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Higher-order nonlinear anomalous Hall effects induced by Berry curvature multipoles
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In recent years, it has been shown that Berry curvature monopoles and dipoles play essential roles in the
anomalous Hall and the nonlinear Hall effects, respectively. In this work, we demonstrate that Berry curvature
multipoles (the higher moments of Berry curvatures at the Fermi energy) can induce higher-order nonlinear
anomalous Hall (NLAH) effects. Specifically, an AC Hall voltage perpendicular to the current direction emerges,
where the frequency is an integer multiple of the frequency of the applied current. Importantly, by analyzing the
symmetry properties of all the 3D and 2D magnetic point groups, we note that the quadrupole, hexapole, and
even higher Berry curvature moments can cause the leading-order frequency multiplication in certain materials.
To provide concrete examples, we point out that the third-order NLAH voltage can be the leading-order Hall
response in certain antiferromagnets due to Berry curvature quadrupoles, and the fourth-order NLAH voltage
can be the leading response in the surface states of topological insulators induced by Berry curvature hexapoles.
Our results are established by symmetry analysis, effective Hamiltonian, and first-principles calculations. Other
materials which support the higher-order NLAH effect are further proposed, including 2D antiferromagnets and
ferromagnets, Weyl semimetals, and twisted bilayer graphene near the quantum anomalous Hall phase.
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I. INTRODUCTION

The Hall effect is a fascinating phenomenon that a Hall
voltage perpendicular to the applied current direction can be
generated under an external magnetic field. In ferromagnets,
a Hall voltage can be created in the absence of an external
magnetic field, which is known as the anomalous Hall ef-
fect. It has an intrinsic contribution from the Berry curvature
monopole which is the integral of Berry curvature over oc-
cupied states [1,2]. Recently, anomalous Hall effects are also
discovered in antiferromagnets [3–8].

Surprisingly, it was pointed out recently that a Hall voltage
can be induced even in time-reversal invariant systems [9],
in which the generated Hall voltage doubles the frequency
of the applied AC electric current. This so-called nonlinear
Hall effect is induced by the Berry curvature dipole, which is
the first moment of the Berry curvature over occupied states.
The nonlinear Hall effect has been observed experimentally
in bilayer and multilayer WTe2 [10,11] and more recently in
twisted WSe2 [12,13]. However, in principle, higher Berry
curvature moments can be nonvanishing and their physical
consequences are not known.

In this work, we provide a general theory for higher-
order nonlinear anomalous Hall (NLAH) effects which
can be induced by the Berry curvature multipoles such
as quadrupole [14], hexapole and higher-order multipoles.
Specifically, an AC Hall voltage with frequency which is an
integer multiple of the frequency of the applied AC current
can be generated by Berry curvature multipoles. The higher-
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order effects are generally expected to be small compared to
lower-order effects. However, we point out that Berry curva-
ture quadrupole, hexapole and even higher-order multipoles
can cause the leading-order effects when lower-order Berry
curvature moments are forced to vanish by crystal symme-
try. Magnetic point groups (MPGs) which allow higher-order
Berry curvature moments to be the leading-order moments
are listed in Tables I and II respectively for three-dimensional
(3D) and two-dimensional (2D) materials. To give concrete
examples, we point out that in antiferromagnets such as mono-
layer SrMnBi2, the NLAH effect induced by Berry curvature
quadrupole is the leading-order Hall response, as both the
anomalous Hall and the nonlinear Hall effect are prohibited
by symmetry. Furthermore, with a current easily accessible in
experiments, the third-order NLAH voltage can be of the order
∼10 µV, which is comparable with the nonlinear Hall voltage
in WTe2 [10,11]. We further point out that the surface states of
topological insulators with C3v symmetry support fourth-order
NLAH effect due to the Berry curvature hexapole which is the
lowest nonvanishing moment.

The rest of the paper is organized as follows. We first use
the Boltzmann equation approach to establish the relation-
ship between the AC conductivity and the Berry curvature
multipoles. Second, the symmetry properties of the Berry cur-
vature multipoles in all MPGs are analyzed and summarized
in Tables I and II. Third, to be specific, we show explicitly
how the third-order NLAH effect induced by Berry curva-
ture quadrupole becomes the leading-order Hall response in
4′m′m (in Hermann-Mauguin notation [15]) MPG, which is
the symmetry for monolayer antiferromagnet SrMnBi2. We
further show that the fourth-order NLAH effect induced by
Berry curvature hexapole is the lowest order response in C3v

point group, and the theory applies to the surface states of
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TABLE I. Leading-order intrinsic anomalous Hall responses induced by Berry curvature multipoles in all the
122 3D magnetic point groups.

leading-order responses magnetic point groups

No anomalous 1̄1′, 1̄′, 2/m1′, 2′/m, 2/m′, mmm1′, m′mm, m′m′m′, 4/m1′4/m′, 4′/m′, 4/mmm1′,

Hall response 4/m′mm, 4′/m′m′m, 4/m′m′m′, 3̄1′, 3̄′, 3̄m1′, 3̄′m, 3̄′m′, 6/m1′, 6′/m, 6/m′,
6/mmm1′, 6/m′mm, 6′/mmm′, 6/m′m′m′, m3̄1′, m′3̄′, m3̄m1′, m′3̄′m, m′3̄′m′

First order 1, 1̄, 2, 2′, m, m′, 2/m, 2′/m′, 2′2′2, m′m2′, m′m′2, m′m′m,
4, 4̄, 4/m, 42′2′, 4m′m′, 4̄2′m′, 4/mm′m′, 3, 3̄, 32′, 3m′,

3̄m′, 6, 6̄, 6/m, 62′2′, 6m′m′, 6̄m′2′, 6/mm′m′

Second order 11′, 21′, m1′, 222, 2221′, mm2, mm21′, 41′, 4′, 4̄1′, 4̄′, 422, 4221′, 4′22′,
4mm, 4mm1′, 4′m′m, 4̄2m, 4̄2m1′, 4̄2′m, 4̄2m′, 31′, 32, 321′, 3m, 3m1′,

61′, 6′, 622, 6221′, 6′22′, 6mm, 6mm1′, 6′mm′, 23, 231′, 432, 4321′, 4′32′

Third order mmm, 4′/m, 4/mmm, 4′/mmm′, 3̄m, 6̄′, 6′/m′, 6̄m2,
6̄′m′2, 6̄′m2′, 6/mmm, 6′/m′mm′, m3̄, 4̄′3m′, m3̄m′

Fourth order 6̄1′, 6̄m21′, 4̄3m, 4̄3m1′

Fifth order m3̄m

topological insulators. The third-order NLAH effect may also
be observed in other candidate materials, including 2D anti-
ferromagnets and ferromagnets, Weyl semimetals and twisted
bilayer graphene near the quantum anomalous Hall phase.

