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Using the natural orbitals renormalization group, we studied the problem of a localized spin- 1
2 impurity

coupled to two helical liquids via the Kondo interaction in a quantum spin Hall insulator, based on the Kane-Mele
model defined in a finite zigzag graphene nanoribbon. We investigated the influence of the Kondo couplings
with the helical liquids on both the static and dynamic properties of the ground state. The number and distinct
spatial structures of the active natural orbitals (ANOs), which play essential roles in constructing the ground-state
wave function, were first analyzed. Our numerical results indicate that two ANOs emerge, equal to the number
of helical liquids. Specifically, at the coupling symmetry point, both ANOs are fully active with their spatial
structures being, respectively, constituted by the different helical liquids. In comparison, when deviating from
the symmetry point, only one ANO remains fully active, which is dominantly constructed by the helical liquid
with the larger Kondo coupling. Local screening of the impurity, described by the impurity spin polarization
and susceptibility, was further studied. It shows that at the coupling symmetry point, the impurity is maximally
polarized and the spin susceptibility reaches the maximum. On the contrary, the impurity tends to be screened
without polarization when the Kondo couplings deviate well from the symmetry point. The Kondo screening
cloud, manifested by the spin correlation between the impurity and the conduction electrons, was finally
explored. It is demonstrated that the Kondo cloud is mainly formed by the helical liquid with the larger Kondo
coupling to the impurity. On the other hand, the spin-orbital coupling breaks the symmetry in spatial distribution
of the spin correlation, leading to anisotropy in the Kondo cloud.
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I. INTRODUCTION

The Kondo effect [1,2], which results from the antiferro-
magnetic exchange interaction between a spin- 1

2 impurity and
conduction electrons, is one of the most intensively studied
phenomena in strongly correlated many-body physics. Below
a characteristic energy scale TK (the Kondo temperature), the
impurity spin tends to be collectively screened by surrounding
electrons, and finally it is perfectly screened at zero tem-
perature, leading to a strong-coupling fixed point of Fermi
liquid type in the renormalization group flow, and forming the
Kondo screening cloud with a spatial extension determined
by the Kondo length ξK = h̄vF /kBTK , with vF the Fermi ve-
locity [3–8]. Over the past years, the Kondo screening cloud
has been intensively investigated theoretically [9–22] and ex-
perimentally [23–28]. Moreover, in a recent work [28], the
experimental evidence of a Kondo cloud extending over a
length of micrometres, comparable to the theoretical length
ξK , was presented.

Furthermore, when two equivalent but independent chan-
nels of electrons compete to screen a spin- 1

2 impurity, the
strong quantum fluctuations occur. Ultimately, the impurity
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is overscreened at low temperatures, resulting in an
intermediate-coupling fixed point [29] of non-Fermi liquid
type, namely, the two-channel Kondo (2CK) effect emerging.
However, at zero temperature, when the channel symmetry is
broken, the impurity is finally screened by the electron chan-
nel with the larger Kondo coupling while the other channel
decouples [17,29–32], leading to the standard single-impurity
Kondo physics with a Fermi-liquid phase. As a consequence,
the system may undergo a quantum phase transition driven
by the channel asymmetry at zero temperature. Experimental
observations of the 2CK and three-channel Kondo effect were
also obtained [33–40]. Recently, the Kondo effect involved
in the topological systems, including the single-impurity
Kondo effect and the 2CK effect, has attracted extensive
concerns.

The quantum spin Hall insulator (QSHI) [41–43], in
which the spin-orbital coupling (SOC) plays an essential role
[44,45], is a kind of topologically nontrivial matter state. It
possesses a finite bulk gap but supports 1D gapless edge states
with quantized conductance of G = 2e2/h, which are called
helical liquids [46] due to that the Kramers’ pair of states with
opposite spin polarizations counterpropagate at each open
edge. The helical edge states are robust against weak interac-
tions and perturbations preserving the time-reversal symmetry
(TRS) [46–48], since the TRS protects the edge electrons from
backscattering. However, when a quantum impurity interacts
with the helical edge states, the backscattering with spin-flip
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scattering is allowed, giving rise to the Kondo effect in the
QSHIs, which may exhibit features distinct from those in the
normal metals. The single-impurity Kondo effect in QSHIs
has been investigated [46,49–54]. It is shown that the helical
edge states restore the perfect quantization of conductance G
at zero temperature [49], resulting from the complete screen-
ing of the impurity spin. Meanwhile, the SOC has substantial
influence on the Kondo effect in the QSHIs [55–62].

