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Thermoelectric properties in semimetals with inelastic electron-hole scattering
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We present systematic theoretical results on thermoelectric effects in semimetals based on the variational
method of the linearized Boltzmann equation. Inelastic electron-hole scattering is known to play an important
role in the unusual transport of semimetals, including the broad T 2 temperature dependence of the electrical
resistivity and the strong violation of the Wiedemann-Franz law. By treating the inelastic electron-hole scat-
tering more precisely beyond the relaxation-time approximation, we show that the Seebeck coefficient when
compensated depends on the screening length of the Coulomb interaction as well as the Lorenz ratio (the ratio
of thermal to electric conductivity due to electrons divided by temperature). It is found that deviations from the
compensation condition significantly increase the Seebeck coefficient, along with crucial suppressions of the
Lorenz ratio. The result indicates that uncompensated semimetals with the electron-hole scattering have high
thermoelectric efficiency when the phonon contribution to thermal conductivity is suppressed.
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I. INTRODUCTION

Thermoelectric effect or the Seebeck effect, which in-
duces the electromotive force by a temperature gradient, has
attracted much attention from the perspective of energy har-
vesting. The efficiency of the power generation due to the
thermoelectric effect is expressed by a dimensionless figure of
merit, ZT ≡ S2σT/(κel + κph), where S, σ , κel (κph), and T
are the Seebeck coefficient, electrical conductivity, thermal
conductivity of electrons (phonons), and temperature, respec-
tively. Materials with large ZT have potential applications in
power supplies and thermoelectric cooling.

Conducting materials can be broadly classified into three
categories according to their transport properties: metals,
semiconductors, and semimetals [1]. Metals have the high-
est electrical conductivity, but they also have proportionally
high thermal conductivity and usually satisfy the Wiedemann-
Franz (WF) law, which states that the Lorenz ratio
(L = κel/σT ) becomes the universal constant L0 = π2k2

B/3e2

with e < 0 being the charge of an electron. The WF law pre-
vents metals from having large ZT . In general, materials that
exhibit high thermoelectric performance belong to semicon-
ductors with a large Seebeck coefficient. Thermoelectricity of
semimetals, the third category of conducting materials with
intermediate conductivity between that of metals and semi-
conductors, has also been studied for many years [2–5], and
has recently attracted renewed interest [6–11].

The electronic transport due to the electron-hole scattering
in semimetals shows several intriguing phenomena, even if the
energy dispersion of the model is simple as in Fig. 1. First, the
electron-hole scattering gives a T 2 temperature dependence
of the electrical resistivity even without the umklapp pro-
cess [4,12–17]. This is because momentum conservation does
not necessarily lead to velocity conservation in the case of
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semimetals. Second, recent experimental and theoretical stud-
ies on WP2 have revealed a downward violation of the WF law
[18–22], in which the Lorenz ratio becomes small depending
on the screening length of the Coulomb interaction. This is
due to the fact that the thermal current is more strongly relaxed
than the electrical current due to electron-hole scattering, an
effect that goes beyond the relaxation-time approximation
(RTA) in transport theory. Since the dimensionless figure of
merit ZT can be rewritten as

ZT = S2

L + κph/σT
, (1)

an unusually small Lorenz ratio in semimetals can lead to a
large figure of merit.

In this paper, we systematically study the thermoelectric
properties of semimetals using a simple but standard model
to clarify the dependencies of the electrical, thermal, and
thermoelectric transport coefficients on (i) the carrier num-
bers (compensated, electron-doped, and hole-doped), (ii) the
effective masses of electrons and holes, and (iii) the screening
length of the Coulomb interaction. In the previous studies, the
Lorenz ratio in a compensated semimetal was studied by exact
solutions of the Boltzmann equation [20,22]. However, this
method is not valid for the thermoelectric coefficients. The
thermoelectric coefficients due to the electron-hole scattering
were studied only for the compensated case by the RTA [22].
Therefore, the general behavior of thermoelectric coefficients
for the uncompensated semimetal with the electron-hole scat-
tering is unclear. In addition, the RTA is not exact for inelastic
scattering [1] and the importance of inelastic scattering in
a semimetal has been discussed [10]. Therefore, it should
be testified whether the RTA is valid or not by the analysis
beyond RTA. Analysis by the trial functions is useful to con-
sider transports in the presence of the inelastic scattering and
employed in various systems, such as graphene and bilayer
graphene [23–25]. Here, we apply the variational method [2]
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FIG. 1. Two-band model consisting of electron (blue) and hole
(orange) bands.

