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It has recently been demonstrated that it is possible to open a gap in a magnetic Weyl semimetal, while
preserving the chiral anomaly along with the charge conservation and translational symmetries, which all
protect the gapless nodes in a weakly interacting semimetal. The resulting state was shown to be a nontrivial
generalization of a non-Abelian fractional quantum Hall liquid to three dimensions. Here we point out that a
second fractional quantum Hall state exists in this case. This state has exactly the same electrical and thermal
Hall responses as the first, but a distinct (fracton) topological order. Moreover, the existence of this second
fractional quantum Hall state necessarily implies a gapless phase, which has identical topological response to a
noninteracting Weyl semimetal, but is distinct from it. This may be viewed as a generalization (in a weaker form)
of the known duality between a noninteracting two-dimensional Dirac fermion and QED3 to 3 + 1 dimensions.
In addition we discuss a (3 + 1)-dimensional topologically ordered state, obtained by gapping a nodal line
semimetal without breaking symmetries.
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I. INTRODUCTION

Topological order, a concept that originated in the study
of the fractional quantum Hall effect (FQHE) in two-
dimensional (2D) electron gas systems [1], continues to be
a subject of intense interest. From the fundamental physics
perspective, topologically ordered states provide perfect ex-
amples of emergent macroscopic quantum phenomena, with
fractionally quantized electromagnetic and thermal responses,
that are impossible to explain based on textbook models
of weakly interacting electrons. Instead, such fractionally
quantized observable responses necessarily imply excitations
with fractional charges, fractional and non-Abelian statistics,
which cannot be constructed out of any finite number of
elementary constituents [2]. In addition, such exotic excita-
tions may have future potential practical uses in quantum
computing and quantum simulation, as their nonlocal topo-
logical nature makes them highly resistant to decoherence and
noise [3].

Topologically ordered states in 2D are by now well under-
stood. Various theoretical models [4–7], as well as complete
formal classifications of 2D topological orders exist [8]. Al-
though significant progress has been made in recent years
[9–19], less is known about topologically ordered states in
three dimensions (3D). 3D topologically ordered states are
significantly different from the 2D ones. On the one hand,
fractional statistics is impossible in 3D, and quasiparticle exci-
tations may only be bosons or fermions. This could make one
doubt that, for example, fractional quantum Hall (FQH) states
may even in principle be generalized to 3D, as the existence
of anyons, i.e., quasiparticles with fractional statistics, is an
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essential feature of the 2D FQHE. On the other hand, in addi-
tion to point quasiparticles, one-dimensional loop excitations
exist in 3D, which both adds complexity and opens up new
interesting possibilities.

We recently demonstrated that a promising way to achieve
3D topologically ordered states is through gapping topolog-
ical semimetals without breaking the protecting symmetries
[20–22] (see Refs. [23–29] for related work). Topological
semimetals [30–35] are intermediate phases between insu-
lators of different electronic structure topology. They may
be characterized by unquantized anomalies [36,37], i.e.,
topological terms with noninteger and continuously tunable
coefficients, similar to the electron filling parameter, charac-
terizing ordinary Fermi liquids. Much like fractional filling
in a Fermi liquid mandates the existence of a Fermi surface
of gapless particle-hole excitations [38], these unquantized
anomalies necessarily imply gapless modes and correspond-
ing long-range entanglement. The only way gaplessness may
be circumvented in the absence of broken symmetries is
through the formation of a topologically ordered state, which
preserves the anomaly and the long-range entanglement of the
gapless semimetal.

Specifically, in Ref. [20] we presented an explicit construc-
tion of a 3D topologically ordered state in a gapped magnetic
Weyl semimetal, which exhibits a nontrivial generalization of
the FQHE to 3D. This state is obtained starting from a mag-
netic Weyl semimetal with a single pair of nodes, separated
by half a reciprocal lattice vector. These nodes may be gapped
by breaking the U (1) charge conservation symmetry while
forming a superconducting state with intranodal pairing. In
general, such states break translational symmetry since the
Weyl nodes exist at nontrivial momenta in the first Brillouin
zone (BZ). However, when the nodes are separated by exactly
half a reciprocal lattice vector, such a pairing leads to density
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modulation at the reciprocal lattice vector, which does not
break the crystal translational symmetry. Restoring the charge
conservation symmetry by proliferating flux 2hc/e = 4π (we
will be using h̄ = c = e = 1 units throughout this paper)
vortices in the superconducting order parameter leads to a
featureless fractionalized insulator with Z4 topological order,
that has the same electrical and thermal Hall conductivities
as the original noninteracting Weyl semimetal, i.e., exhibits
FQHE in 3D. Unlike in 2D FQH liquids, quasiparticle exci-
tations in this state are bosons and fermions. What plays the
role of the anyons in the 2D FQHE are intersections of the
vortex-loop excitations with atomic planes. These behave as
fractionally charged particles with semionic statistics, which
may be sharply defined by considering three-loop braiding
processes [15], involving a line defect of translational sym-
metry, i.e., an edge dislocation.