It is also surely intriguing to study the problem of a
quantum impurity interacting with two helical liquids, where
unique 2CK effects may occur. Based on a simplified model
of the helical edge states, a quantum impurity coupled to two
helical liquids has been studied by the Abelian bosonization
technique [63–66]. If the electrons in the helical liquids are
noninteracting with the Luttinger liquid parameter K = 1,
the system can be described by a one-channel Kondo (1CK)
Hamiltonian [64,67]. On the other hand, a weak repulsive
interaction, imposed on the electrons at the edges with K < 1,
is enough to drive the system to the 2CK fixed point at low
temperatures [63,65]. Nevertheless, the studies suffer from
a lack of reliable numerical calculations on such systems,
since conventional quantum many-body numerical methods
encounter difficulties in solving such systems.

Graphene nanoribbon (GNR), a quasi-one-dimensional
material, has been intensively studied in recent years. It is
generally accepted that GNRs exhibit extraordinary mechan-
ical and electronic properties, and thus hold promise for
use in nanoelectronics [68–72] and nanospintronics [73–76].
Advanced nanoscale technologies have also stimulated the
fabrication of graphene-based devices, which could promote
the applications of spintronics as well as the development of
quantum computing. Helical liquids, which feature the unique
spin-momentum locking property, appear in both armchair
and zigzag GNRs with SOC [41]. Therefore, it is interest-
ing to investigate the Kondo effect in nanostructures such as
topological GNRs. In addition, in a topological GNR with
finite size, the helical edge states can come back by traversing
the whole edge of the system, which may lead to distinct
behaviors of the Kondo effect [77,78], especially that in the
system with a spin- 1

2 impurity coupled to two helical liquids.
In this paper, utilizing the natural orbitals renormaliza-

tion group (NORG) method [79], we investigated a localized
spin- 1

2 impurity coupled to two helical liquids, based on the
Kane-Mele (KM) model [41] defined in a zigzag graphene
nanoribbon (ZGNR) with finite size. We explored how the
Kondo couplings with the helical liquids influence the static
and dynamic properties of the ground state.

The structure of this paper is organized as follows. In
Sec. II, the model Hamiltonian as well as the NORG method
are introduced. The energy spectrum of the KM model is
first presented in Sec. III A. In Sec. III B, we investigate
the number and spatial structures of the active natural or-
bitals (ANOs) for the many-body ground state, which are
helpful for clarifying the intrinsic structure of the ground
state. In the following Sec. III C, we further study the local
screening of the impurity spin, described by the spin polar-
ization and local susceptibility at the impurity site. Finally, in
Sec. III D, we explore the Kondo screening cloud, which is
represented by the spin correlation between the impurity and
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FIG. 1. Schematic of the system. A local spin- 1
2 impurity is cou-

pled to two helical liquids localized at two open edges in a QSHI,
simulated by the ground state of the KM model defined in a ZGNR.
The unit cell of the ZGNR is shown as the dotted black rectangle.
The ZGNR is periodic (open) along the x (y) direction with length
Nx = 4 (width Ny = 4). The width Ny is defined by the number of
zigzag lines. Sublattice A (B) is denoted by the black filled (open)
circles. The black lines represent the NN hopping connecting two dif-
ferent sublattices. The NNN hopping connecting the same sublattice,
namely, the SOC term, is denoted as the red dashed arrows with signs
associated with νi j . The local spin- 1

2 impurity, marked by the filled
green circle, is coupled to the helical liquid along the top (bottom)
edge via the Kondo coupling Jt = J (Jb = �J). Here a stands for the
lattice constant and J > 0 the Kondo coupling strength.

the conduction electrons. Section IV gives a summary of this
paper.

II. MODEL AND NUMERICAL METHOD

A. Model

The KM model is a prototypical framework to study the
helical edge states in the QSHIs. We consider the following
Hamiltonian HKM of the KM model:

HKM = −t
∑
〈i j〉σ

c†
iσ c jσ + iλSO

∑
〈〈i j〉〉αβ

νi jc
†
iασ z

αβc jβ. (1)

Here ciσ (c†
iσ ) denotes the annihilation (creation) operator of a

conduction electron at the ith site with spin σ =↑,↓. The first
term represents the nearest-neighbor (NN) hopping with an
amplitude of t . The second term is an intrinsic SOC involving
the next-nearest-neighbor (NNN) hopping with an imaginary
hopping integral of λSO. The parameter νi j is determined by
the orientation of two NN bonds that an electron hops from
site j to i, specifically νi j = +1 (−1) if the electron turns left
(right) in the hopping from site j to i, as depicted in Fig. 1. The
Pauli matrix σ z

αβ further distinguishes the spin-up and spin-
down edge states with opposite NNN hopping amplitudes.