to the linearized Boltzmann equation, which is more reliable
than RTA. We will show that there is a contribution to the
thermoelectric effect that is not captured by the RTA in the
previous study. In the present paper, we focus on the effect
of the electron-hole scattering, and the effect of phonons is
out of the scope of this paper [26]. In the following, we
study the temperature range kBT/� � 0.06 where � is an
energy offset (see Fig. 1) since the electron-hole scattering
becomes dominant in low-temperature region compared to the
electron-phonon scattering.

This paper is organized as follows. In Sec. II, we intro-
duce the model and the Boltzmann equation. In particular,
in Sec. II A, we provide a detailed description of our model,
illustrated in Fig. 1. In Sec. II B, we introduce a systematic
method based on the Boltzmann equation to calculate the
transport coefficients for this model. The results and discus-
sions are given in Sec. III. First, we present the temperature
dependence of transport coefficients. Then, we discuss the
carrier-number dependence of thermoelectric properties when
the electron-hole scattering dominates. In the compensated
case, the Seebeck coefficient is zero if the effective masses
of the electrons and holes are the same. If the effective
masses are different, the Seebeck coefficient becomes finite,
but small. However, we will show that it is sensitive to the
screening length of the Coulomb interaction as is the case
for the Lorenz ratio. In the uncompensated cases, we find
that slight deviations from the compensation bring a large
Seebeck coefficient when the electron-hole scattering domi-
nates. We also estimate Z̃T ≡ S2σT/κel = S2/L, which gives
an upper bound of the figure of merit, in our framework, and
find that the electron-hole scattering gives large Z̃T in the
uncompensated case due to the collaboration of the reduction
of the Lorenz ratio and the increase of the Seebeck coefficient.
Finally, the conclusions are given in Sec. IV.

II. MODEL AND BOLTZMANN EQUATION

A. Model

We study a two-band model depicted in Fig. 1 consisting
of electron and hole bands with three-dimensional quadratic
dispersions [20,22]

ε1,k = h̄2k2

2m1
, ε2,k = � − h̄2(k − k0)2

2m2
, (2)

where m1 (m2) is the effective mass of electrons (holes), and
� is the energy offset. Therefore, both carriers have spherical
Fermi surfaces.

The number of electrons (holes) is given by n1 =
V −1 ∑

k 2 f0(ε1,k) (n2 = V −1 ∑
k 2[1 − f0(ε2,k)]) where a fac-

tor 2 and V indicate the spin degeneracy, and the volume

of the system, and f0(ε) = (eβ(ε−μ) + 1)−1 is the Fermi-
Dirac distribution function with β = (kBT )−1 and μ is the
chemical potential which keeps the net charge e�n = e(n1 −
n2) at the value of T = 0. By introducing a parameter
χ defined by kF,2 = χkF,1, we obtain n2 = χ3n1 at T = 0
and the Fermi energy (εF) is given by εF = m2�/(χ2m1 +
m2). As a typical scale of wave number, we define kF =√

2m1m2�/h̄2(m1 + m2), which is the Fermi wave number
in the case of χ = 1, which corresponds to the compensated
case, n1 = n2.

B. Boltzmann equation and variational method

The Boltzmann equation of the system is given by
[2,20,22][

−eExv
(l )
k;x − (εl,k − μ)v(l )

k;x

(
−∇xT

T

)](
−∂ f0(εl,k)

∂εl,k

)

=
(

∂ f (l )(k)

∂t

)
imp

+
(

∂ f (l )(k)

∂t

)
e-h

+
(

∂ f (l )(k)

∂t

)
e-e

,

(3)

where v
(l )
k;x = h̄−1∇kx εl,k (l = 1, 2) is the velocity of the band

l (l = 1, 2). Ex and (−∇xT/T ) are the electric field and
the temperature gradient along the x axis, respectively. The
three terms on the right-hand side of Eq. (3) represent the
impurity, interband (electron-hole), and intraband (electron-
electron and hole-hole) scattering, respectively. We assume
that the impurity scattering is due to the short-range impurity
potential and the inter- and intraband scattering are due to the
screened Coulomb interaction where we neglect the exchange
process [20,22]. For example, the electron-hole scattering for
the band l = 1 is given by [20,22](