II. NONLINEAR CONDUCTIVITY AND BERRY
CURVATURE MULTIPOLES

In this section, we establish the connection between the
nonlinear conductivity and Berry curvature multipoles using
the Boltzmann equation approach [9,14]. We focus only on
the intraband contribution, which is valid when the frequency
is much lower than the band gaps between adjacent bands.
Recall the semiclassical equations of electron motion:

d

dt
r = 1

h̄
∇kεk + e

h̄
E × �, (1)

d

dt
k = −eE

h̄
, (2)

where E = E(t ) is the time-dependent applied electric field
and � is the Berry curvature.

TABLE II. Leading-order intrinsic anomalous Hall responses in-
duced by Berry curvature multipoles in all the 31 2D magnetic point
groups.

leading-order responses magnetic point groups

No anomalous 21′, 2′, 2mm1′, 2′mm′, 41′,
Hall response 4mm1′, 61′, 6′, 6mm1′, 6′m′m
First order 1, m′, 2, 2m′m′, 4,

4m′m′, 3, 3m′, 6, 6m′m′

Second order 11′, m, m1′

Third order 2mm, 4′, 4′m′m
Fourth order 3m, 31′, 3m1′

Fifth order 4mm

Seventh order 6mm

The electric current is given by the integral of physical
velocity:

j(t ) = −e
∫

k
f (k, t )

dr
dt

, (3)

where
∫

k = ∫
dd k/(2π )d and d is the dimensionality. The

time evolution of distribution function f (k, t ) is given by the
Boltzmann equation:

dk
dt

· ∇k f (k, t ) + ∂t f (k, t ) = f0 − f (k, t )

τ
, (4)

where f0 is the equilibrium Fermi-Dirac distribution function
and τ represents the relaxation time.

With a harmonic electric field E(t ) = Re{Eαeiωt êα} (Greek
letters α, β, γ = x, y, z represent the spatial indices), the cur-
rent responses can be obtained order by order (see Appendix B
for details).

The first-order response is at the same frequency as the
driving force: j (1)

μ (t ) = Re{σ (1)
μα (ω)Eαeiωt }, with

σ (1)
μα (ω) = e2

h̄

∫
k

f0

(
∂μ∂αεk

h̄ω̃
− εμαβ�β

)
, (5)

where ∂α = ∂/∂kα
and εμαβ is the Levi-Civita tensor. ñω

represents inω + γ [16] and γ = 1/τ . The first term is the
usual Drude conductivity, which is symmetric with respect
to the two indices: σ (1),D

μα (ω) = σ (1),D
αμ (ω). The second term

is the intrinsic contribution to the anomalous Hall conduc-
tivity from the integral of Berry curvature

∫
k f0�β , which

can be viewed as Berry curvature monopole. The anomalous
Hall conductivity is defined as the antisymmetric part of the
conductivity tensor: σ (1),H

μα (ω) = −σ (1),H
αμ (ω), which vanishes

when time-reversal symmetry is present, as required by On-
sager reciprocal relation [1]. As an analogy, we define the
NLAH conductivity as the antisymmetric part of the nonlinear
conductivity tensor following Ref. [17], in order to distinguish
it from the Drude-like contributions.
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The second-order response consists of a rectified
current and a second harmonic generation: j (2)

μ (t ) =
Re{σ (2)

μαβ (0)EαE∗
β + σ

(2)
μαβ (2ω)EαEβe2iωt }, with

σ
(2)
μαβ (0) = − e3

2h̄3

∫
k

f0
∂μ∂α∂βεk

γ ω̃
+ e3

2h̄2

εμαγ

ω̃
Dβγ , (6)

σ
(2)
μαβ (2ω) = − e3

2h̄3

∫
k

f0
∂μ∂α∂βεk

ω̃(2̃ω)
+ e3

2h̄2

εμαγ

ω̃
Dβγ . (7)

Each conductivity tensor contains two terms. The first term
is the Drude-like contribution and the second term is the
nonlinear Hall conductivity induced by Berry curvature dipole
Dαβ = ∫

k f0∂α�β . The second term is the origin of the non-
linear Hall effect first pointed out by Sodemann and Fu [9],
which has attracted many theoretical and experimental studies
in recent years [10–13,18–24].

In this work, we focus on the higher-order responses which
importantly can be the leading-order responses under cer-
tain MPG symmetries as detailed in the following sections.
The third-order response is composed of currents at both
the same and triple the fundamental frequency: j (3)

μ (t ) =
Re{σ (3)

μαβγ (ω)EαEβE∗
γ eiωt + σ

(3)
μαβγ (3ω)EαEβEγ e3iωt }, with

σ
(3)
μαβγ (ω) = 3e4

4h̄4

∫
k

f0
∂μ∂α∂β∂γ εk

ω̃(−̃ω)(2̃ω)

− e4

4h̄3

[
2εμαδ

ω̃(−̃ω)
Qβγ δ + εμγ δ

ω̃(2̃ω)
Qαβδ

]
, (8)

σ
(3)
μαβγ (3ω) = e4

4h̄4

∫
k

f0
∂μ∂α∂β∂γ εk

ω̃(2̃ω)(3̃ω)
− e4

4h̄3

εμαδ

ω̃(2̃ω)
Qβγ δ. (9)

The first term is the Drude-like contribution and the second
term is the NLAH conductivity induced by Berry curvature
quadrupole [14], which is defined as

Qαβγ =
∫

k
f0∂α∂β�γ . (10)

It can be generalized to multiband cases by summing up the
contributions from all bands.