In this paper we show that, in addition to the 3D FQH state
of Ref. [20], another state exists, which has identical topolog-
ical response, but distinct topological order, which turns out
to be of a fracton type. The existence of these two distinct
states turns out to be closely related to a very similar property
of gapped symmetric 2D Dirac surface states of 3D time-
reversal (TR) invariant topological insulators (TIs) [39–43].
In this case, two distinct topologically ordered states exist.
One, called Pfaffian-antisemion [40,42], is closely related to
the 3D FQH states of Ref. [20] (more precisely, the relation
is with the TR broken version of this state). The second one,
T-Pfaffian [39,41], is related to the other 3D state we will con-
struct in the present paper (again, more precisely, the relation
is with the TR breaking version of this state, which is usually
called PH, which stands for particle-hole-symmetric, Pfaffian
[44,45]).

Another interesting consequence emerges from these
analogies to the 2D TR invariant TI surface state topological
orders. It is well known that the PH-Pfaffian is closely related
to the recently discovered duality relation between a mass-
less noninteracting 2D Dirac fermion and QED3 [44,46–51].
Namely, the PH-Pfaffian state is obtained when the dual Dirac
fermion of QED3 is gapped by pairing, which does not break
the charge conservation symmetry since the dual fermion is
neutral. The existence of the analog of the PH-Pfaffian state
in our 3D system then also implies the existence of a gapless
state, which is related to the noninteracting Weyl semimetal
via a duality relation, somewhat similar to the 2D Dirac du-
ality. We demonstrate that this is indeed the case. However,
we find that the duality only applies to topological response in
this case and not to the dynamics and is weaker than the 2D
duality in this sense.

The path to topologically ordered insulators through gap-
ping topological semimetals is quite general and is not limited
to the magnetic Weyl semimetal case. To emphasize this point,
here we also discuss a topologically ordered state, which is
obtained by gapping a nodal line semimetal without breaking
symmetries. This state has a topological order, distinct from a
gapped Weyl semimetal, and is characterized by a fractional
electric polarization, impossible in an ordinary weakly inter-
acting insulator.

The rest of the paper is organized as follows. In Sec. II,
after a preliminary discussion of the topological field the-
ory description of the electromagnetic response of Weyl

semimetals, we recap the construction of the 3D analog of
the Pfaffian-antisemion state of Refs. [20,21]. In Sec. III, we
demonstrate the existence of a duality relation (which applies
to topological response only) between a noninteracting Weyl
semimetal and a QED4, which describes a time-reversed Weyl
semimetal, coupled to a dynamical gauge field. In Sec. IV we
discuss a topologically ordered state, obtained by gapping a
nodal line semimetal without breaking symmetries. This state
is characterized by a fractional electric polarization, impos-
sible in an ordinary insulator. We conclude in Sec. V with a
brief discussion of our results.

II. GAPPED SYMMETRY-PRESERVING STATES
IN WEYL SEMIMETALS

A. Preliminaries

To keep the paper self-contained, we will start by recapping
the construction of the 3D FQH state of Refs. [20,21], which,
as will be explained below, may be viewed as a TR breaking
3D analog of the Pfaffian-antisemion state on a strongly inter-
acting 3D TI surface. We will also put the theory of Ref. [21]
on a more rigorous footing by introducing the language of
translation gauge fields [36,52–55], which allows one to use
proper coordinate-free notation for the corresponding topo-
logical field theories.

We start from the simplest cubic lattice model of a mag-
netic Weyl semimetal with a pair of nodes [34]

H =
∑

k

ψ
†
k [σx sin(kxd ) + σy sin(kyd ) + σzm(k)]ψk. (1)

Here σi are Pauli matrices, describing the pair of touching
bands and

m(k) = cos(kzd ) − cos(Qd ) − m̃[2 − cos(kxd ) − cos(kyd )],
(2)

where d is the lattice constant, m̃ > 1, and m(k) vanishes at
two points on the z axis with kz = ±Q, which correspond to
the locations of the Weyl nodes.

Such a Weyl semimetal is characterized by the anomalous
Hall conductivity

σxy = e2

h

2Q

2π
= 1

2π

2Q

2π
. (3)

This may be expressed as a topological term in the effec-
tive action for probe electromagnetic gauge fields when the
fermions are integrated out [56]:

L = i
2Q

8π
εzναβAν∂αAβ. (4)

In its primitive form above, Eq. (4) does not actually look
like a topological term, since it explicitly contains a preferred
direction in space (z) and depends on a nonuniversal micro-
scopic lattice constant d through the Weyl node separation 2Q.