For the ground state of the KM model [Eq. (1)] defined in
a ZGNR, two helical edge states are exponentially localized
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at each open edge, corresponding to the noninteracting limit
of helical Luttinger liquid. For simplicity, we accordingly
set a local spin- 1

2 impurity coupled to both open edges in
the ZGNR, namely, we construct a 2CK model with helical
Luttinger liquid. Since the edge states mainly reside in sub-
lattice A (B) at the top (bottom) edge [80–82], the impurity is
coupled to an edge site of sublattice A (B) at the top (bottom)
edge, as illustrated in Fig. 1. Then the total Hamiltonian H of
the system is given by the following forms:

H = HKM + HKondo,

HKondo = JSimp · st0 + �JSimp · sb0, (2)

where HKondo describes the antiferromagnetic exchange in-
teraction between the impurity and edge-state electrons.
The local spin Simp is coupled to the electron spin st (b)0 =
1
2

∑
αβ c†

0ασαβc0β at the zeroth site along the top (bottom) edge
via the Kondo coupling Jt = J (Jb = �J), with σ denoting the
vector of Pauli matrices. Here the dimensionless quantity �

plays a controlling role, which governs the coupling symme-
try between the two helical liquids with the impurity. In the
case of � = 0 with Jb = 0, the impurity only interacts with
the conduction electrons at the top edge, and it is perfectly
screened by the top helical liquid at zero temperature [49].
For any finite � �= 0, the impurity interacts with both helical
liquids, and it is completely screened by the two helical liquids
together [64]. Specifically, at the point of � = 1 with Jt = Jb,
i.e., at the coupling symmetry point, the two helical liquids
equivalently screen the impurity spin. However, when the con-
trolling parameter � �= 1, the coupling symmetry between the
two helical liquids with the impurity is broken with Jt �= Jb. In
consequence, at zero temperature, screening of the impurity
by each helical liquid may vary as the Kondo couplings devi-
ate from the symmetry point. We thus focus on the behavior
of the spin- 1

2 impurity as well as that of the Kondo screening
cloud around the coupling symmetry point.

On the other hand, for a conventional 2CK model, the
Hamiltonian obeys exact SU(2)spin symmetry. However, if the
SU(2)spin symmetry is broken, the system will be driven to
flow to a polarized Fermi-liquid fixed point [30], indicating
that the 1CK physics emerges. In comparison, as we see,
the total Hamiltonian H [Eq. (2)] preserves U(1)spin sym-
metry with [Sz

total, H] = 0, since the SU(2)spin symmetry is
partially broken by the SOC. Hence, in this sense, we expect
that properties of the 2CK model with two helical liquids
in our work should exhibit the 1CK physics, as indicated in
Refs. [64,67] that such a system can be described by the usual
1CK Hamiltonian for noninteracting electrons on the edges
with the Luttinger liquid parameter K = 1.

In the following calculations, we set the NN hopping pa-
rameter t = 1.0 as the unit of energy and keep half filling for
the conduction band. The strength of SOC is set to λSO =
0.1t , a value appropriate for the germanene or stanene, and
that of antiferromagnetic Kondo coupling is set to J = t . All
the calculations were performed in the ground-state subspace
of Sz

total = 1
2 . The system size is L = Nx × Ny, with Nx (Ny)

denoting the length (width) of the ZGNR, and the periodic
(open) boundary condition was adopted along the x (y) direc-
tion, as schematically shown in Fig. 1.

B. Numerical method

We employed the NORG approach, a many-body numer-
ical method without perturbation, to study the 2CK model
with two helical liquids, as depicted in Fig. 1 and Eq. (2).
Generally, the NORG method preserves the whole geometric
information of a lattice and its effectiveness is independent
of any lattice structure or topology of a quantum system.
It has been demonstrated that the NORG is an effective
method to study quantum impurity problems in the whole
coupling regime [78,79,81,83–85]. Specifically, the NORG
has recently been applied to solve problems of the well-known
two-impurity Kondo critical point [83], the screening mech-
anism of the Kondo effect in both the normal metal [81]
and the QSHI [84], the critical behavior in the multichannel
Kondo model with non-Fermi-liquid behavior [85], as well
as the magnetic correlation between two local spins in a
QSHI [78].

Generally, the realization of the NORG method involves a
representation transformation from a site representation into
a natural orbital (NO) representation through iterative orbital
rotations. Hence, the NORG method works in the Hilbert
space constructed from a set of NOs, which correspond to the
eigenvectors of the single-particle density matrix (or the corre-
lation matrix) [79,86–92] defined by Di j = 〈	|c†

i c j |	〉 with
|	〉 a normalized many-body wave function of the system and
c†

i the creation operator in the site representation.
More specifically, for a lattice system with finite size L,

one performs the representation transformation from site rep-
resentation into NO representation by d†

m = ∑L
i=1 V †

mic
†
i with

d†
m representing the creation operator in the NO representa-

tion and V an L × L unitary matrix. Thus the single-particle
density matrix D is diagonalized by the unitary matrix V . On
the other hand, the associated eigenvalues of D correspond to
the occupancy numbers of the NOs. An NO is active if its oc-
cupancy number deviates well from empty or full occupancy,
otherwise inactive. In a quantum impurity system, it has been
shown that [79,81,84] the ANOs play substantial roles in
constructing the ground-state wave function while the inactive
NOs are frozen as background, and the number of ANOs is
roughly equal to that of the interacting impurities. This is
also the underlying basis for the NORG method working on
quantum impurity problems.