The quadrupole can also be rewritten as

Qαβγ = −
∫

k
(∂αεk)(∂β�γ ) f ′

0(εk − μ), (11)

which indicates that the NLAH effect induced by Berry cur-
vature quadrupole is a Fermi liquid property. Similarly, the
Berry curvature hexapole is defined as

Hαβγ δ =
∫

k
f0∂α∂β∂γ �δ, (12)

and the higher-order moments can be defined in a similar
manner. The higher-order nonlinear conductivity and their re-
lations to higher-order Berry curvature moments can be found
in Appendix B.

III. SYMMETRY ANALYSIS OF BERRY
CURVATURE MULTIPOLES

As shown in the last section, Berry curvatures contribute
to the higher-order conductivity in general [14]. In this sec-
tion, we analyze the symmetry properties of Berry curvature

multipoles. Taking the Berry curvature quadrupole as an ex-
ample, the time-reversal symmetry forces the Berry curvature
quadrupoles to be zero [14]. However, we point out that for
materials belonging to 66 (out of the 122) MPGs which break
time-reversal symmetry, the Berry curvature quadrupole can
be finite. Moreover, in 15 MPGs as listed in Table I, the
quadrupole is the lowest order nonvanishing Berry curvature
moment.

To have finite Berry curvature quadrupole, we note that
under time-reversal symmetry T : ∂α → −∂α and �γ → −�γ

and therefore, according to Eq. (10), the Berry curvature
quadrupole vanishes. As a result, only materials which break
time-reversal symmetry can have transport responses induced
by Berry curvature quadrupoles. Under general spatial sym-
metries, since the Berry curvature is a pseudovector, the Berry
curvature quadrupole transforms as a rank-3 pseudotensor.
Therefore a symmetry operation � imposes constraint on the
form of the quadrupole:

Qαβγ = ±det(�)�αα′�ββ ′�γγ ′Qα′β ′γ ′ , (13)

where +(−) is taken for unitary(antiunitary) operations. Fur-
thermore, the quadrupole is symmetric with respect to the first
two indices: Qαβγ = Qβαγ as indicated by Eq. (10), because
the order of derivatives are interchangeable.

From above, we note that the Berry curvature quadrupole
transforms exactly the same as piezomagnetic tensor χαβγ ,
which generates a magnetization Mγ = χαβγ Eαβ when a strain
Eαβ is applied. Because the magnetization is a pseudovector
and strain is a symmetric tensor, the piezomagnetic tensor
is also a rank-3 pseudotensor with the first two indices to
be symmetric χαβγ = χβαγ . Out of the 122 MPGs, 66 of
them are piezomagnetic [25] and therefore support nonzero
Berry curvature quadrupoles, whose explicit forms are listed
in Table III of Appendix C.

Among the 66 MPGs with Berry curvature quadrupoles,
31 of them have finite Berry curvature monopoles and 20
of them have Berry curvature dipoles as the lowest order
nonvanishing moment. Importantly, as listed in Table I, there
are 15 MPGs in which the Berry curvature quadrupole is the
leading nonvanishing moment.

The same analysis can be applied to the higher-order Berry
curvature moments. In general for all the 122 3D MPGs,
all the odd-order responses require time-reversal symmetry
breaking while all the even-order effects require inversion
symmetry breaking. The nth order NLAH effect is contributed
by the (n − 1)th moment of Berry curvature, which transforms
as a rank-n pseudotensor. The details of the transformation
properties of the Berry curvature multipoles can be found
in the Appendix C, and the leading-order moments of the
Berry curvature (therefore the leading-order intrinsic anoma-
lous Hall responses) are obtained accordingly [26], as listed
in Table I. There are 32 MPGs (out of 122) which respect
the combination of inversion and time-reversal symmetries
IT , forcing the Berry curvature to vanish in the entire Bril-
louin zone. Among the remaining 90 MPGs, 31 of them
exhibit anomalous Hall effect, which can have nonzero spon-
taneous magnetization [25].The 2nd-order NLAH effect is the
leading-order Hall response in 39 MPGs and the 3rd-order
NLAH effect is the leading response in 15 MPGs. There are
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TABLE III. Berry curvature quadrupoles for all the magnetic point groups.