To fix these issues, it proves useful to introduce the concept
of a translation gauge field [36,52–55]. Recall that Bravais
lattice points R of a perfect crystal may be described as
intersections of families of crystal planes, perpendicular to
primitive reciprocal lattice vectors bi, where i = 1, 2, 3 (or
x, y, z for a cubic crystal). Mathematically, this is expressed
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by the equation

θ i(r, t ) = bi · r = 2πni, (5)

where ni are sets of integers, labeling the crystal planes in a
family i and the Bravais lattice vectors r = R are the solutions
of this equation. Equation (5) implies that the reciprocal lattice
vectors in a perfect crystal may be expressed as gradients of
the phases bi

j = ∂ jθ
i. This may be generalized to a distorted

crystal, including time-dependent distortions, by introducing
translation “gauge fields”

ei
μ = 1

2π
∂μθ i. (6)

The fields ei
μ may in fact be viewed as true (strictly speaking,

integer valued) gauge fields, if one explicitly takes account of
the fact that the phases θ i on crystal planes may be relabeled
in arbitrary 2π × Z increments [54,55]. This will not make
a significant difference in our case and either viewpoint is
acceptable.

In a convenient differential form language, we may view ei

as a one-form

ei = ei
μdxμ. (7)

In a crystal without dislocations,

dei = 1
2

(
∂μei

ν − ∂νei
μ

)
dxμ ∧ dxν = 0, (8)

as clearly follows from the definition Eq. (6). On the other
hand, if a dislocation with a Burgers vector along bi is present,
the integral of ei around a loop, enclosing the dislocation line,
is

∮
ei = 1.

The benefit of introducing translation gauge fields becomes
apparent if we now replace a reciprocal lattice vector along the
z direction in Eq. (4) with the corresponding translation gauge
field

2π

d
δz
μ → 2πez

μ. (9)

Then Eq. (4) becomes

L = i
λ

4π
εμναβez

μAν∂αAβ = i
λ

4π
ez ∧ A ∧ dA, (10)

where λ = 2Q/(2π/d ) is a dimensionless separation between
the Weyl nodes in units of the reciprocal lattice vector. Now
Eq. (10) looks like a proper topological term, which only
contains gauge fields and a universal coefficient. The nonuni-
versal and variable lattice constant d has been absorbed into
the definition of the translation gauge field and we will
henceforth set d = 1 for simplicity. Since we are using the
imaginary-time formulation, upper and lower indices do not
need to be distinguished and we will use lower indices for
space-time components of the gauge fields throughout. Vary-
ing Eq. (10) with respect to ez

z produces a response per atomic
xy plane, which is determined by a universal numerical co-
efficient λ. A noninteger value of the coefficient λ requires
gapless modes in the form of a pair of Weyl nodes to be
present [36,37], since a fractional value (in units of e2/h)
of the Hall conductance per atomic plane is impossible in a
noninteracting gapped insulator.

B. 3D analog of the Pfaffian-antisemion state

To derive the field theory of the gapped 3D FQH state of
Ref. [20] we first move to a dual description of the nonin-
teracting Weyl semimetal of Eq. (1), in which the electric
charge is separated from the fermions and is represented in
terms of a two-form gauge potential, which couples to the
vortex loop excitations [21,57,58]. This approach is similar
to what is known as “functional bosonization” [59–62], apart
from unimportant technical details. We start by representing
the fermion operators in Eq. (1) (after Fourier transforming
them to real space) as

ψr = eiθr fr, (11)

where r labels the sites of a cubic lattice, eiθr represents a
spinless charged boson (chargon), and fr is a neutral fermion
(spinon). After straightforward and standard manipulations
[21,63,64], one obtains the following exact representation of
the Weyl semimetal Lagrangian L:

L = L f + Lb, (12)

where L f is the Lagrangian of the spinons fr , which has a
form identical to the lattice Lagrangian of the original elec-
trons ψr , except that fr are coupled to a compact statistical
gauge field aμ rather than the probe electromagnetic field
Aμ. The statistical field expresses U (1) gauge invariance of
the parton decomposition Eq. (11) and serves the purpose of
gluing together the spinons and the chargons. The chargon
Lagrangian has the form

Lb = i

4π
(Aμ − aμ)εμναβνbαβ + 1

8π2χ
(εμναβνbαβ )2.

(13)
Here bμν = −bνμ is a two-form 2π × Z valued lattice gauge
field, which represents integer chargon currents Jμ as

Jμ = 1

4π
εμναβνbαβ. (14)

μ is a lattice derivative and χ is a positive constant. Lattice
site indices r have been suppressed everywhere for brevity.