In our practical calculations, to efficiently realize the
NORG approach, we only rotate the bath orbitals, i.e., only
the bath sites are transformed into the NOs representation. As
a consequence, the computational cost needed is about O(L3)
and thus we can solve hundreds of noninteracting bath sites.
As a detailed example, for a single-impurity Kondo model,
after the representation transformation involved in the NORG,
the Kondo interaction H1

Kondo = JSimp · s(ri ) in the framework
of NO formalism is given by the following form:

H1
Kondo = J

2

[ ∑
mn

VimV †
inSz

imp(d†
m↑dn↑ − d†

m↓dn↓)

−
∑
mn

VimV †
inc†

imp,↑dn↑d†
m↓cimp,↓

−
∑
mn

VimV †
ind†

m↑cimp,↑c†
imp,↓dn↓

]
, (3)
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FIG. 2. (a) Energy spectrum of the KM model in a ZGNR and
(b) the finite-size energy gap 
εy at the Fermi wave vector kF = π

for the SOC strength λSO = 0.1, respectively. The edge-state bands
[marked by the red lines in (a)] cross with each other at the Fermi
level εF = 0, and each band is doubly degenerate according to the
Kramers degeneracy. On the other hand, the energy gap 
εy decays
exponentially as the width Ny increases in finite-size systems. The
length (width) of the ZGNR adopted in the calculations in (a) is Nx =
256 (Ny = 40). The ZGNR length is fixed to be Nx = 28 in (b).

with c†
imp,↑(cimp,↑) denoting the creation (annihilation) opera-

tor with spin up at the impurity site.

III. NUMERICAL RESULTS

A. Band structure

The energy spectrum of the KM model in a ZGNR was
first calculated, as plotted in Fig. 2(a). As we see, two bands
of the localized helical edge states cross with each other at
the Fermi level εF = 0, and each band is doubly degenerate
according to the Kramers degeneracy. Practically, in a realistic
system, the localized edge states have finite width and decay
exponentially into the bulk [93]. As a result, in a ZGNR of
finite width, the helical edge states coming from different
edges can couple together with a finite overlap to generate
a small energy gap at the Fermi wave vector. Figure 2(b)
shows the finite-size gap 
εy at the Fermi wave vector kF = π

with respect to the ZGNR width Ny. As expected, the energy
gap 
εy decays exponentially with the width Ny increasing.
In the following calculations, we always keep the width of
ZGNRs to be Ny = 10 without additional statement with the
corresponding finite-size energy gap 
εy ≈ 10−7, appropriate
to simulate the localized helical edge states.

B. Active natural orbitals

In this section, we analyze the NOs and their occupancy
numbers. For a quantum impurity system, the ANOs, whose
occupancy numbers deviate well from empty or full occu-
pancy, play essential roles in constructing the ground-state
wave function while the inactive NOs are frozen as back-
ground [79,81,84]. We thus focus on the number as well as
structures of the ANOs for the ground state, which are helpful
for clarifying the intrinsic structure of the many-body ground
state with strong correlation and high entanglement in such
systems.

Figure 3 shows the total occupancy number n (0 � n �
2.0) of the NOs for different values of �. As expected,
most of the NOs exponentially rush into full occupancy with

FIG. 3. Total occupancy number n (0 � n � 2.0) and the corre-
sponding component nσ (0 � nσ � 1.0) of the NOs for the ground
state with different values of the controlling parameter �. Here most
of the NOs exponentially decay into full occupancy with n = 2.0
or empty with n = 0, except two ANOs of half-occupied with total
occupancy number n = 1.0. In comparison, the component nσ of the
two ANOs depends on the values of �. The calculations were carried
out in the ZGNR of length Nx = 28.

n = 2.0 or empty with n = 0, indicating that they are inactive
NOs. In comparison, there are two NOs half-occupied with
total occupancy number n = 1.0, which deviates well from
empty or full occupancy, suggesting that there are essentially
two ANOs for the ground state. Then we further examine
the corresponding component nσ (0 � nσ � 1.0) of the two
ANOs with n = n↑ + n↓, which is expected to depend on the
coupling symmetry between the two helical liquids with the
impurity, governed by the values of the parameter �.

