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The spin-1/2 Heisenberg antiferromagnet on the frustrated diamond-decorated square lattice is known to
feature various zero-field ground-state phases, consisting of extended monomer-dimer and dimer-tetramer
ground states as well as a ferrimagnetic regime. Using a combination of analytical arguments, density matrix
renormalization group (DMRG), exact diagonalization as well as sign-problem-free quantum Monte Carlo
(QMC) calculations, we investigate the properties of this system and the related Lieb lattice in the presence
of a finite magnetic field, addressing both the ground-state phase diagram as well as several thermodynamic
properties. In addition to the zero-field ground states, we find at high magnetic field a spin-canted phase
with a continuously rising magnetization for increasing magnetic field strength as well as the fully polarized
paramagnetic phase. At intermediate field strength, we identify a first-order quantum phase transition line
between the ferrimagnetic and the monomer-dimer regime. This first-order line extends to finite temperatures,
terminating in a line of critical points that belong to the universality class of the two-dimensional Ising model.
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I. INTRODUCTION

The study of strongly frustrated quantum magnets is a cen-
tral topic in contemporary condensed matter research. Indeed,
magnetic frustration, introduced, e.g., by competing antifer-
romagnetic exchange couplings, can lead to the stabilization
of nonclassical ground states in quantum magnets [1–4]. In
most cases, these nonmagnetic states are characterized by the
formation of strong local singlets among small subclusters of
spins as well as the emergence of an extensive ground-state
entropy. In the most favorable case, it is possible to obtain
exact analytical expressions for the ground-state properties,
such as for the Shastry-Sutherland model in the regime of
strong dimer coupling [5–8]. In this system, quantum spin
degrees of freedom are arranged on a two-dimensional lattice
in an orthogonal manner to form a frustrated array of coupled
spin dimers. For strong intradimer coupling (as compared to
the inter-dimer coupling), an exact product state of dimer
singlets forms the system’s ground state. Later, it was fur-
thermore found that the spin-1/2 version of this quantum spin
model finds an almost perfect realization in the copper-based
compound SrCu2(BO3)2 [7,9]. This system has since then
been studied extensively with respect to both the ground state
and thermal properties [9–17] as well as its rich physics in
the additional presence of a magnetic field, notably various
plateaux in its magnetization curve [9,18–25].

The dimerized nature of the low-energy states in the
Shastry-Sutherland model not only gives rise to interesting
physics, but is actually also favorable for a numerical
treatment. Indeed, the Shastry-Sutherland model is not only
a showcase for tensor-network approaches [17,22,26–29],

but it also allows one to use efficient quantum Monte Carlo
(QMC) simulations throughout a large part of the dimer phase
[28–30]. Remarkably, the latter extends to a generalized
version of the Shastry-Sutherland model [31,32] where
in a certain limit, that is equivalent to a fully frustrated
bilayer model [33–36], the QMC sign problem disappears
completely. The fully frustrated bilayer model thus becomes
accessible to detailed investigations at finite temperature
via QMC simulations [37–39]. In fact, the identification
of a first-order line that terminates at a finite-temperature
critical point [39] in the fully frustrated bilayer model was an
important guiding element to identify similar physics in the
Shastry-Sutherland model and ultimately SrCu2(BO3)2 [17].
Note, furthermore, that the low-energy high-field region of the
fully frustrated bilayer model permits a mapping to a classical
lattice gas, thus allowing for a rigorous treatment of its
low-energy thermodynamics, including a finite-temperature
ordering transition [40,41].

Another highly frustrated two-dimensional quantum spin
system of coupled orthogonal spin dimers is the Heisen-
berg antiferromagnet on the diamond-decorated square lattice,
shown in Fig. 1. This model contains, in addition to the dimers
(along the J2 bonds), a further set of spins that are coupled
to other (dimer) spins only by the J1 bonds. In the large J2

limit, for J1/J2 → 0, the spins coupled solely through the
J1 bonds thus lack a partner spin to form a singlet, and
we therefore refer to these spins as monomer spins. Hirose
et al. have performed a detailed investigation of its zero-field
ground-state properties [42–46], but little is known otherwise
about this model. The zero-temperature zero-field phase di-
agram exhibits three distinct ground states, as illustrated in
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FIG. 1. Illustration of the diamond-decorated square lattice, with
a unit cell indicated (dashed square), along with the labeling of the
five different sites (circles) within the unit cell and the two different
exchange couplings J1 (thin black lines) and J2 (thick red lines).

Fig. 2, and promises interesting physics also in finite fields,
respectively at finite temperature. Here, we shortly introduce
these phases, with further details provided in the following
sections. In the case of large dimer coupling J2, the ground
state is an exact product state formed by dimer singlet states
on all the J2 dimers, while the remaining spins (referred to
as monomer spins) are effectively decoupled. This leads to
an extensive ground-state entropy of ln(2) per unit cell in
this regime (J2/J1 > 2), which is denoted the monomer-dimer
(MD) phase. On the other hand, for weak J2, the system
prefers to form dimer triplet states on all the J2 dimers, while
the monomer spins predominantly orient themselves opposite
to the polarization of the dimers. This leads to a ferrimagnetic
state, akin to the ferrimagnetic ground state of the mixed
spin-1 and spin-1/2 model on the Lieb lattice [47]. Its fer-
rimagnetic polarization follows from the Lieb-Mattis theorem

FIG. 2. Ground-state phase diagram of the spin-1/2 Heisenberg
antiferromagnet on the diamond-decorated square lattice in zero
magnetic field as obtained from Ref. [44] containing the Lieb-Mattis
(LM), dimer-tetramer (DT), and the monomer-dimer (MD) phase.
In the illustration of the different ground states, blue (orange) ovals
denote spin triplet (singlet) states on the dimers. A tetramer singlet
of the DT phase is illustrated by a rhombus.

[48] in terms of the two different sublattices of the Lieb lattice.
This phase is therefore also denoted by “LM” in the following.
These two phases, MD and LM, are separated by a further
gapped phase, the dimer-tetramer (DT) phase, cf. Fig. 2. In
this phase, two different kinds of local singlets form: besides
the J2-dimer singlets, also singlets on larger clusters with four
spins are formed: namely, among the tetramers that are each
composed of one J2 dimer and its two neighboring J1-coupled
monomer spins. In the DT phase, the ground-state manifold
is again highly degenerate and consists of all configurations
of closed packings of tetramers, with the remaining J2 dimers
forming dimer (two-site) singlets.

We here examine the spin-1/2 Heisenberg antiferromagnet
on the diamond-decorated square lattice in a magnetic field.
In particular, we explore the ground-state phase diagram in
the presence of a finite magnetic field as well as the thermal
properties. For this purpose, we use a combination of analyti-
cal approaches and various computational methods, including
exact diagonalization (ED), density matrix renormalization
group (DMRG) calculations [49–51] and stochastic series ex-
pansion (SSE) QMC simulations [52–54], based on a dimer
decoupling of the Hamiltonian [37,55], in order to render the
QMC sign-problem free.

After introducing the model in more detail in the follow-
ing Sec. II, we describe the analytical and computational
approaches that we used in Secs. III and IV, respectively.
Our results for the ground-state properties are presented in
Sec. V, and those at finite temperatures in Sec. VI. In pass-
ing, we provide reference data for the mixed spin-1/2 and
spin-1 Heisenberg model on the Lieb lattice, compare also
Appendix A. Finally, we provide our conclusions and future
perspectives in Sec. VII.