To avoid dealing with discrete variables, we may imple-
ment the 2πZ constraint on bμν by adding a term i

2 J̃μνbμν

to Lb and summing over integer-valued variables J̃μν , which
have the meaning of vortex-loop currents. Gauge invariance
of Eq. (14) with respect to a transformation bμν → bμν +
μgν − νgμ implies a conservation law

μJ̃μν = 0, (15)

which may be solved as

J̃μν = 1

2π
εμναβαcβ, (16)

where cμ are 2πZ valued one-form gauge fields. The con-
straint on cμ may, in turn, be softened by adding a term
−t cos(μφ + cμ), where the presence of a new compact
angular variable φ takes account of the gauge invariance of
Eq. (16) with respect to cμ → cμ + μφ. In essence, the
particle created by eiφ is the original chargon.
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Then, after taking the continuum limit, the chargon La-
grangian takes the dual form

Lb = i

4π
(Aμ − aμ + cμ)εμναβ∂νbαβ + · · · , (17)

where (· · · ) contains both the higher-derivative terms for bμν

and the additional terms for cμ whose form depends on the
value of the parameter t . In particular, when t is large, the
eiφ boson is condensed, leading to a mass term for cμ (i.e.,
gap for vortices), which may then be ignored. Integration over
bμν then simply sets as Aμ = aμ, i.e., the electric charge is
reattached to the spinons and we recover the original Weyl
semimetal. In contrast, when t is small, the eiφ particle is
gapped, which leads to a Maxwell term, (ε∂c)2, for the gauge
field cμ. In this case, integration over cμ produces a mass term
b2 for the two-form gauge field, which corresponds to a charge
gap. This state is a Mott insulator, which has gapless spinons
that retain the Weyl semimetal band structure.

To obtain a fully gapped state, which preserves topological
response of the Weyl semimetal, Eq. (10), and does not break
any symmetries, we place the spinons into a paired state.
For weak pairing, only the intranodal pairing state opens a
gap [65–68]. Such a pairing generally breaks translational
symmetry, except when 2Q = π or λ = 1/2 [20], to which
we now specialize. With such an intranodal pairing term, the
spinon Hamiltonian may be brought to the form

H = 1

2

∑
k

f †
k {σx sin(kx ) + σy sin(ky)

+ [
√

2 + cos2(kz ) − m̃[2 − cos(kx ) − cos(ky)]]σz} fk,

(18)

where  is the pairing amplitude. This Hamiltonian describes
a 3D topological p-wave superconductor, which has a chiral
Majorana mode, spanning the full extent of the BZ. This may
also be viewed as a stack of 2D topological superconductors,
since the pairing gap does not close at any value of kz.

The spinon pairing produces a term ∝− cos(2aμ) for the
statistical gauge field, which leaves only aμ = 0, π mod 2π

possible values at low energies and makes it a Z2 gauge field.
While nontrivial π -flux configurations of aμ (visons [69]) are
still possible, these may be easily shown to bind a gapless
one-dimensional Majorana mode in their cores, which is a
direct consequence of the fact that the spinon superconductor
is topologically nontrivial. This means that in any fully gapped
symmetry-preserving state such vison loop excitations must
be gapped, which means that we may set aμ = 0 mod 2π at
low energies. This detaches the boson and fermion sectors
of the theory. The fermion sector thus contributes the same
thermal Hall response as the noninteracting Weyl semimetal
at λ = 1/2, which arises from the chiral Majorana mode,
spanning the full BZ. The electrical response must entirely
come from the boson sector.

In order to reproduce the electrical response of the nonin-
teracting Weyl semimetal, it is necessary to condense double
(i.e., flux 4π ) vortices of the boson field eiθ . This is ac-
complished by the following modification of the field theory,

Eq. (17):

Lb = i

4π
(Aμ + 2cμ)εμναβ∂νbαβ + 2i

4π
εμναβez

μcν∂αcβ

+ 1

2g
(εμναβ∂αcβ )2 + i

2
bμν j̃μν + icμ jμ. (19)

The extra factor of 2 in front of cμ, compared to Eq. (17),
expresses the fact that double (flux 4π ) vortices are being
condensed. This also means that the quasiparticle, which is
minimally coupled to the gauge field cμ, carries a charge 1/2.
The second term is a topological term, which will give rise to
the correct electrical Hall conductivity, as will be shown be-
low. This term may be viewed as describing a layered integer
quantum Hall state of the charge-1/2 bosonic quasiparticles.
The third term is the Maxwell term. It is subdominant to the
topological term at long wavelengths, but has been included
explicitly since the topological term only contains compo-
nents of cμ, transverse to the translation gauge field ez. In
particular, if ez

μ = δz
μ, cz does not enter into the topological

term and its dynamics is governed by the Maxwell term.
Finally, jμ and j̃μν represent bosonic quasiparticle and vortex
source currents, which are minimally coupled to the gauge
fields cμ and bμν correspondingly.