More specifically, as presented in Fig. 3(c), at the coupling
symmetry point of � = 1 with Jt = Jb, the components n↑ and
n↓ of the first ANO (indexed as the 280th NO in Fig. 3) are,
respectively, equal to those of the second ANO (indexed as
the 281th NO in Fig. 3). In contrast, in the case of � = 0
with Jb = 0, n↑ = n↓ = 0.5 for the first ANO, while n↑ �
1.0, n↓ � 0 for the other, as plotted in Fig. 3(a). Likewise,
when � is sufficiently large with Jt 	 Jb (such as � = 4, not
plotted), our numerical results show that n↑ � 0.5, n↓ � 0.5
for the first ANO, while n↑ � 1.0, n↓ � 0 for the other. Hence
when � goes to small or large values from the symmetry
point � = 1, the corresponding component n↑ (n↓) of the first
ANO tends to decrease (increase) to 0.5, while that of the
other ANO tends to increase (decrease) to 1.0 (0), as shown
in Figs. 3(b) and 3(d), respectively. As a result, when the
Kondo couplings with the two helical liquids deviate from the
symmetry point, the first ANO remains active, while the other
tends to be inactive.

In general, we identify an NO with total occupancy number
n = n↑ + n↓ deviating well from full occupancy or empty to
be an ANO, regardless of the values of their components n↑
and n↓. Here we further consider an ANO with its components
n↑ and n↓ both deviating well from full occupancy (nσ = 1.0)
or empty (nσ = 0) to be fully active. In this sense, the first
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FIG. 4. Total amplitudes of (a) the first and (b) second ANOs
projected into the real space along the top and bottom edges, re-
spectively. Spatial structures of the two ANOs with respect to the
parameter � are distinct and depend on the value of �. Our numerical
results were obtained in the ZGNR of length Nx = 28.

ANO is identified as a full ANO in the whole regimes of �.
Hence we come to the conclusion that in a quantum impurity
system of a local spin- 1

2 impurity interacting with two helical
liquids, the number of ANOs for the ground state is equal
to that of the helical liquids. All the ANOs become fully
active when the Kondo couplings keep symmetric, while only
one remains fully active when deviating from the coupling
symmetry point.

To clarify the structures of the ANOs, we project them into
the real space along the top and bottom edges in the ZGNR.
From the representation transformation d†

mσ = ∑N
i=1 V †

miσ c†
iσ

involved in the realization of the NORG, we obtain the total
amplitude Uma and component amplitude Wma of the mth ANO
projected into the a ∈ {t, b} edge by Umaσ = ∑

i∈a Wmaσ (i) =∑
i∈a |V †

miσ |2 with Wmaσ (i) = |V †
miσ |2. Our results (not plotted)

show that Wma↑ = Wma↓, leading to Uma = Umaσ and Wma =
Wmaσ , meaning that the amplitudes Uma and Wma are spin in-
dependent. Our results clearly show that the spatial structures
of the two ANOs are distinct and depend on the numerical
value of �, as presented in Figs. 4 and 5.

Even though the first ANO remains fully active in the
whole regimes of the controlling parameter �, its spatial
structure varies around the coupling symmetry point. From

FIG. 5. Component amplitudes of (a) the first and (b) second
ANOs projected into the real space along the top or bottom edge,
respectively. In the case of � = 0.6 and 1 (� = 1.4), the first ANO is
projected into the site along the top (bottom) edge, while the second
ANO is projected into the site along the bottom (top) edge. Spatial
structures of the two ANOs are distinct. Our numerical results were
obtained in the ZGNR of length Nx = 28.

Fig. 4(a), we find that U1t � 1 while U1b � 0 for � � 1,
meaning that it is mainly constructed by the orbitals at the
top edge. In contrast, for any value of � > 1, U1b � 1 while
U1t � 0, indicating that it is dominantly composed by the
orbitals at the bottom edge. As a result, in the case of Jt > Jb

(Jt < Jb), the first ANO is constituted by the helical liquid
at the top (bottom) edge, namely, the helical liquid with the
larger Kondo coupling plays a dominant role. Moreover, at
the coupling symmetric point of Jt = Jb, the components of
the first ANO come from the helical liquid at the top edge.

In comparison, as shown in Fig. 4(b), the spatial structure
of the second ANO is distinct from that of the first ANO,
especially in the regime of � < 1 with Jt > Jb. As we see,
for small � (for example � = 0.2) with Jt � Jb, the helical
liquid at the top edge tends to form the second ANO with
U2t → 1 while U2b � 0. As � further increases (for exam-
ple, 0.4 � � � 1), U2b goes to 1 while U2t tends to vanish,
illustrating that the helical liquid at the bottom edge domi-
nantly participates in constituting the ANO. Furthermore, in
the case of � > 1 with Jt < Jb, it is mainly comprised by the
helical liquid at the top edge with U2t → 1 while U2b � 0.
Compared with the first ANO, at the coupling symmetry point
of � = 1, the second ANO is formed by the helical liquid at
the bottom edge. Consequently, for the ground state at the
coupling symmetry point, two full ANOs emerge, with one
being constituted by the helical liquid at the top edge and the
other by that at the bottom edge.