II. MODEL

In the following, we consider the spin-1/2 Heisenberg
antiferromagnet on the diamond-decorated square lattice in a
magnetic field. The lattice is shown schematically in Fig. 1
and the Hamiltonian of the model is given by

H = J1

N∑
i=1

[Si,1 · (Si,2 + Si,3 + Si,4 + Si,5

+ Si−x̂,2 + Si−x̂,3 + Si−ŷ,4 + Si−ŷ,5)]

+ J2

N∑
i=1

(Si,2 · Si,3 + Si,4 · Si,5) − h
N∑

i=1

5∑
μ=1

Sz
i,μ , (1)

where Si,μ = (Sx
i,μ, Sy

i,μ, Sz
i,μ) represents the spin-1/2 opera-

tors assigned to the μ-th spin within the ith unit cell. We
denote the corresponding lattice site by (i, μ). Furthermore,
the index i − x̂ (i − ŷ) refers to the unit cell to the left (below)
the ith unit cell. Here, we consider a finite lattice with N unit
cells and Ns = 5N sites, imposing periodic boundary condi-
tions, and with N → ∞ in the thermodynamic limit (TDL).
Typically, we use square lattices with N = L2. Furthermore,
J1 and J2 are the two exchange interactions drawn in Fig. 1
by black and red lines, respectively. The last term in H ac-
counts for the Zeeman coupling of the spin-1/2 particles to an
external magnetic field h.
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The Hamiltonian (1) can also be expressed in terms of the
composite spins on the 2N dimers formed by the J2 bonds:
In each unit cell i, a vertical dimer is formed by the spins
Si,2 and Si,3, and the total dimer spin for this dimer d is then
Sd = Si,2 + Si,3. Similarly, the spins Si,4 and Si,5 form a hori-
zontal dimer, and in this case Sd = Si,4 + Si,5. All total dimer
spins represent locally conserved quantities with well defined
quantum spin numbers. The remaining spins Si,1 are referred
to as monomer spins. One can then express the Hamiltonian
(1) in a more compact form

H = J1

2N∑
d=1

∑
(i,1)∈Nd

Sd · Si,1 + J2

2

2N∑
d=1

(
S2

d − 3

2

)

− h
2N∑

d=1

Sz
d − h

N∑
i=1

Sz
i,1, (2)

where summations over d extend over all the 2N dimers, and
the inner sum of the first term extends over the two monomer
spins Si,1 that are nearest neighbors of the dth dimer (cf.
Fig. 1), i.e., the lattice site (i, 1) is an element of the set of
the two nearest-neighbor sites Nd of the dth dimer. More
specifically, for a vertical (horizontal) dimer, these are the two
monomer spins to the left and right (top and bottom) of that
dimer.

The first term in the Hamiltonian (2) corresponds to the
mixed spin-Sd and spin-1/2 Heisenberg model on a Lieb
lattice, whereas the second term provides a trivial shift of the
energy depending on the quantum spin numbers Sd . Note that
two different values of the quantum spin numbers Sd = 0, 1
are available for the composite spin on each dimer, whereby
the value Sd = 0 corresponds to a singlet-dimer state

|s〉d = 1√
2

(| ↑↓〉d − | ↓↑〉d ). (3)

This leads to a fragmentation of the effective mixed-spin
Heisenberg models obtained from the Hamiltonian (2) upon
considering all possible combinations of quantum spin num-
bers Sd for all the dimers. Hence, the ground state of the
Heisenberg antiferromagnet on the diamond-decorated square
lattice can be related to the lowest-energy eigenstates of the
effective Heisenberg models (2) taking into consideration all
available combinations of the quantum spin numbers Sd . In the
following, we first introduce our methods and then explore the
rich ground-state phase diagram of the Hamiltonian H , shown
further below in Fig. 3.

III. EXACT ANALYTICAL GROUND STATES

We first consider the parameter regime with a dominant
dimer coupling J2, in which we can obtain exact analytical
results for the ground state. More specifically, for J2/J1 > 2
one can use the variational principle in order to derive an
exact ground state of H at zero field [42]. The main idea of
this approach consists in decomposing the Hamiltonian into
4N cell Hamiltonians (this concrete decomposition is different
from Ref. [42]),

H =
2N∑

d=1

∑
(i,1)∈Nd

Hd,i, (4)

0 1 2 3 4 5
J2/J1

0

1

2

3

4

5

6

h
/
J

1

LM

DT

MD

SC

PM

FIG. 3. Ground-state phase diagram of the spin-1/2 Heisen-
berg antiferromagnet on the diamond-decorated square lattice in the
J2/J1 − h/J1 plane, containing the Lieb-Mattis (LM), dimer-tetramer
(DT), monomer-dimer (MD), spin-canted (SC), and the saturated
paramagnetic (PM) phase. Dashed (solid) lines denote continuous
(discontinuous) quantum phase transitions.

with each cell Hamiltonian Hd,i corresponding to a single
triangle involving one dimer d and one of its two nearest-
neighbor monomer spins, i.e.,

Hd,i = J2

4

(
S2

d − 3

2

)
+ J1Si,1 · Sd . (5)

Note that each dimer d is part of two triangles, leading to the
additional factor of 1/2 for the intradimer term proportional
to J2 in Hd,i as compared to Eq. (2).

According to the variational principle [5,56–58], the
ground-state energy of H has a lower bound, given by the sum
of the lowest-energy eigenvalues ε

(0)
d,i of the cell Hamiltonians

(5),
E0 = 〈�0|H |�0〉

=
〈
�0

∣∣∣∣∣∣
2N∑

d=1

∑
(i,1)∈Nd

Hd,i

∣∣∣∣∣∣�0

〉
�

2N∑
d=1

∑
(i,1)∈Nd

ε
(0)
d,i . (6)

The energy spectrum of each cell Hamiltonian Hd,i can be
expressed in terms of quantum spin numbers St and Sd , which
are assigned to the composite spin operators St = Sd + Si,1

and Sd , respectively, as follows:

εd,i =−3

8
(J1 + J2) + J1

2
St (St + 1) +

(
J2

4
− J1

2

)
Sd (Sd + 1) .

(7)

It is straightforward to show that for h = 0 the eigenstate
with quantum spin numbers St = 1/2 and Sd = 0 represents
the true ground state of Hd,i whenever J2/J1 > 2. Hence, in
this regime ε

(0)
d,i = − 3

8 J2. A finite field then simply leads to
a polarization of the monomer spins, as long as it does not
exceed a critical value. Owing to this fact, the overall ground
state of H for J2/J1 > 2 and in the monomer-dimer (MD)
phase is

|MD〉 =
{∏N

i=1 |σ 〉i,1 ⊗ ∏2N
d=1 |s〉d , σ ∈ {↑,↓}, h = 0∏N

i=1 | ↑〉i,1 ⊗ ∏2N
d=1 |s〉d , h > 0

,

(8)

115143-3



NILS CACI et al. PHYSICAL REVIEW B 107, 115143 (2023)

which has the following energy:

EMD/N = −3

2
J2 − h

2
. (9)

Note that for h = 0 the MD phase has an extensive ground-
state degeneracy 2N as each of the N monomer spins can be
either in the up or down state. We will examine in Sec. V up
to which field strength the MD phase is actually stable.

