCMI I(4) scales exponentially to the quantized values EBS

and EBS/2, while it remains pinned to zero in the trivial phase;
since the SE is positive semidefinite and bounded from above

by the QCMI, it follows that throughout the entire trivial
phase it is certainly I(4) = Esq = 0. On the other hand, at the
points of exact ground-state topological degeneracy, respec-
tively, w = 0, v �= 0 and |μ| = 0, t = �, both the topological
fermionic modes and the Majoranas decouple from the bulk
and nucleate at the edge of the chains. Correspondingly, the
exact quantized value of the QCMI I(4) becomes independent
of the chain size.

It is important to observe that the same results are obtained
resorting to the QCMI I(3). Indeed, due to the exponential de-
coupling of the edges from the insulating bulk, the definition
of the edge-to-edge quantum conditional mutual information
in a topological system is insensitive to the different partitions
of the bulk, and therefore I(3) = I(4) throughout the entire
phase diagram. In fact, at the exact points of topological
degeneracy, the two equal upper bounds I(3) = I(4) on the
edge-to-edge SE coincide with the quantized values EBS and
EBS/2. Away from the points of exact ground-state degeneracy
but still inside the topologically ordered phases, numerical
analysis confirms that, for small-sized systems, I(3) and I(4)

still coincide and remain quantized at a constant value equal,
respectively, to the Bell-state entanglement EBS for the SSH
insulator and to half the Bell-state entanglement EBS/2 for
the Kitaev superconductor. These findings, together with the
property of asymptotic continuity enjoyed by SE strongly
suggest that I(3) and I(4) coincide with the true SE Esq(ρAB)
between the edges not only in the trivial phase but also
throughout the entire topological phase. Therefore, the edge-
to-edge SE and, equivalently, the two edge-to-edge QCMIs
I(3) and I(4) all appear to identify the same correct non-local
order parameter for one-dimensional topological insulators
and superconductors.

In conclusion, all of the above leads us to conjecture that
the edge-to-edge SE coincides exactly with the edge-to-edge
QCMIs throughout the entire ground-state quantum phase
diagrams of topological insulators and superconductors. We
discuss in more detail the conjecture in Sec. IV below, where
we provide analytical and numerical arguments that: (i) the
QMCIs coincide with the true edge-to-edge SE in small sys-
tems; (ii) the QMCIs scale exponentially to the SE shared
by the nontrivial edge modes in the topologically ordered
phases; (iii) such SE between the system edges depends on the
statistics of the edge modes; (iv) the QCMIs are robust against
disorder and local perturbations. Details on finite-size scaling
at the phase transition boundaries are provided in Appendix A,
while point (iv) is discussed at length in Appendix B.

As already mentioned, the entanglement negativity has
become an increasingly popular tool in the investigation of
topological quantum matter [30,36,37,42,43]. Here we show
that in fact at least some forms of N do not provide the correct
characterization of topological superconductors. In Fig. 3 we
report the phase diagrams of the SSH and Kitaev chains as
determined by the ratio N /EBS . For the SSH insulator we have
that N = EBS/ log 4 in the nontrivial phase and N = 0 other-
wise. On the other hand, N fails to reproduce the correct phase
diagram of the Kitaev superconductor: from Fig. 3 we see that
N vanishes asymptotically with increasing size of the system.
This feature is a manifestation of the possible unfaithfulness
of the negativity. On the contrary, the SE Esq is faithful,
and thus Esq = 0 is a necessary and sufficient condition for
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FIG. 3. Phase diagrams as determined by the entanglement neg-
ativity to Bell-state entanglement ratio N /EBS . (a) SSH chain of size
Lcell = 50 unit cells. (b) Kitaev chain of size L = 60 sites at t = 1.
(c) and (d) Scaling in the topological and in the trivial regimes, with
t = 1 and � = 1.8 in panel (d).