Furthermore, around the coupling symmetry point, we
show the component amplitude Wma(i) of the mth ANO at
the ith site along the a ∈ {t, b} edge, at which the mth ANO
is constructed by the helical liquid. Figures 5(a) and 5(b),
respectively, present our numerical results for the first and sec-
ond ANOs with different values of the controlling parameter
�. For the first ANO, as we have illustrated, it is constituted
by the helical liquid at the top (bottom) edge in the case of
� � 1 (� > 1). Hence we project it into the site along the
top (bottom) edge for � = 0.6 and 1 (� = 1.4), corresponding
to the component amplitude W1t (W1b). From Fig. 5, the two
ANOs are constructed mainly by the edge sites of sublattice
A (B) at the top (bottom) edge, and the site coupled with the
impurity (indexed as the 0th site in Fig. 5) plays the dominant
role, as shown that Wma(0) reaches the maximum. Moreover,
as we see in Fig. 5(a), the value of W1a(0) is suppressed if �

tends to 1. This means that the first ANO is delocalized along
the edge at the coupling symmetry point, while it becomes
more localized at the site coupled with the impurity when the
coupling symmetry is broken. Likewise, we project the second
ANO into the site along the bottom (top) edge for � = 0.6
and 1 (� = 1.4), corresponding to the component amplitude
W2b (W2t ). In comparison, as presented in Fig. 5(b), the value
of W2a(0) is always enhanced as � increases, indicating that
the second ANO tends to be localized at the site coupled with
the impurity as the Kondo coupling with the helical liquid
at the bottom edge increases. This further indicates that the
spatial structures of the two ANOs are distinct.

C. Impurity spin polarization and susceptibility

To proceed, we study the local screening of the impurity,
which is described by the impurity spin polarization and
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FIG. 6. (a) The occupancy number 〈nimp,σ 〉 and (b) the spin
polarization 〈Sz

imp〉 = 1
2 (〈nimp,↑〉 − 〈nimp,↓〉) at the impurity site for

the ground state, respectively. At the coupling symmetry point of
� = 1, the occupancy number 〈nimp,↓〉 (〈nimp,↑〉) reaches a maximum
(minimum). Correspondingly, the impurity spin polarization 〈Sz

imp〉
approaches the maximal value with a negative sign at � = 1. The
local spin is negatively polarized in the ground-state subspace of
Sz

total = 1/2 for any finite � �= 0, and it is maximally polarized at
the coupling symmetry point. Furthermore, the impurity spin polar-
ization 〈Sz

imp〉 decreases with the length Nx of the ZGNRs increasing.

susceptibility. We first investigate the behavior of the impurity
spin polarization, defined as 〈Sz

imp〉 = 1
2 (〈nimp,↑〉 − 〈nimp,↓〉),

with 〈nimp,σ 〉 representing the occupancy number with spin
σ at the impurity site. Figures 6(a) and 6(b) present the nu-
merical results of the occupancy number 〈nimp,σ 〉 and the spin
polarization 〈Sz

imp〉 for the ground state, respectively.
As shown in Fig. 6(a), at the point of � = 0 with Jb = 0,

the occupancy numbers 〈nimp,↑〉 = 〈nimp,↓〉 = 0.5. As � fur-
ther increases, 〈nimp,↓〉 (〈nimp,↑〉) increases (decreases) to a
maximum (minimum) at the coupling symmetry point of � =
1, while 〈nimp,↓〉 (〈nimp,↑〉) tends to decrease (increase) to 0.5
as � increases to large values afterwards. Correspondingly,
as shown in Fig. 6(b), the impurity spin polarization 〈Sz

imp〉
reaches the maximum with a negative sign at � = 1, and then
it begins to decay as � goes to rather small or large values.
Consequently, the impurity spin is negatively polarized in the
ground-state subspace of Sz

total = 1
2 for any finite � �= 0, and

its quantity manifests the maximum at the coupling symmetry
point of � = 1. Moreover, 〈Sz

imp〉 tends to vanish in the regime
of � 	 1 or � � 1, meaning that the impurity spin tends
to be completely screened without polarization in the case
of Jt � Jb or Jt 	 Jb. Hence, in a finite system, the impu-
rity spin is maximally polarized at the coupling symmetry
point, while its polarization is suppressed if the symme-
try of the Kondo couplings with the two helical liquids is
broken.