∂ f (1)(k)

∂t

)
e-h

= −2
∑

k2,k3,k4

Se-h(k, k2; k3, k4) f (1)(k) f (2)(k2)

× [1 − f (1)(k3)][1 − f (2)(k4)]
+2

∑
k1,k2,k4

Se-h(k1, k2; k, k4) f (1)(k1) f (2)(k2)

× [1 − f (1)(k)][1 − f (2)(k4)], (4)

where the factor 2 is the spin degeneracy and
Se-h(k1, k2; k3, k4) is given by

Se-h(k1, k2; k3, k4) = 2π

h̄

1

V 2

(
1

4πε0

)2( 4πe2

|k1 − k3|2 + α2

)2

× (2π )3

V
δ(k1 + k2 − k3 − k4)

× δ(ε1,k1 + ε2,k2 − ε1,k3 − ε2,k4 ). (5)

Here, ε0 is the dielectric constant and α represents the in-
verse of the Thomas-Fermi screening length, where α2 =
e2(m1kF,1 + m2kF,2)/π2h̄2ε0 [20,22]. The other scattering
terms have similar forms, which are given in Appendix A.

In the variational method [2], the distribution function
is expanded as f (l )(k) = f0(εl,k) + β f0(εl,k)[1 − f0

(εl,k)]�(l )(k) where �(l ) is assumed to be small. Keeping
terms up to the first order of �(l ), Eq. (3) can be rewritten
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as [2]

X (l ) = P(l )[�] = P(l )
imp[�] + P(l )

e-h[�] + P(l )
e-e[�], (6)

where −X (l ) denotes the left-hand side of Eq. (3). Note
that P(l )

imp[�] and P(l )
e-e[�] are linear functionals of �(l ), while

P(l )
e-h[�] is a linear functional of (�(1),�(2) ). Explicit forms

of these scattering terms are presented in Appendix A. Then,
we assume that the trial function for the band l is given by
�(l )(k) = ∑2

i=1 η
(l )
i ϕ

(l )
i (k), where ϕ

(l )
i (k) = v

(l )
k;x(εl,k − μ)i−1

and the coefficients η
(l )
i are determined so as to maximize a

variational functional. Using the variational method [2,27], we
obtain the expression for η

(l )
i as

η
(l )
i =

∑
j,k

(P−1)(lk)
i j

[
J (k)

j Ex + U (k)
j

(
−∇xT

T

)]
, (7)

where P(lk)
i j is a matrix representation of P(l )[�] for the chosen

basis {ϕ(l )
i (k)} and(

J (l )
i

U (l )
i

)
= 1

V

∑
k

ϕ
(l )
i (k)v(l )

k;x

(
e

εl,k − μ

)(
−∂ f0(εl,k)

∂εl,k

)
. (8)

The explicit form of matrix P(lk)
i j is given in Appendix B. Since

P(l )
e-h[�] contains the distribution function of the other band, we

have the superscript (lk) in P(lk)
i j . In the evaluation of P(lk)

i j , we
analytically perform angular integrals, and numerically evalu-
ate the remaining energy integrals. The details are given in the
Supplemental Material (SM) [27]. Transport coefficients (L11,
L12 = L21, and L22), which relate the electric (heat) current
Jx (Jq;x ) to the external fields, defined as(

Jx

Jq;x

)
=

(
L11 L12

L21 L22

)(
Ex

−∇xT/T

)
, (9)

are given by(
L11 L12

L21 L22

)
= 2

∑
i,l, j,k

(
J (l )

i

U (l )
i

)
(P−1)(lk)

i j

(
J (k)

j ,U (k)
j

)
. (10)

In the degenerate regime (kBT � εF), these transport coeffi-
cients are approximated as

L11 � 2
(

t J1P−1
11 J1

)
, (11)

L12 � 2
[

t J1P−1
11 U1 + (

t J2 − t J1P−1
11 P12

)
P−1

22 U2
]
, (12)

L22 � 2
(

tU1P−1
11 U1 + tU2P−1

22 U2
)
, (13)

by considering the power of kBT/εF where Ji = t (J (1)
i , J (2)

i )
and U i = t (U (1)

i ,U (2)
i ). It should be noted that although

tU1P−1
11 U1 in L22 is not the leading order, we consider this

term because it corresponds to the ambipolar contribution
[2,21,22].