The stability condition J2/J1 > 2 of the MD phase at h = 0
is in agreement with the results reported previously by Hirose
et al. [44–46]. They also verified the presence of the other ex-
act ground state, referred to as the dimer-tetramer (DT) phase.
The DT ground state of the spin-1/2 Heisenberg antiferro-
magnet on a diamond square lattice involves the singlet-dimer
states |s〉d and singlet-tetramer states |t〉d , which are formed
between a dimer d and its two neighboring monomer spins,
denoted (i, 1) and (i′, 1) in the following:

|t〉d = 1√
3

(| ↑〉i,1| ↓↑〉d | ↓〉i′,1 + | ↓〉i,1| ↑↓〉d | ↑〉i′,1)

− 1

2
(| ↑〉i,1| ↑↓〉d | ↓〉i′,1 + | ↑〉i,1| ↓↓〉d | ↑〉i′,1

+ | ↓〉i,1| ↑↑〉d | ↓〉i′,1 + | ↓〉i,1| ↓↑〉d | ↑〉i′,1). (10)

In the DT phase, the highly degenerate ground-state manifold
corresponds to the most dense packing of the singlet-tetramer
states (10) on the diamond-decorated square lattice, whereby
one cannot accommodate more than N/2 singlet tetramers
|t〉d on the diamond-decorated square lattice (the remaining
dimers are in the singlet-dimer state |s〉d ). The ground-state
energy in the DT phase is thus given by

EDT/N = 3
2εs + 1

2εt . (11)

Here, εs = − 3
4 J2 refers to the energy of the singlet-dimer state

|s〉d , and εt = −2J1 + J2
4 denotes the energy of the singlet-

tetramer state |t〉d . In order to obtain the actual stability
regions of these two phases for finite fields, we turn to com-
putational methods.

IV. COMPUTATIONAL APPROACHES

For our further analysis of the phase diagram of the spin-
1/2 Heisenberg diamond-decorated square lattice as well as
its thermodynamic properties, we have used a combination of
various computational approaches. In this section, we provide
some details regarding the application of these different meth-
ods to the model considered here.

A. DMRG

The ED and QMC simulations to be presented in the next
subsections indicate that there is one important class of ground
states that are not captured by the MD and DT wave functions
discussed in the previous section: the particular choice Sd = 1
for all 2N dimers. This amounts to an effective mixed spin-1
and spin-1/2 Heisenberg model on a Lieb lattice, given by the
Hamiltonian (2). For h = 0, the effective Hamiltonian reads

HLM
eff = J1

2N∑
d=1

∑
(i,1)∈Nd

Sd · Si,1 + J2

2
N. (12)

In contrast to the case of fixed dimer-singlet states, the
Hamiltonian (12) cannot be solved analytically and we have
therefore adopted the DMRG method implemented in the
Algorithms and Libraries for Physics Simulations (ALPS)
project [59] in order to find its lowest-energy eigenstates. For
this purpose, we have performed DMRG calculations taking
into account up to 2000 kept states and up to 20 sweeps for
lattices with up to N = 36 unit cells with periodic boundary
conditions. The respective lowest-energy eigenvalue of the
spin-1/2 Heisenberg antiferromagnet on a diamond-decorated
square lattice is given for h = 0 by the equation

ELM = EL + J2

2
N, (13)

where EL denotes the ground-state energy of the mixed spin-1
and spin-1/2 Heisenberg model on the corresponding Lieb
lattice with N unit cells at zero magnetic field. According to
the Lieb-Mattis theorem [48], the lowest-energy eigenstate of
the mixed spin-1 and spin-1/2 Heisenberg model on a Lieb
lattice in a zero field belongs to the sector with the total
spin given by the absolute value of the difference of the total
spin on the two sublattices S = |SA − SB|. For the Lieb lattice
composed of N = 36 unit cells we have indeed obtained a
ferrimagnetic ground state with total spin S = |SA − SB| =
|72 − 18| = 54 and energy EL = −88.5600047J1, i.e., the
ground-state energy εL = −2.46000J1 per unit cell. We note
that this value compares well to the value εL = −2.46083J1

for the ground-state energy of the mixed spin-1 and spin-1/2
Heisenberg antiferromagnet on the Lieb lattice in the TDL,
given in Ref. [45].

In order to construct the ground-state phase diagram we
have compared the energies (9), (11), and (13), which were
obtained either by analytical or by numerical calculations of
a lattice with N = 36 unit cells. To study the magnetization
process and thermodynamic quantities in finite magnetic field,
all energies in zero field are shifted by the Zeeman term
according to the formula

E (mtot, N, h) = E (mtot, N, h = 0) − h mtot , (14)

where mtot are the eigenvalues of Sz
tot = ∑N

i=1

∑5
μ=1 Sz

i,μ.
Field-driven changes of the lowest-energy eigenstates from
the sectors with the total spins mtot and m′

tot are obtained from
[60]

h = E (mtot, N, h = 0) − E (m′
tot, N, h = 0)

mtot − m′
tot

. (15)

We note that within the LM phase, the ground-state energy in
the TDL and finite h is given by

ELM/N = εL + J2

2
− 3

2
h, (16)

a result that will be useful further below.

B. Exact diagonalization

In addition to DMRG, we also performed exact diagonal-
izations of the Hamiltonian H on systems with up to Ns =
30 spins. First, we exploit conservation of the local spin of
each dimer by expressing the Hamiltonian in the form (2).
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Thus, the problem boils down to diagonalizing the Hamilto-
nian for a given configuration of total dimer spins Sd = 0, 1
[41,55,61,62]. In fact, it suffices to perform this computation
for each topologically inequivalent pattern. We have identified
the inequivalent patterns by computer enumeration. For exam-
ple, for Ns = 30 spins (6 unit cells), we find 178 inequivalent
configurations of the dimer spins Sd . Then, we need to take the
degeneracy of the corresponding configurations into account.
For example, the configurations with all Sd = 0 or all Sd = 1
are unique, and generally there are 2Ns/5 configurations with
exactly one Sdi = 1. Furthermore, in the case of the Ns = 30
system, there are up to 120 different realizations of a given
pattern with an intermediate number of dimer triplets.

To diagonalize each of these cases, we first use conserva-
tion of Sz

tot as well as spin inversion. We further use SU(2)
symmetry to reconstruct the sector with mtot = 1 from the
other ones. Thermodynamic quantities such as the specific
heat and magnetic susceptibility can then be computed from
the eigenvalues and the associated quantum numbers. In sec-
tors where we have so many Sd = 1 dimers that the Hilbert
space dimensions become large, we also use the remaining
spatial symmetries of the configuration to further block-
diagonalize the system. The largest matrix to be diagonalized
then occurs in the sector with mtot = 2 and for all dimers
in the triplet configuration; for Ns = 30 the resulting maxi-
mal dimension is 257 304 ≈ 2.6 × 105, which is considerably
smaller than the total dimension 230 ≈ 109 of this system.
Still, this significantly exceeds the size of a previous computa-
tion [63] where we had used a custom diagonalization routine
[64], while the present diagonalization is instead carried out
with a recent version of the Intel Math Kernel Library.

At the end of this procedure, the full spectrum can be
reconstructed for any value of J2, J1, and h thanks to the
conservation of the total spin on the dimers and z component
of the total spin mtot. Thus, we can evaluate thermodynamic
properties for all (J2/J1, h/J1, T/J2) by postprocessing the
results of a single diagonalization run for a given system
size Ns.