Magnetic point groups Forms of Berry curvature quadrupoles

1, 1̄

⎛⎝Q11 Q12 Q13 Q14 Q15 Q16

Q21 Q22 Q23 Q24 Q25 Q26

Q31 Q32 Q33 Q34 Q35 Q36

⎞⎠
2, m, 2/m

⎛⎝ 0 0 0 Q14 0 Q16

Q21 Q22 Q23 0 Q25 0
0 0 0 Q34 0 Q36

⎞⎠
2′, m′, 2′/m′

⎛⎝Q11 Q12 Q13 0 Q15 0
0 0 0 Q24 0 Q26

Q31 Q32 Q33 0 Q35 0

⎞⎠
222, mm2, mmm

⎛⎝0 0 0 Q14 0 0
0 0 0 0 Q25 0
0 0 0 0 0 Q36

⎞⎠
2′2′2, m′m′2, m′2′m, m′m′m

⎛⎝ 0 0 0 0 Q15 0
0 0 0 Q24 0 0

Q31 Q32 Q33 0 0 0

⎞⎠
3, 3̄

⎛⎝ Q11 −Q11 0 Q14 Q15 −2Q22

−Q22 Q22 0 Q15 −Q14 −2Q11

Q31 Q31 Q33 0 0 0

⎞⎠
32, 3m, 3̄m

⎛⎝Q11 −Q11 0 Q14 0 0
0 0 0 0 −Q14 −2Q11

0 0 0 0 0 0

⎞⎠
32′, 3m′, 3̄m′

⎛⎝ 0 0 0 0 Q15 −2Q22

−Q22 Q22 0 Q15 0 0
Q31 Q31 Q33 0 0 0

⎞⎠
4, 4̄, 4/m, 6, 6̄, 6/m

⎛⎝ 0 0 0 Q14 Q15 0
0 0 0 Q15 −Q14 0

Q31 Q31 Q33 0 0 0

⎞⎠
4′, 4̄′, 4′/m

⎛⎝ 0 0 0 Q14 Q15 0
0 0 0 −Q15 Q14 0

Q31 −Q31 0 0 0 Q36

⎞⎠
422, 4mm, 4̄2m, 4/mmm, 622, 6mm, 6̄m2, 6/mmm

⎛⎝0 0 0 Q14 0 0
0 0 0 0 −Q14 0
0 0 0 0 0 0

⎞⎠
4′22, 4′m′m, 4̄′2m′, 4̄′2′m, 4′/mmm′

⎛⎝0 0 0 Q14 0 0
0 0 0 0 Q14 0
0 0 0 0 0 Q36

⎞⎠
42′2′, 4m′m′, 4̄2′m′, 4/mm′m′, 62′2′, 6m′m′, 6̄m′2′, 6/mm′m′

⎛⎝ 0 0 0 0 Q15 0
0 0 0 Q15 0 0

Q31 Q31 Q33 0 0 0

⎞⎠
6′, 6̄′, 6̄′/m′

⎛⎝ Q11 −Q11 0 0 0 −2Q22

−Q22 Q22 0 0 0 −2Q11

0 0 0 0 0 0

⎞⎠
6′22′, 6′mm′, 6̄′m′2, 6̄′m2′, 6′/m′mm′

⎛⎝Q11 −Q11 0 0 0 0
0 0 0 0 0 −2Q11

0 0 0 0 0 0

⎞⎠
23, m3̄, 4′32′, 4̄′3m′, m3̄m′

⎛⎝0 0 0 Q14 0 0
0 0 0 0 Q14 0
0 0 0 0 0 Q14

⎞⎠
all other MPGs

⎛⎝0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎠
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4 MPGs in which the hexapole is the leading-order moment,
while in m3̄m MPG the octopole is the leading-order moment.

Similarly, we also study the leading-order responses for
the 31 MPGs in 2D space. The (n + 1)th order NLAH
effect is contributed by the nth moment of Berry curva-
ture, which in 2D space has n + 1 independent components:∫

k f0(∂x )l (∂y)n−l�, with l = 0, 1, . . . , n. By linear combina-
tion, they can be rearranged as

∫
k f0∂

n−l
+ ∂ l

−� with ∂± = ∂x ±
i∂y, which form the eigenvectors of the angular momentum
operator, with quantum numbers ±n, ±(n − 2), . . . Apart
from the zero angular momentum components, such as the
monopole and the trace of quadrupole, all the other compo-
nents are forced to vanish under a p-fold rotational symmetry
with p > n. Therefore, if an additional time-reversal or mirror
symmetry is present, which forces the zero angular mo-
mentum components to vanish, then the leading-order Berry
curvature moment under a p-fold rotation has the order n = p,
as shown in Table II. More detailed analysis can be found in
Appendix C, and the leading-order moments (therefore the
leading-order intrinsic anomalous Hall responses) under all
MPGs are listed in Table II. 10 MPGs (out of 31) respect the
C2T symmetry, which forces the Berry curvature to vanish in
the entire Brillouin zone. Among the remaining 21 MPGs, 10
of them break both the time-reversal and the mirror symme-
tries, therefore a nonvanishing monopole is allowed. The other
11 MPGs are also classified, according to their leading-order
anomalous Hall responses.

IV. EFFECTIVE MODELS

In this section, we use an effective model to show explicitly
how the quadrupole arises as the leading-order Berry cur-
vature moment for materials with 4′m′m MPG in 2D space
(as indicated by symmetry analysis in Table II). Importantly,
4′m′m is the symmetry for antiferromagnetic monolayer
SrMnBi2 which will be studied in detail in the next section.
Furthermore, we show that the Berry curvature hexapole can
be the leading-order moment for the surface states of topo-
logical insulators [27] with 3m1′ (C3v) MPG symmetry (see
Table II).

The 4′m′m MPG contains two generators: C4T and MxT ,
where C4 is the fourfold rotation around the z axis and
Mx is reflection: x → −x. The C4T symmetry requires the
monopole to be zero, and C2 = (C4T )2 also forces the dipole
to vanish. In 2D space, since the Berry curvature is forced to
align along the z direction, the quadrupole can be denoted as
Qαβ = ∫

k f0∂α∂β�z. There are three independent components
of the quadrupole: Qxx, Qyy, Qxy, and their physical meanings
can be understood as follows. When an AC electric current
is applied along the x(y) direction, Qxx(Qyy) generates a third
harmonic voltage in the y(−x) direction. Furthermore, when
the current is not applied along the two axes, Qxy will have
an additional contribution to the anomalous Hall voltage. The
C4T symmetry requires Qxx = −Qyy, and the MxT symmetry
further forces Qxy = 0. Therefore there is only one indepen-
dent nonvanishing component Qxx in 4′m′m MPG.

Under 4′m′m MPG, we can write down an effective Hamil-
tonian up to the second-order in k near the � point:

H(k) = tk2 + v(kyσx − kxσy) + m
(
k2

x − k2
y

)
σz, (14)

where σ denotes the Pauli matrices acting on the spin de-
grees of freedom, and k = |k|. It is a Rashba-like Hamiltonian
with a second-order warping term which breaks time-reversal
symmetry. The C4T symmetry forces the bands to be doubly
degenerate at the � point. The energy spectra of the two
bands are E±(k) = tk2 ± |d(k)|, as shown in Fig. 1(a). Here
± denote the conduction and valence bands respectively, and
d(k) = [vky,−vkx, m(k2

x − k2
y )].

The C4T symmetry requires �±(Ĉ4T̂ k) = −�±(k), lead-
ing to clover-shape Berry curvature distributions as shown in
Fig. 1(b), which can be calculated as

�±(k) = ±1

2
d̂ · (∂xd̂ × ∂yd̂ ) = ∓ v2dz(k)

2|d(k)|3 . (15)

Consider the situation when chemical potential μ is close
to the band-crossing point: |μ| � min{ v2

|t | ,
v2

|m| }, where the en-
ergy dispersions are approximately linear E±(k) ≈ ±vk, and
the Berry curvatures �±(k) ≈ ∓ dz (k)

2vk3 . The Berry curvature
quadrupole at zero temperature can then be calculated with
Eq. (11) as

Qxx = −Qyy = − m

16π |μ| , (16)

Qxy = 0. (17)

The behavior of the Berry curvature quadrupole is depicted in
Fig. 1(c), which exhibits a peak near the band-crossing.