III. RESULTS AND DISCUSSIONS

A. Temperature dependence

Figure 2 shows the temperature dependencies of re-
sistivity ρ = σ−1 = L−1

11 , thermal conductivity κel = (L22 −
L21L12/L11)/T , and the Seebeck coefficient S = L12/T L11 for

FIG. 2. Temperature dependencies of (a) electrical resistivity,
(b) thermal conductivity, and (c) the absolute value of Seebeck co-
efficient for three values of χ with m2 = 3m1 = 3me. We normalize
the electrical resistivity and thermal conductivity by the value at
T = 0.1 K. The dotted lines in (b) represent κ̃el defined in the text. In
(c), the Seebeck coefficient for χ = 1.2 changes its sign at T = 10 K.
The inset of (b) shows the temperature dependence of the normalized
Lorenz ratio L/L0 = κelρ/T L0 (solid lines) and κ̃elρ/T L0 (dotted
lines) with L0 = π 2k2

B/3e2. The inset of (c) indicates temperature
dependence of the Peltier conductivity P ≡ Sσ .

three values of χ . Lorenz ratio and Peltier conductivity P ≡
Sσ are also shown in the inset of (b) and (c), respectively.
Here, we set m2 = 3m1 = 3me with me being the electron
mass and ε0 so that α = kF at χ = 1. In the following, we
use � = 0.2 eV as a typical value. The strength of the impu-
rity scattering is chosen so that the electron-hole scattering
dominates above 4 K (see Appendix A for the choices of
parameters).

1. Electrical resistivity

The electrical resistivity ρ [Fig. 2(a)] is independent of
T in the region of T � 4 K, because the impurity scattering
dominates. As temperature increases, ρ shows T 2 dependence
due to the electron-hole scattering (4 K � T � 30 K). On
the other hand, in high-temperature regime (T � 30 K), ρ in
the compensated case (χ = 1.0) shows T 2 dependence, while
ρ saturates in the uncompensated cases. This is because the
contribution to the electric current from the total momen-
tum, which is relaxed only through momentum dissipative
scatterings, is proportional to n1 − n2, and this contribution
does not vanish in the uncompensated case [13] (see also SM
[27]). When the system is uncompensated and the relative
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momentum is strongly relaxed by the electron-hole scatter-
ing, the relaxation of the total momentum by the impurity
scattering governs the electric conduction [13,14,28]. Then,
the saturated resistivity ρsat obeys ρsat/ρ(T = 0) ∼ [(n1 +
n2)/(n1 − n2)]2 [13,27].

2. Thermal conductivity

The thermal conductivity κel [Fig. 2(b)] is proportional to
T at low temperatures. As shown in the inset, WF law holds
in this temperature region. In the intermediate temperature
region, κel decreases slightly slower than to T −1. This tem-
perature dependence is approximately consistent with WF law
(κel ∝ T σ ), but the normalized Lorenz ratio is less than 1 and
temperature dependent.

For the compensated case (χ = 1), this result is consistent
with previous studies [20–22]. In particular, T 3 depen-
dence is due to the ambipolar effect [21,22]. Actually, κ̃el ≡
2(tU2P−1

22 U2)/T [dotted lines in Fig. 2(b)], which does not
include the ambipolar contribution, does not show the increase
but instead has the T −1 dependence in a wider range of tem-
peratures. For T > 60 K, κ̃el upwardly deviates from T −1 due
to the subleading temperature dependence [27].

In contrast, in the uncompensated case, κel does not follow
T 3 dependence and is smaller than κel for χ = 1. As a result,
L/L0 (inset) is small even in the high-temperature region. This
means that the ambipolar contribution is not large when un-
compensated. The ambipolar contribution is associated with
the transport of the compensated electrons and holes moving
in the same direction under the temperature gradient giving
no electric current as discussed for semiconductors [2]. This
ambipolar contribution is also present in semimetals [21,22]
and is weak in the uncompensated case. We can show [27]
that, in κel = (L22 − L21L12/L11)/T , the enhancement of L12

in the uncompensated case cancels the ambipolar contribution
in L22 leading to the suppression of the Lorenz ratio.

