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The dispersion of quasiparticles in topological nodal-line semimetals is significantly different in different
directions. In a certain direction, the quasiparticles behave like relativistic particles with constant velocity.
In other directions, they act as two-dimensional electron gas. The competition between relativistic and non-
relativistic dispersions can induce a sign reversal of Casimir-Lifshitz torque. Three different approaches can
be applied to generate this sign reversal, i.e., tuning the anisotropic parameter or chemical potential in a
nodal-line semimetal, and changing the distance between this material and substrate birefringence. Detailed
calculations are illustrated for the system with topological nodal-line semimetal Ca3P2 and liquid crystal material
4-cyano-4-n-pentylcyclohexane-phenyl.
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I. INTRODUCTION

The Casimir effect [1–3] is a pure quantum phenomenon
of a vacuum. This effect demonstrates that the zero-point
quantum fluctuation of the electromagnetic field can result
in a force between two neutral plates on the mesoscopic
and nanoscopic scales. The Casimir effect plays a vital role
in micro- and nanoelectromechanical systems and dominates
the fabrication and performance of devices in these systems
[4–8].

The Casimir-Lifshitz torque (CLT) is another related effect,
which considers not only the zero-point energy fluctuation but
also the angular momentum of virtual photons. The analyt-
ical description of CLT between uniaxially anisotropic half
spaces was established by Barash [9,10]. In subsequent in-
vestigations, CLT for different birefringent materials has been
studied [11–19]. Ingenious experiments have been proposed
to measure CLT, such as utilizing the reorientation of liquid
crystal nematics [15] and using an optically levitated nanorod
[20]. The precision measurement in the system with liq-
uid crystal 4-yano-4′-pentylbiphenyl (5CB) and birefringent
material demonstrates the existence of CLT [21]. CLT pro-
vides an additional approach for the manipulation of Casimir
physics and has substantial potential applications, such as
noncontact gears [22,23], torsional Casimir actuation [24,25],
Casimir rotors [26], noncontact transfer of angular momentum
at nanoscale [27], etc. The sign of CLT for a fixed twisting
angle may depend on the distance. Recent works give system-
atic investigations on the sign reversal of CLT between black
phosphorus and birefringent materials [28–30]. However, it is
still an open question whether there is a systematic method
to find appropriate materials for the observation of CLT sign
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reversal. In this paper, we study the CLT between a topolog-
ical nodal-line semimetal (TNLSM) and a liquid crystal. We
demonstrate that the distinct band structure and dispersion of
TNLSM provide a natural mechanism for realizing the CLT
sign reversal.

TNLSM [31] is a special material in which the Fermi
surface is a nodal line in the three-dimensional Brillouin
zone. First-principles calculations show that TNLSM can exist
in various materials [32–43]. Recent experimental measure-
ments show evidence of TNLSM in candidates PbTaSe2 [44],
ZrSiSe and ZrSiTe [45], TiB2 [46], CaAgAs [47], SrAs3 [48],
GdSbTe [49], and Co2MnGa [50]. Intriguing properties, such
as unique Landau energy level [51], special collective modes
[52], long-range Coulomb interactions [53], drumheadlike
surface states [36,37], etc., make TNLSM attract great atten-
tion. Condensed matter materials provide excellent platforms
for the experimental observation of novel properties of rela-
tivistic particles, e.g., Klein tunneling [54,55], Veselago lenses
[56], chiral anomalies [57–59], etc. TNLSM is an even more
interesting material where the bulk quasiparticles possess both
the properties of relativistic and nonrelativistic particles; i.e.,
in some directions, the current operator is proportional to the
wave vector, and in the other direction the current operator is
proportional to a material-dependent relativistic velocity. To
the best of our knowledge, physical implications which focus
on these significant differences have not been reported. The
sign reversal of CLT between TNLSM and birefringence is a
physical consequence of this property.