separability. The above analysis confirms that, at variance
with bipartition-based estimators of bipartite entanglement,
the paradigm of multipartition-based bipartite SE appears to
represent the correct framework for the investigation of one-
dimensional quantum matter. It remains to be seen whether a
more careful and sophisticated approach to the definition of
the entanglement negativity in fermionic systems, such as that
pioneered by Ryu and coworkers [44,45], can always lead to a
characterization of topological systems that detects correctly
the transition, identifes the correct phase diagram, features the
correct invariant quantized values in the topologically ordered
phases, discriminates among different topological systems
and edge modes, and discriminates between symmetric topo-
logical order and ordered phases associated to spontaneous
symmetry breaking. Work is under way concerning the sys-
tematic comparison between QCMIs, SE, and entanglement
negativity in symmetry-protected topological systems [46].

When interactions are included, it is convenient to map
fermionic systems into interacting spin chains via the Jordan-
Wigner mapping [25] (see Appendix C for details). Although
this procedure extends the Hilbert space dimension from 2L to
2L, resorting to the QCMI I(3) allows to investigate the effects
of interactions without numerical approximations. Therefore,
for small system size, one can perform a direct comparison be-
tween well-known results coming from exact diagonalization
and from numerical techniques [47,48]. In Fig. 4 we report
the contour plots of the QCMI to Bell-state entanglement

FIG. 4. Phase diagrams of the interacting SSH and Kitaev chains
determined by the QCMI to Bell-state entanglement ratio I(3)/EBS as
a function of the interaction strength U . In (a) the SSH chain size
is Lcell = 14 and v = 1. In (b) the length of the Kitaev chain is L =
18, while t = � = 1. The drawn-in phase diagram of the interacting
Kitaev chain is taken from Ref. [49].

ratio I(3)/EBS for the SSH and Kitaev model Hamiltonians
with the addition of the interaction terms HI,SSH and HI,KC .
From Fig. 4(a) we see that in the presence of repulsive inter-
actions the mean field topologically ordered phase |w| � |v| is
progressively reduced, until a trivial phase is reached indepen-
dently of w for U > 1. On the other hand, when we consider
attractive interactions, a new region with I(3)/EBS = 1 pro-
gressively reopens, being independent of w for strong enough
attraction (U < −1). The detailed analysis is illustrated in Ap-
pendix C. In Fig. 4(b) we compare the phase diagram of the
interacting Kitaev chain determined by the ratio I(3)/EBS with
the standard reference one obtained by a variety of analytic
and numerical methods in the recent literature [49]. We find an
excellent qualitative and quantitative agreement between both
diagrams when the system behaves as a band insulator and a
topological superconductor. Indeed, both diagrams match the
same band insulator-topological superconductor phase bound-
ary. I(3) also signals the presence of an incommensurate charge
density wave phase (ICDW), in fair agreement with the most
recent density-matrix renormalization group (DRMG) results
[50,51].

The phase diagram of the interacting Kitaev chain is
currently understood by means of combination of several nu-
merical techniques, like DMRG and bosonization [47,48,52–
54], that involve various adjustments on the ground state
parity, oscillatory behaviors of the ground-state wave func-
tions, and interpolation schemes on few numerical points
[50,51,55], so that discrepancies and uncertainties emerge,
even concerning a possible additional phase with odd ground-
state parity between the ICDW and the Mott insulator phases
[51], so that a definite phase boundary for the ICDW phase
has yet to be identified.

In the I(3)-based phase diagram, the QCMI I(3) = 0,
and therefore Esq = 0 both in the trivial insulator and in
the ICDW phases, signaling the absence of long-distance
entanglement between the edges. On the other hand,
I(3)/EBS ∼ 1/2 in the Mott insulator phase, implying a
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nontrivial long-distance edge-to-edge squashed entanglement
Esq, provided the conjectured coincidence between QCMI and
SE holds. This finding yields strong support to recent stud-
ies suggesting the presence of topological order in the Mott
regime of one-band fermionic systems [56]. In this picture,
the metal-insulator transition is equivalent to a topological
transition via a midgap pole in the self-energy that matches
the spectral pole of the localized surface state in a topologi-
cal insulator. The QCMI and SE paradigm encapsulates such
property of the Mott insulating phase by yielding a nontrivial
quantized value of the QCMI to Bell-state entanglement ratio
I(3)/EBS . In this respect, the difference between the numerical
evaluation and the expected value 1/2 for the ratio I3/EBS

in the Mott phase could originate from residual finite-size
effects, obeying a slower finite-size scaling compared to the
other phases.