3. Seebeck coefficient

The Seebeck coefficient S is negative and almost inde-
pendent of χ in the low-temperature region. This is because
the transport property is mainly determined by the electrons
that have a smaller effective mass than the holes. In this
low-temperature region, the impurity scattering is dominant
and thus the Mott formula is valid. At higher temperatures, S
for χ = 1.2 changes its sign to positive at T ∼ 10 K. This can
be understood as follows. In the high-temperature region, the
relative momentum between electrons and holes is strongly
relaxed by the electron-hole scattering, and thus the electric
current is mainly carried by the total momentum proportional
to e(n1 − n2) [13]. As a result, the sign of S is determined by
the holes for the case of χ = 1.2 (n2 > n1). In the temperature
region above 40 K, S becomes again almost linear in T .
Apparently, the coefficient of the linear T term for χ �= 1 is
about ten times larger than that at low temperatures.

First, let us study the Seebeck coefficient for the com-
pensated case (χ = 1) more closely. We plot in Fig. 3 the
temperature dependence of |S/T | for three screening lengths.
We can see that the coefficient of the linear-T term gradually
increases as a function of T and reaches some value, which
depends on α. The black dashed line in Fig. 3(a) shows

FIG. 3. Temperature dependencies of |S/T | for three screening
lengths, or equivalently three dielectric constants for (a) χ = 1
and (b) χ = 0.8. The dielectric constants are chosen so that
α = 0.5kF, 1.0kF, and 2.0kF at χ = 1. Colored dotted lines in
(a) show results when considering the impurity and intraband
scattering.

S̃/T ≡ t J1P−1
11 U1/T 2(t J1P−1

11 J1), which is equivalent to the
RTA as shown in the SM [27]. Apparently, S̃/T does not
depend on α, which is consistent with the previous study [22]
showing that the Seebeck coefficient in the RTA does not
depend on the relaxation time by the electron-hole scattering
(see also the SM [27]). This indicates that the RTA does not
explain the α dependence of S in Fig. 3 for the compensated
case. To see the effect of the electron-hole scattering, we
show the results (colored dotted lines in Fig. 3) in which the
electron-hole scattering is neglected and only the impurity
and intraband scattering are considered. In this case, |S/T |
in the high-temperature region does not depend on α, which
means that the interband scattering plays an important role in
α dependence of S. Since the first term of the right-hand side
of Eq. (12) corresponds to the RTA [27], the α dependence
comes from the other terms in Eq. (12), i.e., from the terms
including P12 and P22. In particular, P12 is nonzero for the
electron-hole scattering unlike the intraband scattering.

For the uncompensated cases (χ �= 1), the situation is
different. Figure 3(b) shows the temperature dependence of
|S/T | for three screening lengths in the case of χ = 0.8. In this
case, the enhancement of |S/T | at high temperatures is larger
than that for χ = 1. In the uncompensated cases, t J1P−1

11 U1 in
Eq. (12) gives the major contribution when the electron-hole
scattering dominates [27]. As a result, S can be approximated
as S̃ = t J1P−1

11 U1/T (t J1P−1
11 J1), which is equivalent to the

RTA. In fact, S̃/T , which are shown in the black dashed lines
in Fig. 3(b), reproduce S/T at high temperatures.

B. Carrier-number dependence

To understand the effect of doping and the difference
in effective masses, we plot in Fig. 4 the χ dependence
of the Seebeck coefficient, the Lorenz ratio (inset), and
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FIG. 4. χ dependencies of (a) Seebeck coefficient and (b) Z̃T =
S2σT/κel = S2/L at 40 K. ε0 is the same as in Fig. 2. The inset of
(b) shows the Lorenz ratio. Black lines in (a) are proportional to
(m1 + χm2)(χ 2m1 + m2)/(χ 3 − 1).

Z̃T = S2σT/κel = S2/L for three values of m2/m1 at T =
40 K. We can see that the absolute value of S increases and
the Lorenz ratio drastically decreases in the uncompensated
case. As a result, Z̃T [Fig. 4(b)] drastically increases in the
uncompensated case. For the case of m2/m1 = 1, Z̃T is almost
symmetric with respect to χ , while Z̃T is larger for the case
with χ < 1, i.e., n1 > n2, than for the case with χ > 1 when
m2/m1 > 1. As we can see from Fig. 2(c), S at T = 40 K is al-
most the same for χ = 0.8 and χ = 1.2. Thus, the difference
in Z̃T comes from the difference in the Lorenz ratio.