II. THEORETICAL MODEL

We consider the CLT between a liquid crystal material 4-
cyano-4-n-pentylcyclohexane-phenyl (5PCH) and a TNLSM,
as shown in the upper left inset of Fig. 1. The surfaces
of 5PCH and TNLSM are located at y = 0 and y = a,
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FIG. 1. Changing the anisotropic parameter γ induced sign re-
versal of CLT at twisting angle θ = π/4 and fixed distance a =
100 nm. Other parameters for numerical calculation: ε0 = 0.184 eV
refers to the energy of quasiparticles on the nodal line, chemical
potential μ = 0.5ε0, damping parameter h̄η = 0.05ε0. The top left
inset shows the geometry of the Casimir interaction between 5PCH
and TNLSM. The axes frames (X̂ , Ŷ , Ẑ ) and (x̂, ŷ, ẑ) are pinned
to the principal directions of 5PCH (green) and TNLSM (orange),
respectively. The top right inset shows the nodal line loop structure in
the Brillouin zone. The lower insets show nonrelativistic (E vs kx-ky)
and relativistic (E vs kz) dispersions of quasiparticles. These two dis-
tinguished dispersions dominate the Casimir torque for anisotropic
parameters γ � 1 and γ � 1, respectively.

respectively. The axes (X̂ , Ŷ , Ẑ) and (x̂, ŷ, ẑ) are fixed to the
principal directions of 5PCH and TNLSM, respectively. θ

is the twisting angle between X̂ and x̂. The nodal line loop
signature of TNLSM in the wave-vector space is illustrated
in the upper right inset, where the nodal line is located in the
kz = 0 plane.

The Casimir-Lifshitz torque per unit area is

TC (a, θ ) = −∂EC (a, θ )

∂θ
, (1)

where EC (a, θ ) is the corresponding Casimir energy density.
At finite temperature, it takes the following form according to
the Casimir-Lifshitz formula [15,18]:

EC = kBT

4π2

∞∑
n=0

′
∫

d p‖ log det[I − e−2κaR1R2], (2)

where kB is Boltzmann’s constant, T is the temperature, p‖ is
the electromagnetic field wave vector parallel to the interface,

κ =
√

p2
‖ + ζ 2

n /c2, ζn = 2nπkBT is the Matsubara frequency,

c is the speed of light in the vacuum, and the prime in
the summation means that the term n = 0 contains a pref-
actor 1/2. I is a 2 × 2 identity matrix, and R1(p‖, iζn) and
R2(p‖, iζn) are the two Fresnel coefficient matrices on the
surfaces.

To obtain a systematic investigation that accommodates the
influence of the anisotropic parameter, the chemical potential,
and the distance, we choose the following SU(2) spin-rotation
symmetric two-orbital low energy effective model to de-
scribe the specific dispersion of quasiparticles in TNLSM

[53,60,61]:

Ĥ = h̄2

2m

(
k2

x + k2
y − k2

0

)
τ̂x + h̄vzkz τ̂y, (3)

where h̄ is the reduced Planck’s constant, m is the effective
mass of the quasiparticles in the xy plane, k0 is the radius of
the nodal line loop in the Brillouin zone, vz is the Fermi veloc-
ity along the z axis, and τ̂x and τ̂y are the two Pauli matrices
acting on the orbital degree of freedom. This model reveals the
unique Fermi surface of TNLSM and has been used to study
the influence of long-range Coulomb interaction [53], the
optical properties [60], and the quantum anomalies [61] in this
semimetal. In the following context, we reveal sign reversal of
CLT at zero temperature. We have calculated CLT at finite
temperature by considering both the thermal corrections of
permittivity functions and the finite temperature distribution
of virtual photons. We find that the finite-temperature correc-
tions can be neglected here.

III. PERMITTIVITY FUNCTIONS

A systematic investigation of the optical conductivity in
TNLSM was presented in Ref. [60]. From the real part of the
optical conductivities, we can evaluate the imaginary part of
the permittivity functions [62,63]:

Im[εαα (ω)] = 4π

ω
Re[σαα (ω)], (4)

where α = x, y, z refer to different principal axes. Taking the
Kramers-Kronig transformation,

K[εαα (ω)] = 2

π

∫ ∞

0

ωIm[εαα (ω)]

ω2 + ζ 2
dω, (5)

we can obtain the permittivity functions expressed in
imaginary-time formalism:

εαα (iζ ) = 1 + K[εD
αα (ω)] + K

[
εI
αα (ω)

]
, (6)

where the superscripts D and I indicate, respectively, the in-
traband (Drude) and interband contributions of the two-orbital
model (3). For the intraband contribution, we have