IV. EQUIVALENCE BETWEEN QCMI AND SE: SOME
APPROXIMATE ANALYTICAL RESULTS

The SE (Esq(ρXY )) introduced in Eq. 3 measures the bipar-
tite entanglement between subsystems X and Y in the joint
quantum state ρXY . It is defined in terms of nonoverlapping
distinguishable multipartitions, for any spatial dimension, at
any temperature, and on all quantum states (pure or mixed).
The SE is defined as the infimum of the QCMI, taken over all
the quantum-state extensions of arbitrary size ρXY Z such that
ρXY = TrZ (ρXY Z ).

Limited to a one-dimensional lattice of finite size L, the
number N of all the possible quantum-state extensions Z is
expressed by N = ∑LZ

k=1

(LZ

k

)
, LZ being the maximum size of

Z allowed, once the edge partitions have been fixed (LX , LY ),
LZ = L − LX − LY . Since N increases exponentially with LZ

(N = 2LZ ), the computational resources required for the mini-
mization of the QCMI explode exponentially as well, and the
problem is indeed NP-hard. On the other hand, considering
lattices of moderate size, one can determine an analytical
approximant to the true SE restricted to one-dimensional
quantum-state extensions.

In Figs. 5(a) and 5(b) we report the QCMI as a function
of every one-dimensional quantum-state extension for four
selected points of the phase diagram of the SSH chain, (a),
and of the Kitaev chain, (b). One can see from Figs. 5(a) and
5(b) that for topological systems the actual value of the QCMI
does not depend on the choice of the bulk partition. Indeed,
topological states of matter represent special cases where the
bulk is uncorrelated from the edges and the full, end-to-end
QCMI is carried entirely by the edges alone. In this case,
tracing out a connected or disconnected part of the bulk has
no effects on the edge-to-edge correlations and all the possible
different forms of the QCMI are expected to coincide. This
is actually what occurs both in topological insulators and in
topological superconductors.

In Figs. 5(c) and 5(d) we compare the finite-size scaling
of the approximate SE Esq obtained via a succession of finite
one-dimensional state extensions and the QCMI I(4) on a set of
selected points of the topological phase diagram, respectively,
for the SSH model, see Fig. 5(c), and for the Kitaev chain,
see Fig. 5(d). We observe that the QCMI I(4) coincides exactly
with the approximate analytical expression obtained for the

SE Esq, but for a negligible numerical discrepancy originated
by finite-size effects. For a topological insulator of moderate
system sizes the approximate analytical expression of the SE
Esq between the system edges converges to the Bell state
entanglement: Esq(ρAB) = ln 2, while for a topological super-
conductor it converges to half the Bell state entanglement:
Esq(ρAB) = ln 2/2.

Hereafter, we provide an approximate analytical argument
that EBS/2 represents the bulk limit of the edge-to-edge SE
in the Kitaev superconducting chain. First of all, the constant
quantized value EBS/2 taken by the QCMIs can be analytically
determined at the points of exact ground-state topological
degeneracy, i.e., at μ = 0, t = �. In this limit, the topological
edge modes decouple from the bulk and all QCMIs become
independent of the chain size. Due to the above properties, I(3)

and I(4) are expected to coincide with the true SE without size
constraints, see Fig. 5. For this reason, without loss of general-
ity, we consider the collection of the many-body ground-state
density matrices ρABC of the tripartite system ABC as the set
of possible state extensions for the approximate computation
of the edge-to-edge SE.