In the limit of vanishing the impurity scattering, the See-
beck coefficient behaves as S � S̃ ∼ (m1 + χm2)(χ2m1 +
m2)/(χ3 − 1) ∝ (n2 − n1)−1 [27]. We see this dependence
in the black lines of Fig. 4(a) for χ far away from 1. This
means that a slight deviation from compensation can lead to
a large Seebeck coefficient. As discussed in Ref. [14] in con-
nection to the Hall coefficient, we can interpret the behavior
of S as follows: the electrons and holes are locked by the
electron-hole scattering and they can be treated as a single car-
rier with charge e(n1 − n2). Note the present result is similar
to that of the carrier-number dependence of the Seebeck coef-
ficient in graphene and bilayer graphene [23,24]. Controlling
carrier numbers to make a small deviation from compensation

is a strategy for the large Seebeck coefficient as observed in
Ti1+xS2 [4,6]. Our results suggest that this strategy in clean
semimetals with dominating electron-hole scattering is also
beneficial for reducing the Lorenz ratio and then achieving
high ZT .

IV. CONCLUSIONS

In the present paper, we studied the effects of electron-hole
scattering with a finite screening length within the Boltzmann
transport theory. However, when we consider the Kubo-
Luttinger linear response theory in the case of the finite-range
Coulomb interaction, there is an additional contribution in the
heat current operator that does not satisfy the Sommerfeld-
Bethe relation [29,30]. Since this type of heat current operator
is not taken into account in the Boltzmann equation, the mi-
croscopic study based on the Kubo-Luttinger formalism might
reveal a new aspect of transport in semimetals.

In conclusion, we have studied transport coefficients of
semimetals considering the impurity, electron-hole, and in-
traband scattering based on the variational analysis of the
Boltzmann equation. We have shown that the thermoelectric
coefficient of semimetals with the electron-hole scattering
contains contributions beyond the RTA. The part neglected
in the RTA brings the screening lengths dependence of
the Seebeck coefficient. We have also shown that when
the electron-hole scattering dominates in the uncompensated
cases the Seebeck coefficient is largely enhanced. Z̃T , in
which the phononic thermal conductivity is neglected, can be
large in the uncompensated condition due to the increase of
the Seebeck coefficient and the reduction of the Lorenz ratio.
Although our analysis does not take into account κph, this
semimetal system can be a very good candidate for thermo-
electric devices.
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APPENDIX A: SCATTERING TERMS

The scattering terms are presented. The impurity scattering is given by(
∂ f (l )(k)

∂t

)
imp

= −
∑

k′
S(l )

imp(k, k′) f (l )(k)[1 − f (l )(k′)] +
∑

k′
S(l )

imp(k′, k) f (l )(k′)[1 − f (l )(k)], (A1)

where l represents the band l = 1, 2, and

S(l )
imp(k′, k) = S0δ(εl,k − εl,k′ ). (A2)

S0 determines the strength of the impurity scattering. We set V S0k̃3
F/4π2 = 1.35 × 10−11 J/s, where k̃F is a Fermi wave number

for m2 = 3m1 = 3me, � = 0.2 eV, and χ = 1.
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The electron-hole scattering for the band l = 2 is given by(
∂ f (2)(k)

∂t

)
e-h

= −2
∑

k1,k3,k4

Se-h(k1, k; k3, k4) f (1)(k1) f (2)(k)[1 − f (1)(k3)][1 − f (2)(k4)]

+ 2
∑

k1,k2,k3

Se-h(k1, k2; k3, k) f (1)(k1) f (2)(k2)[1 − f (1)(k3)][1 − f (2)(k)]. (A3)

The intraband scattering for the band l is given by(
∂ f (l )(k)

∂t

)
e-e

= −2
∑

k2,k3,k4

S(l )
e-e(k, k2; k3, k4) f (l )(k) f (l )(k2)[1 − f (l )(k3)][1 − f (l )(k4)]