It is worth noting that the quadrupoles are nearly the same
for the conduction and valence bands near the band-crossing
at μ = 0. Since near the band-crossing point where the ki-
netic term tk2 can be neglected, the two bands have nearly
opposite energy dispersions E+(k) ≈ −E−(k) and opposite
Berry curvatures �+(k) = −�−(k). According to Eq. (11),
the quadrupoles of the two bands are nearly the same around
the band crossing: Q+

αβ (μ) ≈ Q−
αβ (−μ).

Next, we study the Berry curvature hexapole for the sur-
face states of topological insulators with 3m1′ (C3v) MPG.
The time-reversal symmetry T requires the monopole and
quadrupole to be zero, and the C3 symmetry also forces the
dipole to vanish. In 2D space, the hexapole can be denoted
as Hαβγ = ∫

k f0∂α∂β∂γ �z. There are four independent com-
ponents of the hexapole: Hxxx, Hxxy, Hxyy, Hyyy, and their
physical meanings can be understood as follows. When an AC
electric current is applied along the x(y) direction, Hxxx(Hyyy)
generates a fourth harmonic voltage in the y(−x) direction.
Furthermore, when the current is not applied along the two
axes, Hxxy and Hxyy will have additional contributions to the
anomalous Hall voltage. The C3 symmetry requires Hxxx =
−Hxyy, and the Mx symmetry further forces Hxxy = Hyyy = 0.
Therefore there is only one independent nonvanishing compo-
nent Hxxx in 3m1′ (C3v) MPG.

The effective Hamiltonian up to third-order of k which
contains a hexagonal warping term is given by Ref. [27]:

H(k) = E0(k) + vk (kxσy − kyσx ) + λkx
(
k2

x − 3k2
y

)
σz, (18)

where E0(k) = k2

2m∗ is the kinetic energy. The velocity vk =
v(1 + αk2) could have a second-order correction, which we
will neglect near the Dirac point. The energy dispersions
of the two bands are: E±(k) = E0(k) ± |d(k)|, as shown in
Fig. 1(d). Here d(k) = [−vky, vkx, λkx(k2

x − 3k2
y )].
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FIG. 1. [(a)–(c)] Band structures (a), Berry curvature of the conduction band (b) and gate dependence of the quadrupole (c) for the effective
model in Eq. (14), with t = 3, v = 1, m = 2 and temperature kBT = 0.005. The length scale a = m/v, and the energy scale E∗ = v2/m.
[(d)–(f)] Band structures (d), Berry curvature of the conduction band (e), and gate dependence of the hexapole (f) for the surface states of
topological insulators as described by Eq. (18). The parameters for Bi2Te3 are adopted from Ref. [27], with v = 2.55 eV Å, λ = 250 eV Å3,
E0(k) = α = 0, and temperature T = 50 K.

The Berry curvatures of the two bands can be calculated as

�±(k) = ±1

2
d̂ · (∂xd̂ × ∂yd̂ ) = ∓v2dz(k)

|d(k)|3 , (19)

and the Berry curvature of the conduction band is shown in
Fig. 1(e).

When the chemical potential μ is close to the Dirac point:

|μ| �
√

v3

λ
, the energy dispersions are approximately linear

E±(k) ≈ ±vk, and the Berry curvatures �±(k) ≈ ∓ dz (k)
vk3 . The

Berry curvature hexapole at zero temperature can then be
calculated as

Hxxx = −Hxyy = − 3λ

16π |μ| , (20)

Hxxy = Hyyy = 0. (21)

The behavior of the hexapole is depicted in Fig. 1(f), which
has the same |μ|−1 dependence as the quadrupole in the anti-
ferromagnetic model.

When a current is applied along the x direction which
is perpendicular to the mirror plane, the hexapole will in-
duce a NLAH voltage Vy ∝ HxxxI4

x along the y direction.
As an estimation of the NLAH voltage for Bi2Te3, we con-
sider the situation when the Fermi energy is μ ≈ 0.1 eV
away from the Dirac point of the surface state. Taking
λ = 250 eV · Å3 [27], we get the hexapole Hxxx = 150 Å3.
Considering an applied electric current ∼20 mA, with the
conductance ∼2 × 10−3 �−1 for the surface states and the
sample size ∼1 mm [28], it corresponds to an electric filed
E ∼ 10 mV/µm. With the scattering time τ ∼ 0.5 ps [28],
we obtain the NLAH current density jH (4ω) ∼ 20 pA/mm,
which corresponds to a Hall voltage ∼10 nV.

V. CANDIDATE MATERIALS

In this section, we propose candidate materials to observe
the third-order NLAH effect induced by Berry curvature
quadrupole. Layered structure antiferromagnets AMnBi2 (A
= Sr, Ca, Ba, Eu) host anisotropic Dirac fermions near the
Fermi surface [29–32]. Below the transition temperature,
the MPG of bulk AMnBi2 crystals is 4′/m′m′m, which forces
the bands to be doubly degenerate by the IT symmetry.
On the other hand, single-domain thin-film SrMnBi2 has
been fabricated on LaAlO3(001) substrate [33], in which
the IT symmetry could be effectively broken by the
substrate or vertical electrical gating, reducing the symmetry
down to 4′m′m which supports nonzero quadrupole as its
leading-order Berry curvature moment. To illustrate the
symmetry breaking effect, here we study the Berry curvature
quadrupole in monolayer (one sextuple layer) SrMnBi2 with
first-principles calculations.

The crystal structure of monolayer SrMnBi2 is shown in
Fig. 2(a). It contains a Mn layer which exhibits the antiferro-
magnetic order, and a conducting Bi layer which provides the
Dirac fermions at the Fermi level [29]. The Dirac fermions are
located along the �-M lines, as indicated by the red dashed
circle in Fig. 2(b). The IT symmetry coming from interlayer
stacking in bulk crystals is absent in the monolayer, which lifts
the twofold degeneracy of the bands. Moreover, a small gap
can be opened by the spin-orbit coupling [29], which gener-
ates Berry curvatures near the band edges. When the chemical
potential is near the Dirac point, sizable Berry curvature
quadrupole ∼500 Å2 can be obtained, as shown in Fig. 2(c).