A Kitaev chain Hamiltonian with μ = 0 and t = � can
be expressed via the Jordan-Wigner mapping as HKC

spin =
−t

∑L−1
j=1 σ x

j σ
x
j+1. The density matrix of the parity-preserving

many-body ground state reads

ρABC = 1
2 [|↑ . . . ↑〉〈↑ . . . ↑|L + |↑ . . . ↑〉〈↓ . . . ↓|L
+ |↓ . . . ↓〉〈↑ . . . ↑|L + |↓ . . . ↓〉〈↓ . . . ↓|L], (9)

where L is the length of the chain and the notation
|α . . . α〉 〈β . . . β|L has been introduced to denote a ma-
trix with L spins where |α〉 / |β〉 = |↑〉 , |↓〉 and with
|↑〉 = 1/

√
2 (1, 1)T and |↓〉 = 1/

√
2 (1,−1)T . It is straight-

forward to show that, independently on the partition lengths,
tracing out a part of the system leads to the following reduced
density matrices:

ρAC = 1
2 [|↑ . . . ↑〉〈↑ . . . ↑|LA+LC

+ |↓ . . . ↓〉〈↓ . . . ↓|LA+LC
],

ρBC = 1
2 [|↑ . . . ↑〉〈↑ . . . ↑|LB+LC

+ |↓ . . . ↓〉〈↓ . . . ↓|LB+LC
],

ρC = 1
2 [|↑ . . . ↑〉〈↑ . . . ↑|LC

+ |↓ . . . ↓〉〈↓ . . . ↓|LC
],

(10)

where LA, LB and LC refer, respectively, to the lengths of the
edges A, B and of the bulk C. Via the expressions in Eq. 10,
the reduced von Neumann entropies are easily computed. It
turns out that SAC = SBC = SC = log 2, while of course for the
pure ground state projector SABC = 0. Therefore, the end-to-
end (edge-edge) SE of the reduced two-edge state ρAB reads
Esq(ρAB) = log 2/2. A similar derivation holds for the SSH
chain with w = 0, v �= 0, leading to Esq(ρAB) = log 2.

In conclusion, we have shown how to compute an ap-
proximate form of the SE between the edges restricted only
to one-dimensional state extensions and for systems of finite
size, and we have found that it coincides with the two distinct
forms I(3) and I(4) of the QCMI between the edges. It turns out
that the approximate SE saturates to the bulk value expected
for the true edge-to-edge SE already for systems of limited
size. We have shown that the aforementioned bulk value can
be explicitly computed according to the analytical proof pro-
vided above. In view of these observations, we conclude that

115160-6



SQUASHED ENTANGLEMENT IN ONE-DIMENSIONAL … PHYSICAL REVIEW B 107, 115160 (2023)

FIG. 5. (a), (b) The edge-to-edge QCMI evaluated as a function of the number of possible bulk quantum-state extensions C inserted
between edges A and B (1 � # � N). We have considered an SSH chain of Lcell = 15 unit cells, (a), and a Kitaev chain of L = 15 sites, (b).
For the two systems, we fix the edge lengths, respectively, at LA = LB ∼ Lcell/3 and at LA = LB ∼ L/3. For the Kitaev chain we also set t = �.
The finite-size scalings of the approximate Esq and the exact I(4) are plotted in (c) and (d), respectively for the case of the SSH and of the Kitaev
chain. In all cases, we find Esq = I(4).

the conjecture Esq = I(3) = I(4) is strongly corroborated and
should hold without restrictions on the system size because
the bulk part of the system does not contribute to the quantum
correlations between the edges within topologically ordered
phases.