+ 2
∑

k1,k2,k4

S(l )
e-e(k1, k2; k, k4) f (l )(k1) f (l )(k2)[1 − f (l )(k)][1 − f (l )(k4)] (A4)

and

S(l )
e-e(k1, k2; k3, k4) = 2π

h̄

1

V 2

(
1

4πε0

)2( 4πe2

|k1 − k3|2 + α2

)2 (2π )3

V
δ(k1 + k2 − k3 − k4)δ(εl,k1 + εl,k2 − εl,k3 − εl,k4 ), (A5)

where we use the same screened Coulomb potential as in Se-h(k1, k2; k3, k4).
The linearized forms of scattering terms are given by

P(l )
imp[�] = 1

kBT

∑
k′

S(l )
imp(k′, k) f0(εl,k)[1 − f0(εl,k′ )][�(l )(k) − �(l )(k′)], (A6)

P(1)
e-h [�] = 2

kBT

∑
k2,k3,k4

Se-h(k1, k2; k3, k4) f0(ε1,k1 ) f0(ε2,k2 )[1 − f0(ε1,k3 )][1 − f0(ε2,k4 )]

× [�(1)(k1) + �(2)(k2) − �(1)(k3) − �(2)(k4)], (A7)

P(2)
e-h [�] = 2

kBT

∑
k1,k3,k4

Se-h(k1, k2; k3, k4) f0(ε1,k1 ) f0(ε2,k2 )[1 − f0(ε1,k3 )][1 − f0(ε2,k4 )]

×[�(1)(k1) + �(2)(k2) − �(1)(k3) − �(2)(k4)], (A8)

P(l )
e-e[�] = 2

kBT

∑
k2,k3,k4

S(l )
e-e(k1, k2; k3, k4) f0(εl,k1 ) f0(εl,k2 )[1 − f0(εl,k3 )][1 − f0(εl,k4 )]

×[�(l )(k1) + �(l )(k2) − �(l )(k3) − �(l )(k4)]. (A9)

APPENDIX B: MATRIX P(lk)
i j

The matrix P(lk)
i j is understood as a matrix representation of the scatterings. This is given by P(lk)

i j = P(lk)
imp,i j + P(lk)

e-h,i j + P(lk)
e-e,i j

where

P(lk)
imp,i j = δlk

2kBTV

∑
k,k′

S(l )
imp(k, k′) f0(εl,k)[1 − f0(εl,k′ )]

[
ϕ

(l )
i (k) − ϕ

(l )
i (k′)

][
ϕ

(l )
j (k) − ϕ

(l )
j (k′)

]
, (B1)

P(11)
e-h,i j = 1

kBTV

∑
k1,k2,k3,k4

Se-h(k1, k2; k3, k4) f0(ε1,k1 ) f0(ε2,k2 )[1 − f0(ε1,k3 )][1 − f0(ε2,k4 )]

× [
ϕ

(1)
i (k1) − ϕ

(1)
i (k3)

][
ϕ

(1)
j (k1) − ϕ

(1)
j (k3)

]
, (B2)

P(12)
e-h,i j = P(21)

e-h, ji = 1

kBTV

∑
k1,k2,k3,k4

Se-h(k1, k2; k3, k4) f0(ε1,k1 ) f0(ε2,k2 )[1 − f0(ε1,k3 )][1 − f0(ε2,k4 )]

×[
ϕ

(1)
i (k1) − ϕ

(1)
i (k3)

][
ϕ

(2)
j (k2) − ϕ

(2)
j (k4)

]
, (B3)

P(22)
e-h,i j = 1

kBTV

∑
k1,k2,k3,k4

Se-h(k1, k2; k3, k4) f0(ε1,k1 ) f0(ε2,k2 )[1 − f0(ε1,k3 )][1 − f0(ε2,k4 )]

×[
ϕ

(2)
i (k2) − ϕ

(2)
i (k4)

][
ϕ

(2)
j (k2) − ϕ

(2)
j (k4)

]
, (B4)
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P(lk)
e-e,i j = δlk

2kBTV

∑
k1,k2,k3,k4

S(l )
e-e(k1, k2; k3, k4) f0(εl,k1 ) f0(εl,k2 )[1 − f0(εl,k3 )][1 − f0(εl,k4 )]

×[
ϕ

(l )
i (k1) + ϕ

(l )
i (k2) − ϕ

(l )
i (k3) − ϕ

(l )
i (k4)

][
ϕ

(l )
j (k1) + ϕ

(l )
j (k2) − ϕ

(l )
j (k3) − ϕ

(l )
j (k4)

]
. (B5)
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