Let us now demonstrate that Eq. (19) indeed reproduces
topological response of a noninteracting Weyl semimetal. Let
us set j̃μν = 0 and integrate out bμν . This gives cμ = −Aμ/2.
Substituting this back into Eq. (19), we obtain

Lb = i

8π
εμναβez

μAν∂αAβ − i

2
Aμ jμ. (20)

The first term in Eq. (20) correctly reproduces the electrical
Hall conductivity of a noninteracting Weyl semimetal with
λ = 1/2, which is half conductance quantum σxy = 1/4π per
atomic plane. The second term tells us that quasiparticle exci-
tations in the gapped state, described by Eq. (19), are bosons
with electric charge 1/2. To establish the gapped nature of
this state it is important to note the following. If we reinsert
the statistical gauge field aμ into Eq. (19), it is clear that
fluctuations of bμν effectively constrain cμ = (aμ − Aμ)/2.
This implies that, since aμ is made a Z2 gauge field by
spinon pairing, cμ becomes a discrete Z4 gauge field. This
is important, since, unlike in 2 + 1 dimensions, a (3 + 1)-
dimensional Maxwell-Chern-Simons theory with U (1) gauge
fields is gapless [70,71].

The most straightforward way to see that this theory also
correctly captures the thermal Hall conductivity κxy = 0 is to
consider the boundary theory, which corresponds to Eq. (19).
To derive the boundary theory we follow the standard method
[2]. We choose a gauge, in which on the boundary, taken to
be in the xz plane, we set the temporal components of all the
gauge fields to zero, i.e., c0 = 0, b0μ = 0. Then, integrating
out c0, we obtain

ε0νλρ∂νbλρ = ε0νλρ∂ν

(
ez
λcρ − ez

ρcλ

)
, (21)

while integrating b0ν gives

ε0νλρ∂λcρ = 0. (22)

Equations (21) and (22) along with dez = 0 imply that

ε0νλρ∂νbλρ = 0. (23)
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Equation (23) may then be solved as

bi j = ∂ig j − ∂ jgi, (24)

where i, j = x, z refer to spatial coordinates on the boundary,
while Eq. (22) is solved as

ci = ∂iϕ. (25)

Plugging this back into what remains of Eq. (19) after inte-
grating out c0 and b0μ, we obtain

Lb = i

2π
ε0νλρez

ν∂λϕ∂τ ∂ρϕ − i

π
ε0νλρ∂νϕ∂τ ∂λgρ, (26)

where ∂τ ≡ ∂0. Integrating this in the presence of a boundary,
perpendicular to the y direction, gives

Lsur f = i

2π
εi je

z
i ∂τϕ∂ jϕ − i

π
εi j∂τϕ∂ig j, (27)

where i, j = x, z. Adding symmetry-allowed nontopological
terms and the electromagnetic field, we finally obtain the
following surface state Lagrangian:

Lsur f = i

2π
εi je

z
i ∂τϕ∂ jϕ − i

π
εi j∂τϕ∂ig j + vϕ

2π
(∂iϕ)2

+ vg

2π
(∂ig j − ∂ jgi )

2 + i

2π
εμνλAμ∂νgλ. (28)

Setting ez
μ = δz

μ and Fourier transforming, we obtain the fol-
lowing expression for the excitation spectrum of the surface
modes:

ε(k) = −vgkx

2
+

√√√√(
v2

g

4
+ vgvϕ

)
k2

x + vgvϕk2
z . (29)

This looks like an ordinary anisotropic 2D superfluid disper-
sion, except for a “tilt” in the x direction due to the first term.
However, the dispersion is still nonchiral, since there is always
a pair of left- and right-handed modes for every value of kz.
Consequently, a straightforward calculation gives a vanishing
thermal Hall conductivity in this state:

κxy ∼
∫

dkxdkzvx(k)ε(k)
∂nB[ε(k)]

∂T
= 0, (30)

where vx(k) = ∂ε(k)
∂kx

and nB(ε) is the Bose-Einstein distri-
bution. The integral over kx in Eq. (30) vanishes since the
left-handed (kx < 0) and right-handed (kx > 0) modes give a
contribution that is equal in magnitude but opposite in sign.

By construction, this state is a fully gapped symmetric
state, which has an identical topological response to a nonin-
teracting Weyl semimetal at λ = 1/2. Note again that, while
there does exist a close connection between this state and the
2D Pfaffian-antisemion state, it may not be viewed as a simple
stack of such 2D states. In particular, there are no semion
quasiparticles, but isolated intersections of 2π vortex-loop
excitations with atomic xy planes do behave as semions.

C. 3D analog of the PH-Pfaffian state

Now we note that a second distinct gapped symmetric state,
reproducing topological response of a noninteracting Weyl
semimetal, actually exists. This state is, in a way, simpler than
the 3D analog of the Pfaffian-antisemion above and, as we will

demonstrate, may be viewed as a 3D analog of the PH-Pfaffian
[39,41,44,45].