V. DISCUSSION

In the present work we have shown that the squashed
entanglement between the edges of a quantum many-body
system, together with its natural upper bounds defined by
two inequivalent forms of the edge-to-edge quantum mu-
tual information conditioned by the system bulk, realize the
natural framework of nonlocal order parameters character-
izing topological quantum matter in one dimension. Such
quantities discriminate between topological insulators and
superconductors by identifying the different physical nature
and statistics of the edge modes in the two cases. Use of
the edge-to-edge quantum conditional mutual information
yields the exact quantum phase diagram for the noninter-
acting models; in the presence of interactions, it reproduces
both qualitatively and quantitatively the consensus results ob-
tained so far by various analytical and numerical approaches.
The latter highly nontrivial result makes the quantum
conditional mutual information between the system edges the

natural benchmark to test the accuracy of numerical approxi-
mations.

The fundamental property of the quantum conditional mu-
tual information and squashed entanglement that singles them
out when compared to standard quantifiers of pure-state bipar-
tite entanglement such as the block entanglement entropy and
the entanglement spectrum is that the former, although being
bipartite measures, are defined, at variance with the latter,
in terms of multipartitions. This property in turn warrants
that quantum conditional mutual information and squashed
entanglement are sensitive to and can detect the different
physical nature of the bulks (e.g., conducting or insulating)
and of the edges for different systems and can thus distinguish
and discriminate topologically ordered phases from ordinary
Ginzburg-Landau symmetry-breaking orders as well as iden-
tify and discern different topologically ordered regimes. In
essence, this fine-grain ability keeps track of the different parts
of a system, either edge-bulk-edge or edge-partial bulk-partial
bulk-edge, and it is responsible for the tremendous effective-
ness of edge-state quantum conditional mutual information
and edge-state squashed entanglement in detecting, identi-
fying, and discriminating different types of quantum phase
transitions and collective quantum orders.

A crucial step in order to extend our results to include
all topological quantum matter is to generalize the concept

115160-7



MAIELLARO, ROMEO, CITRO, AND ILLUMINATI PHYSICAL REVIEW B 107, 115160 (2023)

of edge-state quantum conditional mutual information and
edge-state squashed entanglement to generic many-body sys-
tems in dimension D � 2. For such higher-dimensional cases,
the main challenge lies in the correct identification of the
appropriate bulk and edge parts for a given multipartition.
Among two-dimensional systems, second-order topological
materials (HOT M2) [57,58] play a fundamental role, both as
novel platforms for topological insulators or to realize topo-
logical superconducting braiding dynamics [59]. HOT M2

are systems with gapped one-dimensional boundaries and
zero-dimensional localized modes (corner states). For such
systems, the identifications of edges A, B and bulks C C1, C2

is clear and easily connected to that of the one-dimensional
case. This class of systems is thus the first prominent
candidate in order to implement and test the scheme of
topological squashed entanglement to many-body systems in
D = 2.

Concerning the experimental accessibility of topological
squashed entanglement, the problem boils down to that of
measuring quantum entropies of a set of reduced states. A
recent proposal relies on the thermodynamic study of the
entanglement Hamiltonian for the direct experimental probing
of von Neumann entropies via quantum quenches [60]. A pos-
sibility specifically tailored for systems featuring topological
order consists in identifying minimum entropy states and then
experimentally simulating the behavior of the associated von
Neumann entropies via the classical microwave analogs of
such states [61]. A further intriguing possibility arises from
the observation that highly informative bounds on von Neu-
mann entropies, quantum conditional mutual information, and
squashed entanglement can be constructed in terms of Rényi
entropies [62,63]. The strategy is then to adapt to fermionic
systems [64] the schemes previously proposed for the experi-
mental probe of Rényi entropies in bosonic and spin systems
[65–67] and the corresponding techniques that led to the first
measurement of the quadratic Rényi entropy in a many-body
system [68].
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APPENDIX A: FINITE-SIZE SCALING

As already showed SE scales exponentially to the entangle-
ment shared by the nontrivial edge modes in the topological
ordered phases, while it is pinned to zero for points out of
the such regime. At phase boundaries the edge modes are
less localized at the ends of the chain and possible nontrivial
effects on SE should appear more transparent. In Figs. 6(a)
and 6(b) we show that, for fixed size, the QCMI to Bell-state
entanglement ratio I(4)/EBS is lowered when topological phase
transition points are approached: w = v, μ = 2t . However
an increasing scaling with size towards EBS and EBS/2, re-
spectively, for the SSH chain, (a), and the Kitaev model,
(b), is observed, signaling the robustness of the entanglement
nonlocal order parameter even close to the phase transition.