C. Quantum Monte Carlo

In order to study the thermodynamic properties of the spin-
1/2 Heisenberg antiferromagnet on the diamond-decorated
square lattice on system sizes that extend beyond those
accessible to exact diagonalization, we make use of QMC sim-
ulations. In the following we comment on the QMC method
that we used for this purpose.

The SSE QMC method with directed loops [52–54] offers a
highly efficient and unbiased approach to study quantum spin
models. However, introducing geometric frustration while
working in the conventional local spin-Sz basis generally
leads to a sign problem, i.e., an exponential drop of the
statistical accuracy of the QMC simulations at low temper-
atures and large system sizes [65–67]. Fortunately, in certain
cases, this issue can be eliminated when performing the QMC
simulations in a basis different from the local spin-Sz ba-
sis. More specifically, one considers instead appropriate basis
states after decomposing the Hamiltonian into separate terms
of few-sites clusters, such as dimers or trimers [37,55,68].
The case of dimers can be used to eliminate the sign problem

0 1 2 3 4 5 6
h/J1

−0.5

0.0

0.5

1.0

M
ag

ne
ti

za
ti

on

J2/J1 = 0

4 5
h/J1

0.950

0.975

1.000
〈Sz

d〉

〈Sz
i,1〉

〈Sz
d〉

M/MS

FIG. 4. Local dimer magnetization 〈Sz
d 〉, local monomer magne-

tization 〈Sz
i,1〉, and total magnetization M (divided by the saturated

magnetization MS) at zero temperature, as functions of magnetic field
h/J1 for J2 = 0 as obtained from DMRG for a L = 6 system.

completely for, e.g., the fully frustrated bilayer model
[37–39], while a local spin-trimer basis avoids the sign prob-
lem for the fully frustrated trilayer [68] S = 1/2 antiferromag-
net. For the diamond-decorated square lattice considered here,
a finite value of the coupling J2 leads to geometric frustration.
We can avoid the associated sign problem that persists when
using the local spin-Sz basis, by treating all J2-dimer spins in
the spin-dimer basis, while leaving the local Sz basis to the
monomer spins. In this combined five-site basis for each unit
cell, the Hamiltonian H can be simulated free of a sign prob-
lem, using the SSE approach based on the abstract operator
loop update introduced in Ref. [68]. During the operator-loop
update of the SSE simulations, binary operators (such as the
bit-wise exclusive-or operation) are used in a binary represen-
tation of the local cluster states. We refer to Refs. [68,69] for
further details on this QMC approach. Here, we performed
QMC simulations for systems with values L up to 24.

V. GROUND-STATE PHASE DIAGRAM

In the following we describe in detail the ground-state
phase diagram of the spin-1/2 Heisenberg antiferromagnet
on the diamond-decorated square lattice, described by the
Hamiltonian H , up to high magnetic fields, as obtained from
our combination of DMRG, exact diagonalization as well as
analytical results.

First, we review the phases that appear at zero field h = 0.
The ground-state phase diagram in this limit has been ob-
tained in previous papers [43–45] and it features three distinct
phases—LM, DT, and MD, depending on the coupling ratio
J2/J1, cf. Fig. 2. In the LM regime, the ground-state energy is
minimized by all J2 dimers being in the triplet state, while
the monomer spins are oriented predominantly opposite to
the dimer spins. Note that the quantum nature of the LM
ferrimagnetic state is well observable by the reduction of
the local magnetizations of the monomer and dimer spins
as shown in Fig. 4. While quantum fluctuations reduce the
magnetization of the monomer spins by approximately 20%,
the quantum reduction of the magnetization of the dimer spins
is much more subtle—only about of 5%. In agreement with
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the LM theorem, both local magnetizations are consistent
with the total magnetization per site of M/MS = 3/5 (where
MS denotes full saturation) that is inherent to the LM ferri-
magnetic phase. For J2/J1 between about 0.974 and 2, the
zero-field ground state is the highly degenerate DT phase,
characterized by a dense packing of the singlet-tetramer states
|t〉d given by Eq. (10), while the remaining J2 dimers reside
in a singlet-dimer state (3). In the highly frustrated parameter
region J2/J1 > 2 the MD phase (8) is realized in the ground
state, which was described in detail in Sec. III.

The ground-state phase diagram including the magnetic
field h is shown in Fig. 3 in the J2/J1 − h/J1 plane. As one
can see from Fig. 3, the LM phase is stable up to about
h/J1 ≈ 4 and spreads out to larger interaction ratios J2/J1

with increasing magnetic field. By contrast, the MD phase
(8) extends towards lower interaction ratio J2/J1 < 2 in finite
magnetic fields as compared to the parameter regime that
is accessible to the variational approach, cf. Sec. III. We
also find that for J2/J1 � 4, the MD phase is stable all the
way up to the saturation field hsat = J1 + J2, beyond which
the fully polarized, saturated paramagnetic (PM) regime is
entered. On the other hand, the DT phase narrows quickly
for finite magnetic fields and it disappears completely at
h/J1 ≈ 0.5.

In addition to the LM, DT, and MD phases, the phase
diagram in Fig. 3 exhibits two high-field phases. Besides
the fully polarized, saturated PM regime, we identify a spin-
canted (SC) phase, with a continuously rising magnetization
upon increasing the magnetic field. As shown in Fig. 4, inside
the SC phase the local monomer spins continuously align
with the magnetic field upon increasing the field strength.
Initially, the local dimer magnetization decreases slightly,
before it eventually increases to full polarization as well.
Qualitatively, this behavior is well captured by the classical
Heisenberg model of the mixed spin-1 and spin-1/2 model
Heisenberg model on the underlying Lieb lattice, as detailed
in Appendix A: Within the SC phase, the spins are canted
with respect to the magnetic field direction, displaying bicon-
ical structures, resembling those found in, e.g., the classical
anisotropic Heisenberg model at finite magnetic fields [70,71].
Figure 3, furthermore, shows that the SC phase is separated
from the PM and the LM phase by continuous field-driven
quantum phase transitions. In contrast, all other field-driven
phase transitions between the various ground-state phases are
discontinuous.

The phase diagram and the nature of the transitions in
Fig. 3 can be directly identified from the zero-temperature
magnetization curves for the Hamiltonian H . These are shown
in Fig. 5 along several vertical cuts through the ground-state
phase diagram. The magnetization curves presented in Fig. 5
were obtained by two different numerical methods: by exact
diagonalization for Ns = 20, 30 and by the DMRG method
supplemented with exact analytical results for Ns = 180, re-
spectively. Overall, the results obtained from both methods
are in excellent agreement, taking into account that within the
SC phase, the smaller size of the system either with Ns = 20
or Ns = 30 leads to more pronounced discrete steps in the
stair-case profile of the magnetization.

More specifically, for an interaction ratio of J2/J1 = 0.5,
the magnetization exhibits an extended 3/5-plateau at low
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FIG. 5. Zero-temperature magnetization curves of the spin-1/2
Heisenberg antiferromagnet on the diamond-decorated square lat-
tice as obtained from full exact diagonalization and DMRG method
for system sizes Ns = 20, Ns = 30, and Ns = 180, respectively, for
several values of the interaction ratio J2/J1. In all plots, the total
magnetization M is scaled with respect to its saturated value MS .

fields, characteristic of the ferrimagnetic LM phase, followed
by a stair-case increase of the magnetization, which evolves
into a continuous magnetization increase in the TDL, and
eventually terminates in the fully saturated PM phase at a
magnetic field of h/J1 = 5 [cf. Fig. 5(a)]. Note that the
jump of M upon approaching the zero-field limit is not a
numerical artifact but reflects the ferrimagnetic nature of the
LM phase, i.e., the immediate response to an infinitesimal
field.