K[εD
αα (ω)] = gD

αα

ζ (ζ + η)
, (7)

where η is the damping parameter and gD
αα is the Drude

weight. gD
αα take the following forms at zero temperature:

gD
xx = 2e2k0μ

γ h̄2

{
1 + 1

π

[
1

3
tan ϕ(4 − cos2 ϕ) − ϕ

]}
, (8)

gD
yy = gD

xx, (9)

gD
zz = e2γ k0μ

h̄2

[
1 + 1

π

(
1

2
sin 2ϕ − ϕ

)]
, (10)

where e2 = 4π/137 is the fine structure constant, γ =
2mvz/h̄k0 describes the spatial anisotropy of the band struc-
ture, μ is the chemical potential, ϕ = �(μ − ε0) cos−1(ε0/μ),
ε0 = h̄2k2

0/2m defines an energy scale for calculation, and
�(μ − ε0) is the Heaviside step function. The interband terms
take different forms from the standard Ninham-Parsegian
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oscillator model [64]. Their explicit expressions are given by

K[εI
xx(ω)] =K[εI

yy(ω)] = e2k0

γ

1

h̄ζ

{
tan−1 h̄ζ

2μ
− 1

2
tan−1

[
h̄ζ

2 max(μ, ε0)

]
+ 1

π

ε0

h̄ζ
log

[
1 +

(
h̄ζ

2 max(μ, ε0)

)2
]

− Tcontour1

}

− e2k0

γ

1

3πε0

⎡
⎢⎣�(μ − ε0)

⎛
⎜⎝log

μ +
√

μ2−ε2
0

ε0
+
√

4ε2
0 + h̄2ζ 2

2h̄ζ
log

√
4ε2

0 + h̄2ζ 2/h̄ζ −
√

μ2 − ε2
0/μ√

4ε2
0 + h̄2ζ 2/h̄ζ +

√
μ2 − ε2

0/μ

⎞
⎟⎠− Tcontour2

⎤
⎥⎦

+ e2k0

γ

2ε0

3π

1

h̄2ζ 2

⎡
⎢⎣�(μ − ε0)

⎛
⎜⎝
√

μ2 − ε2
0

μ
+
√

4ε2
0 + h̄2ζ 2

2h̄ζ
log

√
4ε2

0 + h̄2ζ 2/h̄ζ −
√

μ2 − ε2
0/μ√

4ε2
0 + h̄2ζ 2/h̄ζ +

√
μ2 − ε2

0/μ

⎞
⎟⎠− Tcontour3

⎤
⎥⎦,

(11)

K[εI
zz(ω)] = e2γ k0

2

1

h̄ζ

{
tan−1 h̄ζ

2μ
− 1

2
tan−1

[
h̄ζ

2 max(μ, ε0)

]
+ 1

π

ε0

h̄ζ
log

[
1 +

(
h̄ζ

2 max(μ, ε0)

)2
]

− Tcontour1

}

− e2γ k0
ε0

π

1

h̄2ζ 2

⎡
⎢⎣�(μ − ε0)

⎛
⎜⎝
√

μ2 − ε2
0

μ
+
√

4ε2
0 + h̄2ζ 2

2h̄ζ
log

√
4ε2

0 + h̄2ζ 2/h̄ζ −
√

μ2 − ε2
0/μ√

4ε2
0 + h̄2ζ 2/h̄ζ +

√
μ2 − ε2

0/μ

⎞
⎟⎠− Tcontour3

⎤
⎥⎦,

(12)

where the contour term Tcontour1 takes the form of the other
terms in the curly brackets with the denominators 2μ and
2 max(μ, ε0) being replaced by the energy cutoff �, the
contour terms Tcontour2 and Tcontour3 take the forms of the
terms in the parentheses with μ being replaced by �/2. One
can find that all of these contour terms are logarithmically
dependent on the cutoff �. In the following investigation, we
choose � = 10ε0.