FIG. 6. Finite-size scaling at phase transition boundaries of the
QCMI to Bell-state entanglement ratio I(4)/EBS for the SSH chain
(a) and the KC chain (b).

Significant deviations from the quantized entanglement values
are only obtained when w and t differ from the aforemen-
tioned phase transition points by the order of 10−2.

APPENDIX B: EFFECTS OF DISORDER

Robustness against disorder is a specific property of topo-
logical materials [69–72]. In fact, disorder may even induce
localization effects as in the case of Anderson insulators
[73], thus favoring topological phases of matter, whereas in
other systems such as, e.g., semiconductor-based Majorana
nanowires and topological insulator nanoribbons, it can yield
detrimental effects [70,74]. The topologically ordered phases
of the SSH and Kitaev chains are robust to the effects of
disorder and local perturbations [23,69,72,75,76].

For both models, we study the response of the QCMI to
the disorder induced on the hopping integrals. This choice
provides a model of the effective mass gradient and ran-
dom doping along the system that originate from the growth
process of the one-dimensional nanowires. Specifically,
we consider uniform, chirality-preserving disorder on the
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FIG. 7. The QCMI to Bell-state entanglement ratio I(4)/EBS

in the presence of disordered hopping integrals in the SSH and
Kitaev chains. (a) Behavior of I(4)/EBS for the SSH chain with
random hopping amplitudes wi = w + W1δi and vi = v + W2δi, with
δi randomly generated in the interval (−0.5, 0.5) and with 2W1 =
W2 = W , v = 1, Lcell = 50. (b) Behavior of I(4)/EBS for The Kitaev
chain with random hopping amplitudes ti. The random realizations
are generated by a uniform probability distribution defined in the
interval ti ∈ (t − τ, t + τ ). The reference values of the parameters
have been fixed as t = 1, � = 0.1, L = 50.

hoppings of the SSH chain:

wi = w + W1δi, (B1)

vi = v + W2δi, (B2)

with 2W1 = W2 = W , and δi randomly generated in the in-
terval (−0.5, 0.5). For the Kitaev chain we consider the
following random hopping integrals:

ti = t + τ dis
i , (B3)

with τ dis
i uniformly distributed in the interval (−τ, τ ).

In Fig. 7, we let W and τ range from perturbative values
W = v/10 000 and τ = �/4 up to a regime for which the
strength of the disorder becomes comparable with the band
gaps of the two models, respectively, W = v/2 and τ = 5�.

For the SSH chain, we see that the QCMI to Bell-state
entanglement ratio I(4)/EBS remains resilient over all the ex-
amined regimes, only being affected by some fluctuations in
the regime of very high disorder, especially near the phase
boundary. A similar phenomenology holds for the supercon-
ducting chain from τ = �/4 up to τ = �. For higher values
of τ , e.g., when τ = 5� the phase boundary defining the
topological transition tends to be suppressed. This effect sug-
gests that random hopping is more effective in perturbing the
topologically ordered phase in the Kitaev chain then in the
SSH chain. At any rate, the above analysis yields that realistic
values of the disorder strength do not cause any significant
disruption of the topologically ordered phases as measured by
the SE.

APPENDIX C: INTERACTING SYSTEMS

1. Mapping to interacting spin Hamiltonians

The Jordan-Wigner transformation [25] is an highly non-
local mapping between fermionic operators and spin-1/2

operators. On each site, an empty state is mapped into a spin
up and an occupied one to a spin down. The nonlocal part
of this mapping is called the Jordan-Wigner string and fixes
the (anti)commutation relation between sites, by counting the
parity of overturned sites to the left of the spin on which it is
applied.