Similarly, in agreement with the ground-state phase dia-
gram, there exists a zero-magnetization plateau for J2/J1 =
1.3 and J2/J1 = 1.7 in Figs. 5(b) and 5(c) inherent to the
gapped DT state [closer inspection resolves a tiny 1/5 plateau
on the Ns = 30 system in Figs. 5(b)—a finite-size effect on
this particular cluster]. For larger values of J2/J1 > 2, shown
in Figs. 5(d), 5(e), and 5(f), the zero-magnetization plateau
disappears. Instead, here, the monomer spins become fully
polarized within the MD phase already for an arbitrarily weak,
finite magnetic field. This results in the jump of M upon
approaching the zero-field limit and the immediate onset of
the intermediate 1/5-plateau, characteristic of the MD phase.
While for the lower value of J2/J1 = 2.5 the 3/5-plateau
of the LM phase, and a subsequent steady increase of the
magnetization in the SC phase can be observed, the mag-
netization curve for the higher value of J2/J1 = 3.3 exhibits
a discontinuous field-driven transition from the MD phase
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(1/5-plateau) into the SC phase. Finally, the magnetization
curve for sufficiently high values of J2/J1 � 4 shows a direct
jump of the magnetization from the 1/5-plateau of the MD
phase towards the fully saturated PM regime.

VI. THERMAL PROPERTIES

In the following, we will investigate several aspects of
the thermal properties of the spin-1/2 Heisenberg model
on the diamond-decorated square lattice in the presence of
a magnetic field, focusing on the different regions of the
ground-state phase diagram, which were detailed in the pre-
vious section.

A. Thermodynamics in the MD regime

We start by investigating the thermodynamic properties in
the MD regime. Here, a simple lattice-gas model [41,72,73]
can be used to describe the relevant low-energy excitations
in the regime J2/J1 � 4. In addition to a set of free S = 1/2
spins, corresponding to the monomer spins Si,1 in a magnetic
field, this model contains a lattice gas of hard-core particles
that correspond to the dimer-singlet states on the J2-dimers.
These particles describe localized magnons, i.e., a flat band
of magnetic excitations, relative to the fully polarized state
[41,72–74]. The lattice-gas model is given, up to a constant,
by the effective Hamiltonian

HMD
eff = −h

N∑
i=1

Sz
i − μ

2N∑
i=1

nd , (17)

where nd ∈ 0, 1 denotes the local occupation number of the
hard-core particles. A value of nd = 1 (nd = 0) corresponds
to the presence of a singlet (triplet) state on the J2 dimer d .
The chemical potential μ = J1 + J2 − h is given by the energy
difference between the singlet and lowest-energy triplet state
on the lattice. All thermodynamic properties then follow from
the free energy

F

N
= 2J1 + J2

2
− 2h − T ln

[
2 cosh

(
h

2T

)]

− 2T ln

[
1 + exp

(
μ

T

)]
, (18)

where the constant ensures that, at T = 0, the ground-state
energy detailed in Sec. III is recovered, including Eq. (9)
for μ > 0. The ground state corresponds to a fully occupied
(empty) lattice of singlets below (above) the saturation field
hsat = J1 + J2. One can approximately describe the thermody-
namic properties in the MD regime also by a spin model that
accounts for all the dimer states (this model corresponds to
the limit J1 = 0 of H). However, the above lattice-gas model
already turns out to describe the low-temperature thermody-
namics remarkably well. Indeed, Figs. 6 and 7 show that the
lattice-gas model describes the thermodynamic properties at
low temperatures rather accurately, up to T/J1 ≈ 0.4, where
the specific heat starts to show noticeable deviations to the
data obtained using exact diagonalization (Ns = 30) and QMC
(Ns = 80), indicating that at higher temperatures additional
excitations become relevant (note that over the whole regime
there is an excellent agreement between the Ns = 30 ED data

0.0 0.5 1.0 1.5
T/J1

0.0

0.1

0.2

0.3

0.4

J
1
C

/T

J2/J1 = 4, h/J1 = 1

Lattice gas
ED, Ns = 30
QMC, Ns = 80

FIG. 6. Specific heat C divided by the temperature T/J1 as a
function of temperature in the MD phase at an interaction ratio
of J2/J1 = 4 and a magnetic field of h/J1 = 1 as obtained from
full exact diagonalization, QMC as well as the effective lattice-gas
model.

and the Ns = 80 data obtained from QMC). From the phase
diagram in Fig. 3 we expect additional excitations to become
most relevant in the regime near h/J1 ≈ 5 at J2/J1 = 4, due
to the SC phase. Indeed, in Fig. 7(c), for T/J1 = 0.3, small
differences are already resolved in this magnetic-field range.

The magnetization is less susceptible to these additional
states, and exhibits an excellent agreement with the numerical
data for all temperatures considered here. It is noteworthy that
in all cases, the results obtained from exact diagonalization
and QMC agree very well with each other, indicating that
the system sizes considered for the exact diagonalization are
already representative of the TDL in this regime. Our analysis

0.0
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0.2

C

T/J1 = 0.2 (a) T/J1 = 0.3 (b) T/J1 = 0.4 (c)

0 5
h/J1

0.0

0.5
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0 5
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T/J1 = 0.4 (f)

ED,Ns = 30

FIG. 7. Thermodynamic properties in the MD phase at interac-
tion ratio J2/J1 = 4 as a function of magnetic field h/J1 obtained
from full exact diagonalization, QMC as well as the effective lattice-
gas model. Top row: Specific heat C for temperatures: (a) T/J1 =
0.2, (b) T/J1 = 0.3, and (c) T/J1 = 0.4. Bottom row: Magnetization
M, divided by the saturation magnetization MS for temperatures:
(d) T/J1 = 0.2, (e) T/J1 = 0.3, and (f) T/J1 = 0.4
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FIG. 8. Specific heat C divided by temperature T/J1 as a function
of temperature at magnetic field h/J1 = 0 (top panel) and h/J1 =
1 (bottom panel). We compare results for the diamond-decorated
square lattice model for J2 = 0, with results on the mixed-spin Lieb
lattice. For comparison, the Lieb lattice data are scaled by a factor
of 3/5 to account for the larger unit cell on the diamond-decorated
square lattice.

therefore indicates that in addition to the exact analytical
results for the MD ground state, also the low-temperature
thermal properties can be understood analytically by means of
a simple effective lattice-gas model given by the Hamiltonian
(17).

B. Thermodynamics in the LM and SC regime

Next, we consider the thermodynamic properties in the
LM and SC phase. In the LM phase, we expect the
low-temperature thermodynamics to be governed by the
underlying mixed-spin Lieb lattice. For a quantitative com-
parison we considered the case of zero interaction J2 = 0. In
Fig. 8, we show the specific heat C for the diamond-decorated
square lattice model as obtained from ED (for Ns = 30 sites)
and QMC as well as for the corresponding mixed-spin Lieb
lattice model. We observe that in both cases, h = 0 and
h = J1, the mixed-spin Lieb lattice model captures the low-
temperature asymptotic behavior, while the behavior differs
noticeably at intermediate temperatures. This deviation is due
to additional contributions with singlet configurations for the
diamond-decorated square lattice. These additional states are
located at higher energies, but they have a high density such
that they lead to a relevant contribution to C in the temperature
window of Fig. 8.