The competition between relativistic and nonrelativistic
dispersions of quasiparticles can be altered by tuning the
anisotropic parameter γ . For both the intraband and inter-
band contributions, we find the following results. In one
strong anisotropy limit γ → 0, the nonrelativistic property
of TNLSM dominates, both K[εD

xx(ω)] and K[εI
xx(ω)] tend to

infinity, while K[εD
zz(ω)], K[εI

zz(ω)] → 0. The material tends
to the ideal metallic grating limit [14,16,19], i.e., εxx � εzz. In
the other strong anisotropy limit γ → ∞, we get the opposite
result, εxx � εzz. Changing the value of γ from zero to infinity
behaves like a π/2 rotation of the principal axes of TNLSM.
This can drive the CLT to change sign. Figure 1 shows CLT at
twisting angle θ = π/4 and distance a = 100 nm as a func-
tion of the anisotropic parameter γ (see the following context
and the Appendix for details). We find that CLT changes sign
at γ ≈ 2.5 for the given parameters.

Changing the chemical potential, μ, is another appropriate
approach to realize the CLT sign reversal. From Eqs. (8) and
(10), we find that when γ >

√
2 and μ < ε0, gD

xx < gD
zz. In the

other limit μ � ε0, we get asymptotic expressions:

gD
xx = 2e2k0μ

γ h̄2

[
4

3π

μ

ε0
+ 1

2
+ 1

6π

(
ε0

μ

)2

+ . . .

]
, (13)

gD
zz = e2γ k0μ

h̄2

[
1

2
+ 2

π

ε0

μ
− 1

3π

(
ε0

μ

)2

+ . . .

]
, (14)

such that gD
zz�gD

xx. There is a crossover from gD
xx < gD

zz to
gD

xx > gD
zz as μ increases. Figure 2(a) shows gD

xx − gD
zz as a

function of the chemical potential. There is a transition at
μ/ε0 = 4.68 for γ = 2.8. We need to emphasize that, al-
though the Drude weights depend on k0, μ, ε0, and γ ,
the critical point μ/ε0 where gD

xx(μ/ε0) = gD
zz(μ/ε0) depends

only on the anisotropic parameter γ . The interband contri-
bution to the permittivity is more complicated. The sign of
K[εI

xx(ω)] − K[εI
zz(ω)] depends not only on the chemical po-

tential but also on the imaginary frequency ζ . Figure 2(b)
shows the numerical result of K[εI

xx(ω)] − K[εI
zz(ω)] as a

function of μ/ε0 and h̄ζ . The dashed line refers to the bound-
ary where K[εI

xx(ω)] = K[εI
zz(ω)]. Figures 2(c) and 2(d) show

the competition of the total dielectric functions along different
principal axes. In Fig. 2(e), we plot the dielectric functions of
5PCH and TNLSM for typical chemical potentials, μ = 3ε0

and 6ε0. When the chemical potential is smaller than a thresh-
old [i.e., for γ = 2.8, μ = 4.78ε0 as shown in Fig. 2(d)],
e.g., μ = 3ε0 as shown by the blue lines in Fig. 2(e), there
is a reversal of the principal axes at h̄ζ ≈ 2 eV, which is
consistent with the boundary as shown in Fig. 2(d). The CLT
should reverse at some distance ac∼c/ζc [28], where c is
the speed of light in the vacuum, and ζc is the critical value
of imaginary frequency where εxx(iζc) − εzz(iζc) = 0. In this
case (μ = 3ε0), we expect ac ≈ 100 nm. When the chemical
potential is greater than the threshold, e.g., μ = 6ε0 as shown
by the red lines in Fig. 2(e), εxx(iζ ) − εzz(iζ ) has a definite
sign, like the conventional birefringent material [the gray lines
in Fig. 2(e) for 5PCH]. The distance-dependent sign reversal
of CLT disappears in this case.

IV. CASIMIR-LIFSHITZ TORQUE

On the basis of the above investigations on the per-
mittivity functions, we study the CLT. We derive the
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FIG. 2. Permittivity functions. (a) The difference between
Drude weights, gD

xx − gD
zz, as a function of chemical potential μ.