When an electric current is applied along the y direction,
the quadrupole will induce a NLAH voltage Vx ∝ QyyI3

y along
the x direction, as shown in Fig. 2(a). As an estimation
of the Hall voltage, we take an experimentally accessible
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FIG. 2. (a) Crystal structure of monolayer (one sextuple layer)
SrMnBi2, with the Mn atoms exhibit antiferromagnetic order as
indicated by the red arrows. When a current is applied along the y
direction, a NLAH voltage Vx will be induced by the Berry curvature
quadrupole. (b) Band structures of monolayer SrMnBi2. Red dashed
circle indicates the Dirac cone. (c) Berry curvature quadrupole of
SrMnBi2 near the Fermi level, with temperature T = 100 K.

current ∼100 µA [10,11]. With the resistance ∼1 k� [34],
sample size ∼10 µm, it corresponds to an applied electric
filed E ∼ 10 mV/µm. By taking the quadrupole ∼500 Å2 and
the scattering time τ ∼ 1 ps, we obtain the NLAH current
density jH (3ω) ∼ 1 nA/µm, corresponding to a Hall voltage
∼10 µV, which is comparable with the nonlinear Hall voltage
in WTe2 [10,11].

In ferromagnets, although the Berry curvature quadrupole
is not the leading-order moment, it can still have contribu-
tions to the NLAH voltage. As the quadrupole contributes
to the third harmonic generation, it could be distinguished
from the anomalous Hall response with lock-in tech-
niques. 2D magnets MnBi2Te4 [35], Fe3GeTe2 [36], near
3/4-filling twisted bilayer graphene [37,38] and 3D an-
tiferromagnetic Weyl semimetals [39] Mn3X (X = Ge,
Sn, Ga, Ir, Rh, Pt) [3,4,6,7,40], GdPtBi [8] all have non-
vanishing quadrupoles. Especially, MnBi2Te4 and twisted
bilayer graphene exhibit quantum anomalous Hall ef-
fect [35,37,38,41], which are therefore good platforms to
study the Berry curvature effects. Sizable Berry curvature
quadrupoles ∼4000 Å2 are found for twisted bilayer graphene
near its ferromagnetic quantum anomalous Hall phase, as
discussed in details in Appendix D.

VI. DISCUSSIONS AND CONCLUSIONS

In this work, we establish a general theory for the higher-
order NLAH effects induced by Berry curvature multipoles. In
particular, we point out that the third-order NLAH effect can

be the leading-order Hall response in certain antiferromag-
nets, and the fourth-order NLAH can be the leading response
in the surface states of topological insulators. We also propose
candidate materials including 2D antiferromagnets and ferro-
magnets, Weyl semimetals and twisted bilayer graphene near
the quantum anomalous Hall phase to observe the third-order
NLAH effect.

Here, we further discuss several issues about the higher-
order NLAH effects induced by Berry curvature multipoles.
First of all, we discuss how to distinguish the NLAH re-
sponses related to the antisymmetric part of the conductivity
tensor from the Drude-like contributions which are related
to the symmetric part of the conductivity tensor. For even-
order responses, the Drude-like contribution is forbidden by
the time-reversal symmetry, which is the case for the surface
states of topological insulators. For odd-order responses, if a
mirror symmetry Mx or MxT is present, the Drude-like con-
tribution vanishes in the transverse direction when the current
is applied perpendicular to the mirror plane [14]. In mono-
layer SrMnBi2 which belongs to 4′m′m MPG, the third-order
Drude-like contribution vanishes when the current is applied
along the x or the y directions, as indicated in Fig. 2(a). In
general cases, the NLAH responses can be distinguished from
the Drude-like contributions as they have different angular
dependence, and the details can be found in Appendix E.

Second, the third-order nonlinearity induced by Berry
connection polarizability tensor has been observed in bulk
MoTe2 and WTe2 [42]. It has an interband origin and
contributes to the symmetric part of the conductivity ten-
sor. It has the same symmetry property as the Drude-like
contribution [42,43], thus can be distinguished from the
quadrupole-induced NLAH effect through the angular depen-
dence as discussed in Appendix E.

Third, we note that apart from the intrinsic contribu-
tions from Berry curvature, impurities can also give rise
to the NLAH voltage through skew scattering and side
jump [1,17,44,45]. The skew scattering has a different scaling
dependence on the scattering time from the Berry curvature
contributions, thus can be distinguished in experiments [11].
Furthermore, the impurity contributions have the same sym-
metry properties as the Berry curvature contributions [1,17],
thus they will not affect the conclusion that the higher-order
NLAH effects can be observed in the proposed materials.

Fourth, besides the nonlinear Hall effect, it is shown that
the Berry curvature dipole can induce other nonlinear effects
such as the nonlinear Nernst [46,47] and nonlinear thermal
Hall effect [48]. Here, we believe that the Berry curvature
multipoles can also contribute to the corresponding higher-
order nonlinear Nernst and nonlinear thermal Hall effects.

Note added. Recently, it was pointed out by He et al. [49]
that the surface states of topological insulators can be used for
second harmonic generation in which an applied AC current
can induce a voltage with double frequency. This effect is
caused by disorder induced skew scattering and related to
the symmetric part of the nonlinear conductivity tensor. On
the other hand, the fourth-order NLAH effect on the surface
states of topological insulator discussed in this work is an
intrinsic effect induced by Berry curvature hexapole which is
related to the antisymmetric part of the nonlinear conductivity
tensor. These two effects have different physical origins
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and frequency dependence and they can be distinguished
experimentally.
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APPENDIX A: FIRST-PRINCIPLES CALCULATIONS

In this work, the density functional theory (DFT) com-
putations were performed by utilizing the Vienna ab initio
simulation package (VASP) [50] with the projector-augmented
wave method [51] and the Perdew-Berke-Ernzerhof’s (PBE)
exchange-correlation functional in the generalized-gradient
approximation (GGA) [52]. Specifically for the two antifer-
romagnetic materials CaMnBi2 and SrMnBi2, the LDA+U
approach [53] was adopted to modify the intra-atomic
Coulomb interaction which is essential for magnetism. We
used an empirical value Ueff = 3 eV for the d orbitals of Mn
atoms. For computing the electronic bands of the monolayer
materials, a vacuum layer of thickness 20 Å was added along
the z direction. A 9 × 9 × 9 k mesh grid was used in the
self-consistent calculation step for the bulk material, while for
the monolayer cases we adopted a 9 × 9 × 1 k mesh grid.