0.0 0.5 1.0 1.5 2.0
T/J1

0.00
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0.75
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TKT
J2/J1 = 0, h/J1 = 4.5

0.05 0.10 0.15 0.20
T/J10.00

0.05

ρS/J1

TKT

L = 6
L = 8
L = 12
L = 16
L = 24

L = 20
Lieb, L = 20

FIG. 9. Specific heat C divided by the temperature T/J1 as a
function of temperature in the SC phase for J2/J1 = 0 and h/J1 = 4.5
as obtained from QMC. The dashed vertical line denotes the KT
transition temperature TKT, given in the main text. The corresponding
data for the mixed-spin Lieb lattice model is shown for comparison
as well, and has been rescaled by a factor of 3/5 to account for
the larger unit cell on the diamond-decorated square lattice. The
inset shows the temperature dependence of the spin stiffness of the
diamond-decorated square lattice model for the same parameters for
different system sizes, along with the dashed line indicating TKT.

Another point concerns the strong finite-size effects in
Fig. 8(a). These are due to the h = 0 ground state being a
spin-3Ns/10 multiplet (compare Sec. IV A) such that on a
finite-size system, part of the entropy is located at T = 0. The
case Ns = 2000 (1200) should be a good approximation to
the TDL, as is indicated by comparison with the Ns = 980
(588) data. Indeed, these data for C/T in Fig. 8(a) approach a
constant for T → 0, as expected for a ferro- or ferrimagnet in
two dimensions, while the activated low-temperature asymp-
totics of the Ns = 30 ED data reflects a finite-size gap of about
0.434J1.

Applying a magnetic field h = J1 opens a gap of the same
size in the excitation spectrum. This leads to activated low-
temperature behavior and negligible finite size, as the good
agreement of the ED and QMC results for Ns = 30 and 80
(18 and 48) in Fig. 8(b) shows. As in the case h = 0, we
again observe significant differences between the diamond-
decorated square lattice model and the mixed-spin Lieb lattice
throughout most of Fig. 8(b) with the exception of the re-
gion T � 0.2J1, where we observe the exponentially activated
low-temperature asymptotics. This deviation can again be at-
tributed to the large number of additional contributions with
singlet configurations for the diamond-decorated square lat-
tice that we already mentioned in the context of Fig. 8(a).

Figure 9 presents similar results for C/T at h/J1 = 4.5,
i.e., a point in the SC phase. There is a maximum at tem-
peratures T > J1 that, like for Fig. 8(b), is affected by only
small finite-size effects. Furthermore, also like in Fig. 8, the
diamond-decorated square lattice model and the mixed-spin
Lieb lattice differ in this high-temperature region. There is
a second low-temperature maximum for T just above 0.1J1

that is remarkably well captured by the mixed-spin Lieb lat-
tice. This low-temperature maximum in C/T is affected by
stronger finite-size effects, but we checked that the residual
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finite-size effects on the L = 20 data shown in Fig. 9 are not
substantial.

We recall that the SC phase is characterized by
(quasi-)long-range antiferromagnetic (XY) order in the plane
perpendicular to the magnetic-field direction at zero (low)
temperatures, as discussed in the previous section. At nonzero
temperatures, this leads to a (Berezinskii-)Kosterlitz-Thouless
(KT) transition [75–77] at a finite temperature TKT. Beyond
TKT, the XY quasi-long-range order is destroyed by the pro-
liferation of vortex excitations. We have estimated TKT using
a standard finite-size scaling analysis of the spin stiffness ρS ,
as obtained from the spin winding number fluctuations [78,79]
(cf. Appendix B for details). The inset of Fig. 9 shows the tem-
perature dependence of ρS for J2/J1 = 0 and h/J1 = 4.5 for
increasing system sizes, exhibiting a drop near T/J1 ≈ 0.08.
From a quantitative analysis [78,79] of the QMC data, along
the line h/J1 = 4.5, the KT transition temperature is found to
be TKT/J1 ≈ 0.0825 across the SC regime (cf. Appendix B
for details). The specific heat C displays a maximum at a
temperature slightly above the KT transition temperature, as
typical for the KT transition, associated to the entropy release
from vortex unbinding [80]. This is shown explicitly in Fig. 9
for the interaction J2 = 0 and the magnetic field h/J1 = 4.5.

C. Thermal LM-MD phase boundary

Finally, we turn to consider the thermal properties within
the parameter regime where the transition between the LM
and MD phases takes place at zero temperature. As detailed in
Sec. V, in the presence of a finite magnetic field h � 0.5J1,
the LM and MD states at T = 0 are separated by a direct
discontinuous quantum phase transition line. Across this line,
the J2-dimer states change from triplets in the LM phase to
singlet states in the MD phase (the monomer spins are fully
polarized along the magnetic field in the MD phase, while
their mean value is reduced due to quantum fluctuations in
the LM phase).

Recently, such discontinuous quantum phase transitions in
coupled spin-dimer and spin-trimer systems were examined
in other models [17,39,68], and it was shown that first-order
thermal phase transitions emerge out from the discontinuous
quantum phase transition line, terminating in a line of thermal
critical points. Moreover, these thermal critical points belong
to the two-dimensional Ising universality class, in accord with
the binary variable associated to the presence/absence of a
singlet state on the spin dimers (such as the variable nd intro-
duced above). Here, the LM-MD transition line offers another
realization for such a scenario. We thus examine it in more
detail.

As an example, Fig. 10 shows the mean singlet occupation

ns =
〈

1

2N

2N∑
d=1

nd

〉
(19)

of the J2 dimers as a function of J2 along a cut at constant
h/J1 = 2.5 across the LM-MD transition region. At low tem-
peratures, this quantity exhibits a jump from a value of 0
to a value of 1 upon increasing J2/J1 across the quantum
phase transition near J2/J1 ≈ 2.5. For temperatures beyond
about 0.3J1, we instead observe a smooth variation of ns
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FIG. 10. Mean singlet occupation in the vicinity of the LM-MD
transition for h/J1 = 2.5 as obtained from QMC for the system size
L = 4. The red line shows the first-order transition line obtained
from comparing the free energies of both phases, extended up to the
location of the critical point (symbol), as extracted from a finite-size
analysis of the QMC data (see text for details). In the low-T region
(white), the QMC data exhibit large statistical fluctuations and have
been cut off.

with increasing J2. This already provides indication for the
existence of a low-T discontinuous thermal phase transition
line and its termination in a critical point. While the precise
position of the critical point needs to be extracted from QMC
simulations (as detailed below), the first-order transition line
at finite temperature can be estimated by simply comparing
the free energies of both phases, following the approach used
in Refs. [39,68].

Both the LM and MD phase have a finite excitation gap
atop their respective ground states. Here, we therefore use a
generic estimate for the free energy of a gapped system at low
T that in the relevant parameter regime is given by

F

N
= − 1

N
T ln Z ≈ E0

N
− 2T ln(1 + e−�/T ) , (20)

where E0 is the ground-state energy and � the excitation
gap. The factor two in front of the logarithm in Eq. (20)
accounts for the two dimers in the unit cell [note that triplets
get polarized in a magnetic field and thus no spin-degeneracy
factors enter Eq. (20)]. We note that in the MD phase and
for h > J1 + J2, Eq. (20) amounts to a low-temperature ap-
proximation of the exact expression (18) for the effective
lattice-gas model with � = −μ. At a fixed magnetic field,
the transition line is then obtained from the points Jc

2 (Tc), for
which the coexistence condition FLM(Jc

2 , T c) = FMD(Jc
2 , T c)

holds. Based on Eq. (20), we expect the first-order line not
to be vertical, but to bend towards the phase with the larger
excitation gap.