(b) K[εI
xx (ω)] − K[εI

zz(ω)] as a function of chemical potential μ and
imaginary frequency h̄ζ . (c) εxx (iζ ) and εzz(iζ ) given in Eq. (6) as a
function of chemical potential for imaginary frequency h̄ζ = 1 eV. A
cross occurs at μ = 4.33ε0. (d) Contour plot of εxx (iζ ) − εzz(iζ ) as a
function of chemical potential and imaginary frequency. The dashed
line shows the boundary where εxx (iζ ) − εzz(iζ ) = 0. (e) Permittivity
of liquid crystal 5PCH and TNLSM (μ = 3ε0 and 6ε0, respectively)
as functions of imaginary frequency. In numerical calculation, the
anisotropic parameter γ has been set to be 2.8, and the energy scale
ε0 has been chosen to be 0.184 eV. The dielectric functions of 5PCH
can be found from Refs. [65,66].

analytical expressions of the Fresnel matrices in Eq. (2) us-
ing the standard transfer matrix method [67,68]. In Cartesian
coordinates,

R1 = (κU1 − QV1)(κU1 + QV1)−1, (15)

R2 = (κU2 + QV2)(κU2 − QV2)−1, (16)

where Q = Q(p‖, iζ ) is a 2 × 2 matrix that determines the
propagation of the electromagnetic field in the vacuum, and
U j and V j are the 2 × 2 submatrices of W j ( j = 1, 2) in the
following form:

W j =
(
U j U j

V j −V j

)
. (17)

The analytical expressions of W1 and W2 consist of the four
eigenmodes of Maxwell’s equations in 5PCH and TNLSM,
respectively (see the Appendix for detailed expressions).

As shown in Fig. 2, the Drude and interband terms
have significantly different contributions to the permittivity
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FIG. 3. Casimir-Lifshiz torque between TNLSM and 5PCH.
(a) CLT as a function of distance where the permittivity functions
contain only the intraband contribution. The black line shows the
CLT for the isotropic situation where gD

xx (iζ ) = gD
zz(iζ ). (b) CLT as a

function of distance where the permittivity functions contain only the
interband contribution. (c) CLT as a function of distance for different
chemical potentials where the permittivity functions contain both
the Drude and interband contributions. The inset shows the CLT vs
twisting angle for μ = 3ε0 and typical distances, a = 60 nm (�),
80 nm (◦), and 100 nm (•).

functions. Their contributions to the CLT should be dif-
ferent. We consider the CLT for these terms respectively.
Figures 3(a) and 3(b) show the maximal Casimir torque at
θ = π/4 as a function of distance with different chemical
potentials for the Drude and interband terms, respectively.
The black line for μ = 4.68ε0 shows the boundary where
TC (a, θ ) is exactly zero. For a lower chemical potential (μ <

4.68ε0), the relativistic dispersion dominates, making the
CLT negative. When μ > 4.68ε0, the nonrelativistic disper-
sion dominates, TC (a, π/4) > 0. The interband contributions
are significantly different. In the short-distance region (a <

80 nm), TC (a, π/4) > 0 for any chemical potential. This is
consistent with the permittivity functions shown in Fig. 2(b),
where the quadratic dispersion dominates over the linear dis-
persion in the large imaginary frequency region. In the large
distance region, TC (a, π/4) is negative for chemical potential
μ < 5ε0. The sign of CLT reverses at some critical distance,
for example, when μ = ε0 the critical distance is about 85 nm.
In Fig. 3(c), we plot CLT as a function of distance with both
the Drude and interband contributions contained. The critical
distance is 47 nm for μ = ε0 and 79 nm for μ = 3ε0. For
fixed chemical potential μ = 3ε0, the inset shows the twisting
angle dependence of CLT for different distance a = 60, 80,
and 100 nm, respectively.

The parameters used in this paper, that is, the radius of
nodal line loop k0, the anisotropic parameter γ , and the ef-
fective mass m, are fitted for the candidate TNLSM Ca3P2

[35,60]. In this paper, we consider only the low energy ef-
fective model of TNLSM, and the permittivity functions with
ultraviolet (UV) optical oscillator corrections may change the
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FIG. 4. UV optical oscillator corrections to the CLT. The red
dashed line shows the CLT as a function of distance when the
permittivity function, Eq. (4), has an additional isotropic UV op-
tical oscillator correction, gUV/(1 + ζ 2/ω2

UV), where the oscillator
frequency ωUV and oscillating strength gUV have been set to be 3 eV
and 8, respectively. For comparison, the gray (solid) line, green
(dotted) line, and blue (double-dotted) line show the CLT for the
following configurations: without UV optical oscillator, with UV
optical oscillator for only the εxx component, and with UV optical
oscillator for only the εzz component. μ = ε0 in TNLSM is set in
calculation.