In the calculation of the Berry curvature and the Berry cur-
vature quadrupoles, we adopted two methods and the results
of the two methods were consistent with each other. In the first
method, we adapted the VASPBERRY codes which can compute
the Berry curvature and the Chern numbers in 2D systems di-
rectly using the VASP wave functions via Fukui’s method [54].
For the second approach, the maximally localized Wannier
bands of CaMnBi2 and SrMnBi2 were projected through the
WANNIER90 package [55] linked to VASP, based on which the
Berry curvature was computed.

To be concise, we have only shown the results of the calcu-
lations for monolayer SrMnBi2. In this section, we provide
more related DFT results, including the band structures of
bulk and monolayer Ca(Sr)MnBi2, the Berry curvature con-
figuration in the 2D Brillouin zone (BZ) for the bands near the
Fermi energy in monolayer Ca(Sr)MnBi2, as well as the Berry
curvature quadrupole values at different chemical potentials,
as shown in Fig. 3.

Notably, due to the anisotropy of the Dirac cones [29,56],
i.e., the Fermi velocity along the direction perpendicular to
the �-M line is much smaller than the Fermi velocity along
the �-M line, the bands are nearly touching along the per-
pendicular direction. As a result, sizable Berry curvature is
always present along the perpendicular direction, as shown
in Fig. 3(e) and 3(f), leading to the large Berry curvature
quadrupole near the Fermi energy.

FIG. 3. [(a) and (b)] The band structures of bulk CaMnBi2 and
SrMnBi2 in the antiferromagnetic phase based on DFT calculations.
[(c) and (d)] The band structures of monolayer (one sextuple layer)
CaMnBi2 and SrMnBi2 in the antiferromagnetic phase. [(e) and
(f)] The Berry curvature configuration in the 2D BZ of monolayer
CaMnBi2 and SrMnBi2 for the top valence bands, which are denoted
as red curves in (c) and (d). [(g) and (h)] The Berry curvature
quadrupoles of monolayer CaMnBi2 and SrMnBi2 as functions of
the chemical potential.

APPENDIX B: NONLINEAR CONDUCTIVITY AND BERRY
CURVATURE MULTIPOLES

In this Appendix, we establish the relationship between
the nonlinear conductivity in the presence of an AC electric
field and the Berry curvature multipoles. We focus on the
intra-band contributions, and this approximation is valid when
the frequency is much lower than the energy gap of the bands
near the Fermi energy. A single band is considered in the
derivation, which can be generalized to multiband cases by
summing up the contributions from all the bands.

First of all, the electric current density is related the integral
of physical velocities of the electrons:

j(t ) = −e
∫

k
f (k, t )

dr
dt

, (B1)
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where
∫

k = ∫
dd k/(2π )d and d is the dimensionality. The

physical velocity of an electron has two contributions, which
are the group velocity of the electron wave packet and the
anomalous velocity originating from the Berry curvature:

d

dt
r = 1

h̄
∇kεk + e

h̄
E × �, (B2)

where εk is the energy dispersion and E = E(t ) is the applied
time-dependent electric field, � is the vector form of Berry
curvature, which is related to its tensor representation �α =
1
2εαβγFβγ , and

Fαβ = ∂αAβ − ∂βAα, Aα = −i 〈uk| ∂α |uk〉 . (B3)

Here, |uk〉 is the periodic part of the Bloch wave function at k,
and ∂α = ∂/∂kα

. εμαβ is the Levi-Civita tensor, and the Greek
letters α, β, γ = x, y, z represent the spatial indices.

The time evolution of the distribution function f (k, t )
is given by the Boltzmann equation in the relaxation time
approximation:

dk
dt

· ∇k f (k, t ) + ∂t f (k, t ) = f0 − f (k, t )

τ
, (B4)

where f0 is the equilibrium Fermi-Dirac distribution function
and τ represents the relaxation time. The evolution of the
canonical momentum is given by the semiclassical equation of
motion:

d

dt
k = −eE

h̄
. (B5)

With a time-dependent electric field E(t ) = Re{Eαeiωt êα},
we calculate the current response order by order. The distribu-
tion function can be expanded in orders of the electric field:

f (k, t ) = Re

{ ∞∑
n=0

fn(k, t )

}
, (B6)

where the term fn is proportional to En. Substituting into
Eq. (B4), we obtain a recursive equation for the adjacent
orders of fn:

(∂t + 1/τ )Re{ fn+1} = e

h̄
Re{Eαeiωt }Re{∂α fn}. (B7)

fn can be further decomposed according to the frequency
dependence:

fn =
∞∑

m=0

fn(mω)eimωt . (B8)

Starting from the zeroth order, all the fn(mω) components can
be calculated recursively. The first- and second-order nonzero
terms are

f1(ω) = e

h̄

∂α f0

ω̃
Eα, (B9)

f2(0) =
( e

h̄

)2 ∂α∂β f0

2γ (2̃ω)
EαE∗

β ,

f2(2ω) =
( e

h̄

)2 ∂α∂β f0

2ω̃(2̃ω)
EαEβ, (B10)

as first obtained by Sodemann and Fu [9]. Here, m̃ω represents
imω + γ and γ = 1/τ . The third-order terms are

f3(ω) =
( e

h̄

)3 3∂α∂β∂γ f0

4ω̃(−̃ω)(2̃ω)
EαEβE∗

γ ,

f3(3ω) =
( e

h̄

)3 ∂α∂β∂γ f0

4ω̃(2̃ω)(3̃ω)
EαEβEγ . (B11)

Substituting the distribution function into Eq. (B1), we obtain
the current response j(t ) = ∑∞

n=1 j (n)(t ) in orders of the elec-
tric field. The linear response is at the same frequency of the
driving force:

j (1)
μ (t ) = Re

{
σ (1)

μα (ω)Eαeiωt
}

(B12)

with

σ (1)
μα (ω) = e2

h̄2

∫
k

f0
∂μ∂αεk

ω̃
− e2

h̄

∫
k

f0Fμα. (B13)

The first term is the usual Drude conductivity, which is sym-
metric with respect to the two indices: σ (1),D

μα (ω) = σ (1),D
αμ (ω).

The second term is the intrinsic contribution to the anoma-
lous Hall conductivity induced by Berry curvature monopole,
which is antisymmetric with respect to the two indices:
σ (1),H

μα (ω) = −σ (1),H
αμ (ω).