This transformation explicitly breaks the translational in-
variance of the model, by singling out a particular site as
a starting point for the string. Denoting by c j,α and c†

j,α
the generic annihilation and creation fermionic operators, the
Jordan-Wigner mapping is defined by

c j,α = e−iπ
∑

α′
∑ j−1

l=1 c†
l,α′ cl,α′

σ+
j,α, (C1)

c†
j,α = σ−

j,αeiπ
∑

α′
∑ j−1

l=1 c†
l,α′ cl,α′

, (C2)

n j,α = 1 − σ z
j,α

2
, (C3)

where j singles out the explicit lattice site while α de-
notes the remaining degrees of freedom of the system.
The aforementioned parity string of the overturned sites is

e−iπ
∑

α′
∑ j−1

l=1 c†
l,α′ cl,α′ . The operators σ

(+,−)
j,α = (σ x

j,α ± iσ y
j,α )/2

are the well-known combination of Pauli matrices and the
last relation in Eq. (C3) allows us to express the parity op-
erator of the fermionic site j with degrees of freedom α as
e−iπc†

j,αc j,α = σ z
j,α .

Using the algebra of spin-1/2 operators and the constraint
that on different sites Pauli matrices commute, it is straight-
forward to derive the following spin-1/2 representations of
the interacting SSH insulator and Kitaev superconductor:

HSSH
spin = 1

2

[
U

(
L − 1

2

)
+ w

L∑
j=1

(
σ x

a jσ
x
b j + σ

y
a jσ

y
b j

)

+ v

L−1∑
j=1

(
σ x

b jσ
x
a j+1 + σ

y
b jσ

y
a j+1

) + U

2

(
L∑
1

σ z
a jσ

z
b j

+
L−1∑

1

σ z
b jσ

z
a j+1

)
− U

(
L∑

j=2

σ z
a j +

L−1∑
j=1

σ z
b j

)

− U

2

(
σ z

a1 + σ z
bL

)]
, (C4)

HKC
spin =

L−1∑
j=1

(−(t + �)σ x
j σ

x
j+1 + (t − �)σ y

j σ
y
j+1 + Uσ z

j σ
z
j+1

)

+ μ

2

L∑
j=1

σ z
j . (C5)
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FIG. 8. Phase diagrams of the interacting SSH chain in the w − v

plane at different fixed values of the interaction strength U . The
light blue lines correspond to the phase boundaries of the noninter-
acting case (w = v). The contour plots reproduce the behavior of
the function Sign[(I(3) − Iw=v

(3) )/EBS], where Iw=v
(3) /EBS = 0.15 is the

value of I(3) when U = 0 and w = v. The length of the chain is fixed
at Lcell = 14.

When the SSH Hamiltonian in Eq. (C4) is considered,
α = a, b represent the degree of freedom of the unit cell, while
the Kitaev chain Hamiltonian in Eq. (C5) describes exactly
one fermionic degree of freedom per lattice site. We see that
the interacting SSH model transforms into a staggered XY Z
chain with external magnetic field along the z direction, while
the Kitaev chain is described by a XY Z chain with external
magnetic field along the z direction. Moving to the spin rep-
resentation, the Hilbert space dimension grows exponentially
from 2L to 2L.

2. Phase diagram of the interacting SSH chain

By means of the Jordan-Wigner mapping, the edge-to-edge
QCMI can be computed exactly for interacting systems of
relatively modest size. In the main text we have discussed the
phase diagrams of the interacting SSH and Kitaev models by
means of the I(3) in the U − w and U − μ plane of the phase
space. Here we discuss the phase diagram of the interacting
SSH chain in the w − v plane.

In Figs. 8(a)–8(d) we report four different phase con-
tour plots, each corresponding to a fixed value of the
Coulomb interaction strength U . As the Coulomb repul-
sion U is increased, the topological phase boundary gets
progressively reduced in comparison to that of a nonin-
teracting case w = v (blue light line). On the other hand,
for increasing Coulomb attraction the topological phase re-
opens, becoming the dominant contribution of the entire phase
diagram.
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