Casimir interaction in the short-distance region. Numerical
evaluation of CLT by considering the UV optical oscillator
shows that the competition-induced sign reversal is valid in a
wide parameter regime. In Fig. 4, we calculate CLT by consid-
ering UV optical oscillators for three different cases, i.e., both
the in-plane and out-of-plane components have corrections
(the red dash line), only the in-plane component has correction
(the green dotted dash line), and only the out-of-plane compo-
nent has correction (the blue double-dotted dash line). We find
that the sign reversal appears at about 50, 90, and 10 nm for
these cases, respectively. Furthermore, the critical distances
in the interval 45–80 nm (shown in Fig. 3) can be further
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can be found from Ref. [69].
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found from Refs. [65,66,69].

reduced by intervening homogeneous dielectrics between the
slabs [17,30]. Figure 5 shows CLT at θ = π/4 as a function of
distance for μ = ε0 with Al2O3 and ZnO inserted in between
5PCH and TNLSM. The sign reversal appears at 28 and 31 nm
for Al2O3 and ZnO intervened respectively.

The sign reversal of CLT is induced by the unique disper-
sion of TNLSM. The liquid crystal 5PCH can be replaced by
other birefringent materials. We calculate the CLT between
TNLSM and other birefringent materials, i.e., liquid crystal
5CB, inorganic materials BaTiO3, calcite, and quartz (see
Fig. 6 for details). We find that changing the anisotropic
parameter, chemical potential, and distance can reproduce the
sign reversal of CLT. However, the critical point where sign
reversal occurs does depend on the particular choice of the
other birefringent materials in front of TNLSM.

V. CONCLUSION

In summary, we study the CLT between TNLSM and
conventional birefringent materials. The distinct band struc-
ture and dispersion of TNLSM provide a precise mechanism
for the sign reversal of CLT, i.e., the relative strengths of
polarizabilities along different principal axes can be changed
by the competition of relativistic and nonrelativistic properties
of quasiparticles in TNLSM. Experimentally, this sign
reversal can be manifested by changing the anisotropic
parameter, the chemical potential, and the distance between
TNLSM and birefringent material. Quantitative calculations
show that, in the system consisting of TNLSM Ca3P2 and
liquid crystal 5PCH, the sign reversal of CLT appears at a
separation distance which is very close to the experimental
accessible regime.
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APPENDIX: EIGENMODES OF MAXWELL’S EQUATIONS

The analytical expression of Q given in Eqs. (15) and (16) is

Q(p‖, iζ ) =
(

− cpx pz

ζ

ζ

c + cp2
z

ζ

− ζ

c − cp2
x

ζ

cpx pz

ζ

)
. (A1)

The analytic expressions of U j and V j given in Eqs. (15) and (16) are

U j (p‖, iζ ) =
(

sin θ j c2 pz(px sin θ j − pz cos θ j ) − ζ 2ε
( j)
xx (iζ ) cos θ j

cos θ j c2 px(px sin θ j − pz cos θ j ) + ζ 2ε
( j)
xx (iζ ) cos θ j

)
, (A2)

V j (p‖, iζ ) = Q jU j�
−1
j , (A3)

where j = 1, 2 refer to 5PCH and TNLSM, respectively, ε( j)
xx (iζ ) are the corresponding permittivity functions, � j consists of the

eigenvalues of Maxwell’s equations,

� j (p‖, iζ ) = diag

⎛
⎝
√

ζ 2ε
( j)
xx (iζ )

c2
+ p2

x + p2
z ,

√
ζ 2ε

( j)
zz (iζ )

c2
+ (px cos θ j + pz sin θ j )2 + (px sin θ j − pz cos θ j )2

ε
( j)
zz (iζ )

ε
( j)
xx (iζ )

⎞
⎠, (A4)

and Q j takes a similar form as Eq. (A1):

Q j (p‖, iζ ) =
(

− cpx pz

ζ
+ ζ

c [ε( j)
xx − ε

( j)
zz ] sin θ j cos θ j

cp2
z

ζ
+ ζ

c [ε( j)
xx cos2 θ j + ε

( j)
zz sin2 θ j]

− cp2
x

ζ
− ζ

c [ε( j)
xx sin2 θ j + ε

( j)
zz cos2 θ j]

cpx pz

ζ
− ζ

c [ε( j)
xx − ε

( j)
zz ] sin θ j cos θ j

)
. (A5)
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