To construct this state, we take a time-reversed copy of
our Weyl semimetal with λ = 1/2. Writing its Lagrangian in
terms of spinon and chargon variables, we have

L = f̄ γμ(∂μ + iaμ) f − i

8π
ez ∧ a ∧ da + i

4π
(A − a) ∧ db,

(31)
where the first term is the contribution of the gapless Weyl
fermions while the second term is the topological contribution
from all the filled negative-energy states. We will switch to the
index-free notation henceforth. We now place the chargons
into a stack of independent ν = 1/2 quantum Hall states in
each xy-atomic plane. Technically, this means that we take the
two-form gauge field b to be “foliated” [72–75]

b = ez ∧ b̃, (32)

where b̃ = b̃0dτ + b̃xdx + b̃ydy is a one-form field that lacks
the z component, and add a term − 2i

4π
ez ∧ b̃ ∧ db̃ to the La-

grangian equation (31). Furthermore, we place the spinons
into the intranodal pairing state of Eq. (18), which leads to a
3D p + ip topological superconductor with a chiral Majorana
mode, spanning the surface BZ, whose chirality is, however,
opposite to the chirality of the Fermi-arc state of the original
noninteracting Weyl semimetal. This gaps out the gauge field
aμ and decouples the boson and fermion sectors.

The boson sector Lagrangian now reads

Lb = − 2i

4π
ez ∧ b̃ ∧ db̃ + i

2π
ez ∧ A ∧ db̃. (33)

Integrating over b̃ leaves the effective action

Lb = i

8π
ez ∧ A ∧ dA, (34)

which describes topological electrical response, which is iden-
tical to that of the original [i.e., not the time-reversed one
of Eq. (31)] noninteracting Weyl semimetal, Eq. (10). The
thermal Hall effect, coming from Lb, is twice that of the
noninteracting Weyl semimetal; however, minus a half is con-
tributed by the opposite-chirality Majorana surface state of the
paired time-reversed spinons. Thus we fully reproduce both
electrical and thermal topological responses of the original
noninteracting gapless Weyl semimetal.

This state may be viewed as a 3D generalization of the
2D PH-Pfaffian state. Note that, unlike the 3D analog of the
Pfaffian-antisemion state, described above, this state is not a
3D incompressible liquid, but exhibits a fracton-type order
[72–75]. If we ignore fermions, Eq. (33) describes a stack
of independent 2D PH-Pfaffian states. The charge-1/2 anyon
excitations in these 2D states are only able to move within
a given plane and cannot tunnel between the planes. Neutral
fermions propagate in 3D and connect the individual layers
together, but the anyons remain confined within 2D layers.

III. “DUAL” WEYL SEMIMETAL

The existence of a 3D analog of the PH-Pfaffian has an
important implication, which we will now discuss. Let us first
return back to the 3D Pfaffian-antisemion state. Let us note
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that, in this case, the topological response of a noninteract-
ing Weyl semimetal is only reproduced when the fermionic
spinons are gapped by pairing and vison vortex-loop exci-
tations are gapped. If the pairing gap is taken to zero, the
statistical field a is no longer massive and its coupling to the
gapless Weyl spinons produces a topological term i

8π
ez ∧ a ∧

da, so that the Lagrangian may be written as

L = f̄ γμ(∂μ + iaμ) f + i

8π
ez ∧ a ∧ da

+ i

4π
(A − a + 2c) ∧ db + i

2π
ez ∧ c ∧ dc. (35)

Integrating out b and c gives

L = f̄ γμ(∂μ + iaμ) f + i

4π
ez ∧ a ∧ da

− i

4π
ez ∧ A ∧ da + i

8π
ez ∧ A ∧ dA. (36)

To obtain the electromagnetic response, we now integrate out
a. This may be done perturbatively, treating the response of
the gapless low-energy modes, i.e., the first term in Eq. (36), as
a perturbation, compared to the second term. This is possible
because the response of the gapless modes, treated in the
random-phase approximation (RPA), is given by

S f = 1

2

∑
q

aμ(q)�μν (q)aν (−q), (37)

where

�μν (q) = (q2δμν − qμqν ) f (q2) (38)

is the polarization operator of the massless 3D Dirac fermion
and

f (q2) = 1

12π2
ln

(
4�2

q2

)
+ O(1). (39)

Here � � q is the cutoff momentum, and a convention q0 =
−� is used (� is the Matsubara frequency). Note that �μν (q)
is almost the same as the polarization operator of the massive
3D Dirac fermion, in which case f (q2) would have been a
constant at small q. Even with the log nonanalyticity, �μν (q)
is still much smaller, in the long-wavelength limit, than the
topological contributions, which are of first order in q.

At leading order we may then ignore the gapless fermions
and vary the Lagrangian with respect to a, which gives at the
saddle point a = A/2 and leaves the Lagrangian

L = f̄ γμ(∂μ + iAμ/2) f + i

16π
ez ∧ A ∧ dA, (40)

which clearly corresponds to half of the Hall conductivity of
a noninteracting Weyl semimetal, i.e., the theory with gapless
spinons does not reproduce topological response of the non-
interacting Weyl semimetal.