In addition, we find that the impurity spin polarization
decreases with the length Nx of the ZGNRs increasing, as
shown in Fig. 6(b), meaning that 〈Sz

imp〉 may approach to
vanish in the thermodynamic limit 1/Nx → 0 for any value
of �. This implies that the local spin tends to be screened
without free local moment formed at the impurity site in the
thermodynamic limit, i.e., the standard 1CK physics emerges,
which is consistent with the previous conclusion that such a
system can be described by the usual 1CK Hamiltonian for
noninteracting electrons on the edges [64,67].

The impurity spin susceptibility, representing the dynamic
property of the system, is further calculated. We consider the
following zero-temperature Green’s function Gimp defined at

FIG. 7. The impurity spin susceptibility χimp with the broadening
factor η = t/L and L = Nx × Ny. The behavior of χimp is consistent
with that of the impurity spin polarization 〈Sz

imp〉. The susceptibility
χimp reaches the maximum at the coupling symmetry point of � = 1
and then decays when � deviates from this symmetry point. In the
regime of � 	 1 or � � 1, the susceptibility χimp tends to vanish,
meaning that the impurity is screened.

the impurity site,

Gimp(ω) = 〈0|Sz
imp

1

ω + iη − H + E0
Sz

imp|0〉, (4)

where |0〉 and E0 represent the ground state and ground-
state energy, respectively. The parameter η → 0 denotes a
Lorentzian broadening factor. The above Green’s function
Gimp for a given frequency ω is calculated using the correction
vector method [94,95] in our following calculations. Then
the spin-excitation spectrum Aimp(ω) at the impurity site is
obtained by Aimp(ω) = − 1

π
ImGimp(ω) and the impurity spin

susceptibility χimp is further obtained by χimp = Aimp(ω = 0).
Numerical results of the susceptibility χimp are plotted in
Fig. 7.

As we see in Fig. 7, the impurity spin susceptibility χimp

changes nonmonotonic with �, similar to the behavior of
the impurity spin polarization 〈Sz

imp〉. The susceptibility χimp

reaches the maximum at the point of � = 1 and then decays
when � deviates from the coupling symmetry point. Further-
more, χimp tends to vanish in the regime of � 	 1 or � � 1,
meaning that the impurity spin is screened without local sus-
ceptibility in the case of Jt � Jb or Jt 	 Jb, consistent with
the behavior of the impurity spin polarization 〈Sz

imp〉.

D. Kondo screening cloud

Finally, we study the Kondo screening cloud, which is
measured by the spin correlation between the impurity and
the conduction electrons. We focus on the spin correlation
functions in the ground state given by the following forms:

Cz
a =

∑
i∈a

〈0|Sz
impsz

i |0〉,

Ca =
∑
i∈a

〈0|Simp · si|0〉, (5)
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FIG. 8. (a) Spin correlations Cz = Cz
t + Cz

b as well as Cz
a with

a ∈ {t, b} between the impurity and the edge electrons projected
into the z direction. (b) Spin correlation Ca between the impurity
and the edge electrons at the a ∈ {t, b} edge and the corresponding
total correlation C = Ct + Cb. As � increases from 0 to large values,
Cz

t increases from − 1
4 to 0, while Cz

b decreases from 0 to − 1
4 . At

the coupling symmetry pint of � = 1, the spin correlations Cz
t and

Cz
b cross, where the spin correlation Cz reaches the minimal value

accordingly. Behaviors of Ca with a ∈ {t, b} and C are consistent
with those of their components in the z direction. The spin correlation
functions were calculated in the ZGNR of length Nx = 28.

where |0〉 denotes the ground state. Ca stands for the spin
correlation between the impurity and the edge electrons at the
a ∈ {t, b} edge, and Cz

a represents the corresponding z com-
ponent. The total spin correlation C = Ct + Cb between the
impurity and the edge electrons at both open edges along with
its component Cz = Cz

t + Cz
b in the z direction are analyzed

as well. Numerical results of Cz
a, Ca, Cz, and C are shown in

Fig. 8.
From Fig. 8(a), at the point of � = 0 with Jb = 0, the spin

correlations Cz
t � − 1

4 and Cz
b � 0 as expected, meaning that

the impurity is mainly correlated with the helical liquid at the
top edge. As � further increases, the correlation Cz

t tends to
increase from − 1

4 to 0. In contrast, Cz
b decreases from 0 to

− 1
4 with � increasing. Hence, the impurity is correlated dom-

inantly with the helical liquid with the larger Kondo coupling.
At the coupling symmetry point of � = 1 with Jt = Jb, the
correlations Cz

t and Cz
b cross, indicating that the impurity is

correlated equally with the two helical liquids. Accordingly,
the z component of total correlation Cz = Cz

t + Cz
b decreases

(increases) with � in the regime of � < 1 (� > 1) and it
approaches to a minimum at the coupling symmetry point.