For a quantitative evaluation of the transition line, we re-
quire the values of E0 and � in both phases upon approaching
the transition point. The ground-state energies are given by
Eqs. (16) and (9) for the LM and MD phase, respectively.
We used exact diagonalization for a system of Ns = 30 sites
to extract an estimate for the excitation gaps. The excitation
gap � as a function of the interaction ratio J2/J1 for different
magnetic fields h is shown in Fig. 11. We find that upon going
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FIG. 11. Excitation gap �/J1 as function of the interaction ratio
J2/J1 for various magnetic fields h/J1 as obtained from exact diag-
onalization for the Ns = 30 system. Solid (dashed) lines are used to
denote the excitation gap in the LM (MD) regime.

from the magnetic field h/J1 = 2 to h/J1 = 2.5, the excitation
gap in the LM phase becomes larger than that in the MD
phase. We thus expect the bending of the first-order line to
change upon increasing the magnetic field. In particular, for
the case of h/J1 = 2.5, considered already in Fig. 10, the
line bends slightly to the left. This is, however, hardly seen
on the scale of the main panel of Fig. 10. The bending is
better seen in the inset, which also shows the location of the
critical point as extracted from further QMC simulations (as
detailed below). Note that based on the free-energy argument,
we cannot determine the location of the critical point, but
from the inset of Fig. 10, we find that its location roughly
matches the estimated first-order transition line. The deviation
that is visible in the inset can be explained as follows: the form
Eq. (20) matches the exact expression Eq. (18) in the MD
phase whereas in the LM phase it neglects the dispersive
nature of the excitations above the gap �. Consequently, the
average excitation energy in the LM phase is effectively larger
than �, such that the transition line should indeed bend further
towards smaller J2.

The main panel of Fig. 12 shows the specific heat C in
the transition regime. Here, we observe two well pronounced
lines of maxima that expand out from the location of the
critical point, very similar to the behavior observed previously
in related systems [17,39,68].

To accurately locate the critical point, we performed a
finite-size scaling analysis for the fluctuations of the mean
singlet occupancy. More specifically, we consider the corre-
sponding singlet susceptibility [39],

χs = β

4N

⎛
⎝〈(

2N∑
d=1

nd

)2〉
−

〈
2N∑

d=1

nd

〉2
⎞
⎠. (21)

In the left panel of Fig. 13, we show this quantity for differ-
ent system sizes at a fixed temperature T/J1 = 0.32 across
the transition region. The data exhibit pronounced maxima.
Within the two-dimensional Ising universality of the critical
point, the maximum value scales as χmax

s ∝ L7/4 at criticality
[39]. This property can be used to extract the value of Tc from
performing a finite-size scaling analysis of the peak position,
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FIG. 12. Specific heat in the vicinity of the LM-MD transition
for h/J1 = 2.5 as obtained from QMC for the system size with
L = 4. The red line shows the first-order transition line obtained
from comparing the free energies of both phases, extended up to the
location of the critical point (symbol), as extracted from a finite-size
analysis of the QMC data (see text for details). In the low-T region
(white), the QMC data exhibit large statistical fluctuations and have
been cut off.

as shown in the upper right panel of Fig. 13, giving Tc/J1 =
0.315(5). From analyzing the corresponding values of J2/J1

of the peak position, cf. the lower right panel of Fig. 13, we
can extract the critical coupling ratio (J2/J1)c = 2.4745(5) as
well. Together they give the estimated location of the critical
point already shown in Figs. 10 and 12.

We also performed a corresponding analysis at h/J1 = 2.
Here, according to the excitation gaps shown in Fig. 11, we
expect the first-order line to bend to the right instead. This is
indeed confirmed by our analysis, cf. the corresponding data
for the specific heat shown in Fig. 14. The small deviations
that one can see in the inset of Fig. 14 can be explained by the
same argument as in the case h/J1 = 2.5, i.e., neglecting the
dispersive nature of the excitations in the LM phase.

For the future, it would be interesting to investigate the
thermal properties of this model with respect to several other
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FIG. 13. Left panel: Singlet susceptibility χs for a fixed temper-
ature T/J1 = 0.32 across the transition region for h/J1 = 2.5 and
for various system sizes as obtained from QMC simulations. Right
panel: Finite-size scaling analysis of the peak value and its positions
to extract the location of the critical point at h/J1 = 2.5.
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FIG. 14. Specific heat in the vicinity of the LM-MD transition for
h/J1 = 2 as obtained from QMC for the system size with L = 4. The
red line shows the first-order transition line obtained from comparing
the free energies of both phases, extended up to the location of the
critical point (symbol), as extracted from a finite-size analysis of the
QMC data (see text for details). In the low-T region (white), the
QMC data exhibit large statistical fluctuations and have been cut off.

aspects, such as (i) how the KT transition lines of the SC
phase merge with the discontinuous quantum phase transition
between the SC and MD phases, and (ii) how the thermal
properties of the DT phase can be quantitatively described
by effective models of low-energy excitations, similar to the
lattice-gas model for the MD phase. We hope that our investi-
gations motivate further research on these challenging topics
in the future.

VII. CONCLUSIONS

In this article we considered the spin-1/2 Heisenberg
antiferromagnet on the diamond-decorated square lattice in
the presence of a finite magnetic field, using a combi-
nation of analytical arguments and exact diagonalization,
density matrix renormalization group as well as sign-problem
free stochastic series expansion quantum Monte Carlo
simulations.

We identified the ground-state properties at finite magnetic
field and mention here several aspects: (i) the previously iden-
tified zero-field Lieb-Mattis (LM), dimer-tetramer (DT), and
monomer-dimer (MD) phases all extend to finite magnetic
fields, with a magnetization 3/5, 0, and 1/5-plateau charac-
terizing the LM, DT, and MD regime, respectively, (ii) at
intermediate fields, the DT phase vanishes and beyond this
magnetic-field range, a direct discontinuous quantum phase
transition takes place between the LM and MD phases, and
(iii) at high magnetic fields, in addition to the fully saturated
paramagnetic phase (PM), a spin-canted (SC) phase with
(quasi)-long-range order emerges.

Additionally, we showed that in the MD regime for J2/J1 �
4, the low-temperature thermodynamic properties can be
well described in terms of a simple effective lattice-gas
model.

Motivated by related results in other quantum spin models,
we showed that the direct, discontinuous quantum phase tran-
sition line between the LM and MD phase extends up to finite

temperature, ending in a line of critical points that belong to
the two-dimensional Ising universality class. We furthermore
demonstrated that the slope of the transition line changes sign
upon increasing the strength of the magnetic field.