In contrast, let us return to Eq. (31), which describes a time-
reversed Weyl semimetal, and add to it the foliated topological
term of Eq. (33), without opening the spinon pairing gap:

L = f̄ γμ(∂μ + iaμ) f − i

8π
ez ∧ a ∧ da

+ i

2π
ez ∧ (A − a) ∧ db̃ − 2i

4π
ez ∧ b̃ ∧ db̃. (41)

Integrating out b̃ now, we obtain

L = f̄ γμ(∂μ + iaμ) f − i

4π
ez ∧ A ∧ da + i

8π
ez ∧ A ∧ dA.

(42)
This has identical electrical and thermal Hall responses to
the original noninteracting Weyl semimetal. This means that
Eq. (41) describes a distinct gapless state, which reproduces
the topological response of a noninteracting Weyl semimetal.
This statement is very closely analogous to the statement of
duality between a noninteracting 2D Dirac fermion and QED3
[44,46–51]. However, note that, in contrast to the 2D Dirac
duality case, dynamically this system is quite different from a
noninteracting Weyl semimetal. Indeed, integrating out f and
then a in Eq. (42) using RPA produces a Meissner term for the
components of A, transverse to z. The coefficient of the Meiss-
ner term, however, vanishes in the long-wavelength limit [it
is equal to the inverse of the function f (q2), introduced in
Eq. (39)]. The system thus behaves as a superconductor at
finite length scales and in directions transverse to z, but with
a phase stiffness that vanishes in the thermodynamic limit. In
contrast, it behaves as an insulator along z.

IV. TOPOLOGICAL ORDER IN A GAPPED
NODAL LINE SEMIMETAL

We will now extend the ideas, developed above, to the
case of nodal line semimetals, which realize a distinct kind
of (3 + 1)-dimensional topological order, when gapped with-
out breaking the protecting symmetries. In the nodal line
semimetals, only nodal lines which arise from touchings of
pairs of nondegenerate bands, are topologically nontrivial. In
this case, TR symmetry may be taken to be broken, while the
nodal line is then protected by the mirror reflection symmetry
in the plane, containing the line [76]. This may be described
by the following two-band cubic-lattice Hamiltonian [77,78]:

H(k) = [6 − t1 − 2(cos kx + cos ky + cos kz )]σx

+ 2t2 sin kzσy. (43)

The nodal line in this model appears in the xy plane of the
momentum space and is protected by the mirror reflection
symmetry within this plane, where the mirror reflection op-
erator is σx. The band-touching line in the xy plane is given by
the solution of the equation

4 − t1 − 2(cos kx + cos ky) = 0. (44)

In order construct a gapped symmetric state, it is useful to
reinterpret Eq. (43) as a stacking of alternating electron- and
holelike Fermi liquids with the band dispersions (see Fig. 1)

ε±(k) = ±[4 − t1 − 2(cos kx + cos ky)], (45)

where ± are the two eigenvalues of the mirror reflection
operator σx [37]. The Luttinger volumes of the two Fermi
liquids ±VF are equal in magnitude to the area in momentum
space, enclosed by the nodal line. For the two Fermi liquids,
the topological response describes the filling of the charged
particles

L = ± iVF

4π2
ex ∧ ey ∧ A. (46)
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FIG. 1. Construction of the nodal line semimetal as a stack (z
is the stacking direction) of alternating coupled electron- and hole-
like Fermi liquids, indicated schematically by their dispersions. The
Luttinger volume of each 2D Fermi liquid is equal in magnitude to
the area in momentum space, enclosed by the nodal line. The lattice
constant d is set equal to unity in all the equations.

Consequently, the topological response of the nodal line takes
the form of fractional electric polarization [37,79,80]

L = ± iVF

8π2
ex ∧ ey ∧ dA, (47)

impossible in an ordinary insulator without topological order.
The simplest way to obtain a gapped mirror-symmetric

insulator with the same topological response, Eq. (47), is to
stack gapped 2D Fermi-liquid states in a mirror-symmetric
fashion. To gap the 2D Fermi liquids, we follow the same
procedure as above. We represent an electron as a product of
a neutral spinon f and a bosonic chargon eiθ and place the
spinons into a fully gapped paired state. The simplest fully
gapped paired spinon state is p wave (since the Fermi liquids
are spinless), described by the following Hamiltonian:

Hf =
∑

k

[
ε±(k) f †

k fk + 

2
(sin kx + i sin ky) f †

k f †
−k + H.c.

]
.

(48)
Introducing Nambu spinor notation ψk = ( fk, f †

−k ), this may
be represented as a massive 2D Dirac Hamiltonian

H = 1

2

∑
k

ψ
†
k [ε±(k)τz + (τx sin kx − τy sin ky)]ψk, (49)

where τa are Pauli matrices in the particle-hole space. This is
the Hamiltonian of a Read-Green topological superconduc-
tor [81], which hosts chiral Majorana modes at the edges,
with opposite chirality for electron- and holelike Fermi-liquid
states. Consequently, an elementary flux hc/2e = π vortex
hosts a zero-energy localized Majorana bound state and can-
not be condensed.