As a comparison, as presented in Fig. 8(b), the behaviors
of the spin correlations Ca with a ∈ {t, b} and C = Ct + Cb are
consistent with those of their components in the z direction,
respectively. In consequence, at the coupling symmetry point
of Jt = Jb, the Kondo screening cloud is equally formed by
the edge-state electrons in the two helical liquids, respectively.
Furthermore, when the coupling symmetry breaks, the Kondo
screening cloud is mainly formed by the electrons in the
helical liquid with the larger Kondo coupling, i.e., the Kondo
cloud is concentrated at the top (bottom) edge in the case of
Jt > Jb (Jt < Jb).

On the other hand, the SOC effect, which partially breaks
the SU(2)spin symmetry of the system [Eq. (2)], will influence
the spatial distribution of the Kondo cloud. We hence explore
the ratio of the x component to the z component for the spin

FIG. 9. The ratio of x component to z component for the spin
correlation Ca with respect to the parameter � with a ∈ {t, b}. The
ratio of Cx

a
Cz

a
exhibits the influence of the SOC effect on the symmetry

in spatial distribution of the Kondo cloud projected into the a edge.
Numerical results were calculated in the ZGNRs of length Nx = 16,
Nx = 24, and Nx = 28.

correlation Ca with respect to the parameter �, namely, the
ratio of Cx

a
Cz

a
with a ∈ {t, b}. Numerical results are shown in

Fig. 9. We find that Cx
t

Cz
t

�= 1 and Cx
b

Cz
b

�= 1, demonstrating that
the spatial symmetry of the spin correlation projected into the
a ∈ {t, b} edge is broken. More specifically, as the parameter
� increases, the ratio of Cx

b
Cz

b
decays, which is consistent with

the behavior of the spin correlation Cb, while Cx
t

Cz
t

increases.
Therefore, the Kondo cloud in the system is anisotropic,
which is in contrast to the isotropic Kondo cloud formed in
a normal metal.

Furthermore, the ratio of Cx
t

Cz
t

→ 1 (Cx
b

Cz
b

→ 1) in the regime
of � 	 1 (� � 1), meaning that the symmetry in spatial
distribution of the Kondo cloud projected into the top (bottom)
edge tends to recover in the small (large) � regime. Since the
Kondo cloud is dominantly concentrated at the top (bottom)
edge in the case of � < 1 (� > 1), and that Cx

t
Cz

t
	 Cx

b
Cz

b
(Cx

t
Cz

t
�

Cx
b

Cz
b
) for � < 1 (� > 1) shown in Fig. 9, the spatial symmetry

of the Kondo cloud that mainly screens the local impurity is
weakly influenced by the SOC effect. In addition, the values
of Cx

t
Cz

t
and Cx

b
Cz

b
increase with the length Nx, as shown in Fig. 9,

indicating that the influence of the SOC term on the Kondo
cloud is enhanced by the size of the ZGNRs.

IV. SUMMARY

To summarize, by means of NORG calculations we studied
the ground-state properties of a spin- 1

2 impurity interacting
with two helical liquids based on the KM model defined in a
finite ZGNR. We investigated how the Kondo couplings with
both helical liquids influence the static and dynamic properties
of the system. More specifically, we presented a detailed study
focusing on the NOs, the impurity spin polarization, and the
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impurity spin susceptibility, as well as the Kondo screening
cloud.

The occupancy number of the NOs was first analyzed. Our
numerical results show that two ANOs with half occupancy
emerge, whose number is equal to the number of the helical
liquids interacting with the impurity. Structures of the two
ANOs are further analyzed by their projections into both
top and bottom edges in the ZGNR, which show differences
around the coupling symmetry point.

It is shown that at the coupling symmetry point, the impu-
rity spin is maximally polarized and the susceptibility reaches
the maximum. Furthermore, both the impurity spin polariza-
tion and the susceptibility are suppressed when the symmetry
of the Kondo couplings with the two helical liquids is broken,
demonstrating that the impurity tends to be screened without
polarization when the Kondo couplings deviate well from the
symmetry point. On the other hand, the impurity spin polar-
ization decreases with the length of the ZGNRs increasing,
meaning that the impurity spin polarization tends to vanish in

the thermodynamic limit in the whole regimes of the control-
ling parameter.

It is illustrated that the impurity is correlated dominantly
with the helical liquid with the larger Kondo coupling, namely,
the Kondo cloud is mainly formed by the electrons in the
helical liquid with the larger Kondo coupling, while it is
equally formed by the electrons in the two helical liquids at
the coupling symmetry point. On the other hand, the SOC
effect breaks the symmetry in spatial distribution of the spin
correlation, leading to the anisotropic Kondo cloud, in contrast
to the isotropic Kondo cloud formed in a normal metal.
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