For the future it would certainly be interesting to extend
this analysis to other phases such as the DT phase, and fur-
thermore to investigate its excitations in more detail.
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APPENDIX A: GROUND STATES
OF THE CLASSICAL MIXED SPIN-1 AND
SPIN-1/2 MODEL ON THE LIEB LATTICE

In this Appendix we consider a classical version of the
mixed spin-1 and spin-1/2 Heisenberg model in a magnetic
field on the Lieb lattice. To this end we first note that the quan-
tum Hamiltonian can be written as a sum of bond operators
such that

H =
Nb∑

b=1

Hb =
Nb∑

b=1

J S1 · Sd − h

4
Sz

1 − h

2
Sz

d , (A1)

where S1 and Sd denote the spin-1/2 and spin-1 sites
respectively and the sum runs over all bonds on the
lattice. For a classical description, we replace the quan-
tum spins by three-dimensional vectors of length 1/2 and
1, i.e.,

S1 → 1

2

⎛
⎝sin θ1 cos φ1

sin θ1 sin φ1

cos θ1

⎞
⎠, Sd →

⎛
⎝sin θd cos φd

sin θd sin φd

cos θd

⎞
⎠. (A2)

The bond terms in the classical model are then given by

Hb = J

2
(sin θ1 sin θd cos(φ1 − φd ) + cos θ1 cos θd )

− h

2

(
1

4
cos(θ1) + cos(θd )

)
. (A3)

The ground state of the total classical model is obtained upon
minimizing Hb with respect to all four angles θ1, θd , φ1, φd .
Since θ1 and θd are restricted between 0 and π , minimizing
with respect to both φd and φ1 yields φ1 − φd = π , i.e., an
antiferromagnetic alignment of neighboring spins transverse
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FIG. 15. Angles θ/π of the spins of the classical mixed-spin
Heisenberg model on the Lieb lattice as a function of the magnetic
field h/J at zero temperature.

to the field direction. This yields

Hb = J

2
(− sin θ1 sin θd + cos θ1 cos θd )

− h

2

(
1

4
cos(θ1) + cos(θd )

)
. (A4)

Differentiating with respect to θ1 and θd gives the conditions
∂Hb

∂θ1
= J

2
(− cos θ1 sin θd − sin θ1 cos θd ) + h

8
sin θ1 = 0

(A5)
∂Hb

∂θd
= J

2
(− sin θ1 cos θd − cos θ1 sin θd ) + h

2
sin θd = 0.

(A6)

Subtracting Eq. (A5) from Eq. (A6) yields the relation
sin θ1 = 4 sin θd , which, when reinserted into Eq. (A5), finally
leads to(

h

8
− J

8
cos θ1 − J

2

√
1 − 1

16
sin2 θ1

)
sin θ1 = 0. (A7)

Based on Eq. (A7), one can identify three different regimes,
by requiring either factor to be zero, shown in Fig. 15. We
identify first a ferrimagnetic (FI) regime for 0 � h/J � 3,
where the spins align in opposite directions with θ1 = π and
θd = 0, with a ground-state energy of

EFI/Nb = −J

2
− 3

8
h. (A8)

Next, we identify in the regime 3 � h/J � 5 a phase in which
the spin directions change continuously upon varying the
magnetic field, given by

cos θd= J

8h

[(
h

J

)2

+15

]
, cos θ1= J

2h

[(
h

J

)2

−15

]
. (A9)

Here, the spins are canted with respect to the direction of
the magnetic field, forming biconical structures with the to-
tal magnetization Mtot/Ms = (1/2 cos θ1 + 2 cos θd )/(5/2) =
h/(5J ). Note that at small fields, S1 is aligned in the op-
posite direction of the magnetic field. Upon increasing the
magnetic-field strength, however, both spins align with the
magnetic-field direction. Finally, we identify a fully saturated

0 1 2 3 4 5 6
h/J

−0.5

0.0

0.5

1.0

M
ag

ne
ti

za
ti

on

Md = cos θd

M1 = 1/2 cos θ1

Mtot/MS

FIG. 16. Local magnetizations M1 and Md of the two inequiva-
lent sites of the classical mixed-spin Heisenberg model on the Lieb
lattice as well as the total magnetization Mtot (normalized by the
saturated magnetization MS) as a function of the magnetic field h/J
at zero temperature.

paramagnetic (PM) phase, where all spins align in direction of
the magnetic field with θ1 = θd = 0 and a ground-state energy

EPM/Nb = J

2
− 5

8
h. (A10)

Figure 16 shows the local magnetization of both sites S1

and Sd as well as the (normalized) total magnetization as a
function of the magnetic field. We note that this classical result
is in good qualitative agreement with the results obtained for
the quantum model, where the local magnetizations within the
LM phase are slightly suppressed compared to their saturated
values due to quantum fluctuations.

APPENDIX B: DETERMINATION
OF THE KT TRANSITION

In this Appendix, we detail the determination of the KT
transition temperature TKT within the SC phase. A standard

0.050 0.075 0.100 0.125 0.150
T/J1

0.00

0.02

0.04

0.06

ρ
S
/J

1

J2/J1 = 0 2
π

T

0.07 0.08 0.09
T/J1

1.00

1.25
A(T )

L = 6
L = 8
L = 12
L = 16
L = 24

FIG. 17. Spin stiffness ρS for different system sizes L as a func-
tion of temperature T/J1 for the diamond-decorated square lattice
model at J2/J1 = 0 and h/J1 = 4.5. The dashed line denotes the scal-
ing form of the universal jump. The inset shows the quantity A(T )
from the finite-size scaling analysis. The KT transition temperature is
denoted by the dashed vertical line, where A(T ) = 1 holds, obtained
using a linear fit (solid line).
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means of identifying TKT in O(2)-symmetric systems is based
on the behavior of the spin stiffness ρS , which is predicted to
exhibit a universal jump of ρS = 2 TKT/π at TKT [81]. Within
the SSE QMC approach, ρS can be calculated from the spin
winding number fluctuations [82–84]

ρS = T

2Auc

(〈
W 2

x

〉 + 〈
W 2

y

〉)
, (B1)

where Wx and Wy are the total winding numbers in the orthog-
onal x and y direction, respectively. Here Auc is the unit-cell
area of the underlying Bravais lattice. For the diamond-
decorated square lattice, Auc = 1 holds. To extract TKT from
finite-size QMC data, we follow the standard approach of

Ref. [79], which is based on the finite-size scaling form [78]

ρS π

2 T
= A(T )

(
1 + 1

2 log (L/L0(T ))

)
(B2)

that holds exactly at the transition point with A(TKT) = 1.
We fitted this finite-size dependence to the data for different
temperatures, using A(T ) and L0(T ) as fit parameters. This
allows us to accurately estimate TKT, where A(TKT) = 1 holds.
Our results from this approach are shown in Fig. 17, and we
obtain from this analysis an estimate of TKT/J = 0.08248(3)
at J2/J1 = 0 and h/J1 = 4.5. Performing the same analysis at
different ratios of J2/J1 within the SC phase for h/J1 = 4.5,
we obtain similar values for the KT transition temperature.
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Kageyama, Y. Ueda, S. Miyahara, F. Becca, and F. Mila,
Science 298, 395 (2002).

[20] S. E. Sebastian, N. Harrison, P. Sengupta, C. D. Batista, S.
Francoual, E. Palm, T. Murphy, N. Marcano, H. A. Dabkowska,
and B. D. Gaulin, Proc. Natl. Acad. Sci. USA 105, 20157
(2008).

[21] M. Takigawa and F. Mila, Magnetization plateaus, in Introduc-
tion to Frustrated Magnetism: Materials, Experiments, Theory,
edited by C. Lacroix, P. Mendels, and F. Mila (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011), pp. 241–267.
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