To condense higher-flux vortices, we need to consider the
chargon sector of the theory. Suppose we attempt to condense
flux-2π vortices. The chargon sector will be described by the
following theory [82,83]:

Lb = i

2π
(A + c) ∧ db ± iVF

(2π )2
ex ∧ ey ∧ c. (50)

Here b is a one-form gauge field, which determines the charge
current

Jμ = 1

2π
εμνλ∂νbλ, (51)

while c is a one-form gauge field, which determines the vortex
current

J̃μ = 1

2π
εμνλ∂νcλ. (52)

The last term of the Lagrangian produces the correct electro-
magnetic response of a system with charge ν = ±VF /(2π )2

per unit cell when b is integrated out, setting c = −A. How-
ever, when the filling ν is not an integer, Eq. (50) cannot be
the correct theory of a featureless insulator since the last term
is not gauge invariant. With ν = ±p/q, a featureless insulator
may be obtained only by condensing flux 2πq vortices, which
is described by the theory

Lb = i

2π
(A + qc) ∧ db ± ipex ∧ ey ∧ c, (53)

where all terms now have properly quantized integer co-
efficients and are gauge invariant. This is because the
quasiparticle, minimally coupled to cμ, carries charge 1/q,
as seen from the first term. Therefore, the filling of such
quasiparticles is qν = p (i.e., an integer), which is what the
second term expresses.

Stacking such insulators with alternating sign of ν in the z
direction in a mirror-symmetric fashion, we obtain

Lb = i

4π
(A + qc) ∧ db ± ip

2
ex ∧ ey ∧ dc, (54)

where the factor of 1/2 in front of the last term arises due
to the fact that the unit cell of the stack contains a pair of
electron- and holelike 2D Fermi liquids and the mirror sym-
metry requires that all neighboring 2D Fermi liquids in the
stack are separated by an equal distance. The gauge field b in
Eq. (54) has now been promoted to a two-form field, such that
the (3 + 1)-dimensional charge current is given by

Jμ = 1

4π
εμναβ∂νbαβ, (55)

while the two-form vortex current is

J̃μν = 1

2π
εμναβ∂αcβ. (56)

Integrating out b in Eq. (54) gives c = −A/q and the electro-
magnetic response described by

L = ± ip

2q
ex ∧ ey ∧ dA = ± iVF

8π2
ex ∧ ey ∧ dA, (57)

which coincides with Eq. (47). Thus we obtain a featureless
insulator with topological order, which has an identical topo-
logical response to a weakly interacting nodal line semimetal.
Note that the nodal line semimetal has no topological thermal
response, which is also the case in the fractionalized insulator
that we have constructed.

V. DISCUSSION AND CONCLUSIONS

In this paper we have presented a theory of (3 + 1)-
dimensional topologically ordered states, obtained by gapping
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3D topological semimetals without breaking protecting sym-
metries. We started by pointing out that a second gapped
symmetric topologically ordered state, preserving the chiral
anomaly of magnetic Weyl semimetals, exists, in addition to
the state, originally proposed in Ref. [20]. We have shown
that, while the state of Ref. [20] may be viewed as a 3D TR
breaking analog of the Pfaffian-antisemion state in gapped
3D TI surface states, the new state is the 3D analog of the
PH-Pfaffian. In contrast to the 3D Pfaffian-antisemion state,
the 3D PH-Pfaffian does not exhibit a true 3D topological
order, but a fractonlike order instead, with independent layers
of 2D PH-Pfaffian liquid immersed in a 3D p + ip topological
superconductor of neutral composite fermions.

We then demonstrated that an interesting consequence of
the existence of the 3D PH-Pfaffian, is a duality relation be-
tween a noninteracting Weyl semimetal and QED4, in which a
time-reversed electrically neutral Weyl semimetal is coupled
to a dynamical gauge field, whose topological defects (inter-
sections of flux lines with atomic planes) carry the electric
charge. This duality relation may be viewed as a 3D general-
ization of the known Dirac fermion to QED3 duality relation,
but is weaker than in the 2D case, since the duality only
applies to the topological response and not to the dynamics.

Finally, we have extended the theory to include topological
orders in a gapped nodal line semimetal. Other extensions,
in particular to TR invariant Weyl and Dirac semimetals, are
also possible, but do not lead to any fundamentally new struc-
ture. One lesson we may highlight is that gapped symmetric

topological semimetals provide a very simple and natural
setting for (3 + 1)-dimensional topologically ordered states
to appear. The simplicity stems, in part, from the fact that,
due to the existence of a preferred direction, selected by ei-
ther the separation between the Weyl points in momentum
space, or the plane of the nodal line, there exists a natural
connection to well-studied (2 + 1)-dimensional topological
orders. The connection manifests either directly, in the form of
layered fractonlike order, or less directly, when intersections
of (3 + 1)-dimensional vortex-loop excitations with atomic
planes behave as fractionally charged and sometimes anyonic
(2 + 1)-dimensional quasiparticle excitations.
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