The second-order response consists of a rectified current
and a second harmonic generation:

j (2)
μ (t ) = Re

{
σ

(2)
μαβ (0)EαE∗

β + σ
(2)
μαβ (2ω)EαEβe2iωt

}
, (B14)

with

σ
(2)
μαβ (0) = − e3

2h̄3

∫
k

f0
∂μ∂α∂βεk

γ ω̃
+ e3

2h̄2

∫
k

f0
∂βFμα

ω̃
,

(B15)

σ
(2)
μαβ (2ω) = − e3

2h̄3

∫
k

f0
∂μ∂α∂βεk

ω̃(2̃ω)
+ e3

2h̄2

∫
k

f0
∂βFμα

ω̃
.

(B16)

Each conductivity tensor contains two terms. The first term is
the Drude-like contribution and the second term is the nonlin-
ear Hall conductivity induced by Berry curvature dipole [9].

The third-order response is composed of currents at both
the same and triple the fundamental frequency:

j (3)
μ (t ) = Re

{
σ

(3)
μαβγ (ω)EαEβE∗

γ eiωt

+ σ
(3)
μαβγ (3ω)EαEβEγ e3iωt

}
, (B17)

with

σ
(3)
μαβγ (ω) = 3e4

4h̄4

∫
k

f0
∂μ∂α∂β∂γ εk

ω̃(−̃ω)(2̃ω)

− e4

4h̄3

∫
k

f0

[
2∂β∂γFμα

ω̃(−̃ω)
+ ∂α∂βFμγ

ω̃(2̃ω)

]
,

(B18)

σ
(3)
μαβγ (3ω) = e4

4h̄4

∫
k

f0
∂μ∂α∂β∂γ εk

ω̃(2̃ω)(3̃ω)
− e4

4h̄3

∫
k

f0
∂β∂γFμα

ω̃(2̃ω)
.

(B19)
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The first term is the Drude-like contribution and the second
term is the NLAH conductivity induced by Berry curvature
quadrupole [14].

In general, the nth order response has components at fre-
quency nω, (n − 2)ω, . . . . For the higher-order effects, we
only focus on the response at frequency nω. From the recur-
sive Eq. (B7), we obtain

fn(nω) = 2
( e

2h̄

)n n∏
m=1

(
Eαm

∂αm

m̃ω

)
f0. (B20)

Substituting the distribution function into Eq. (B1), we obtain
the nth harmonic generation

j (n)
μ (nωt ) = Re

{
σ (n)

μα1α2···αn
(nω)Eα1 Eα2 · · · Eαn einωt

}
, (B21)

with

σ (n)
μα1α2···αn

(nω) = 4
(− e

2h̄

)n+1∏n
m=1 m̃ω

∫
k

f0∂μ∂α1∂α2 · · · ∂αnεk

+ 2e
(− e

2h̄

)n∏n−1
m=1 m̃ω

∫
k

f0∂α2 · · · ∂αnFμα1 .

(B22)

By defining the (n − 1)th Berry curvature moment

Pα2···αnβ =
∫

k
f0∂α2 · · · ∂αn�β, (B23)

we can establish the relation between the NLAH conductivity
tensor and the Berry curvature moments

σ (n),H
μα1α2···αn

(nω) = 2e
(− e

2h̄

)n∏n−1
m=1 m̃ω

εμα1βPα2···αnβ. (B24)

APPENDIX C: SYMMETRY ANALYSIS FOR BERRY
CURVATURE MULTIPOLES

1. Explicit forms of Berry curvature quadrupoles under
magnetic point groups

As shown in previous sections, the Berry curvature
quadrupoles have the same transformation properties as the
piezomagnetic tensors, whose explicit forms are determined
under all the MPGs. Here, we list the general forms in Ta-
ble III, which is quoted from Ref. [25]. The 18 components
of the Berry curvature quadrupoles are organized as follows:

(
Qxxx Qyyx Qzzx Qyzx Qxzx Qxyx

Qxxy Qyyy Qzzy Qyzy Qxzy Qxyy

Qxxz Qyyz Qzzz Qyzz Qxzz Qxyz

).

We wish to point out that, under 4′m′m MPG, we have
shown in previous sections that the symmetries require Qxxz =
−Qyyz and Qxyz = 0, which is related to the result in this table
by a 45◦ rotation.

2. General transformation properties for Berry curvature
multipoles in 3D space

In this section, we show the general transformation rules
for Berry curvature multipoles and their explicit forms under
certain MPG symmetries.

First of all, we introduce the Jahn notation [57] to describe
the transformation properties of Berry curvature multipoles. A
3D polar vector is denoted by V , and V m = V × V × . . . × V

denotes a rank-m tensor. The symbols [ ] and { }, denote
the symmetrization and antisymmetrization respectively of
the tensors inside the symbol. e and a are rank-0 tensors
that change sign under spatial inversion I and time-reversal
symmetry T , respectively. For example, the Berry curvature
monopole is a pseudovector, and at the same time odd under
T , thus transforms as aeV . The Berry curvature dipole is a
rank-2 pseudotensor, and is even under T , thus transforms
as eV 2. For Berry curvature quadrupole, as analyzed in the
previous sections, it transforms as a rank-3 pseudotensor, and
is odd under T . Furthermore, it is symmetric with respect
to the first two indices which are associated with the partial
derivatives, thus is of the type ae[V 2]V .

Similarly, the Berry curvature hexapole Hαβγ δ =∫
k f0∂α∂β∂γ �δ is a rank-4 pseudotensor and even under
T . A symmetry operation � will impose constraints on the
form of the hexapole:

Hαβγ δ = det(�)�αα′�ββ ′�γγ ′�δδ′Hα′β ′γ ′δ′ . (C1)

Furthermore, the hexapole is symmetric with respect to all
the first three indices which are associated with the partial
derivatives, and therefore transforms as e[V 3]V .

In general, the nth moment of Berry curvature, which can
be defined as

Pα1α2...αnβ =
∫

k
f0∂α1∂α2 . . . ∂αn�β, (C2)

transforms as a rank-(n + 1) pseudotensor, with the first n
indices to be symmetric. It is even under T for odd number
of n, and odd under T for even number of n, thus is of the
type an+1e[V n]V .

Once the transformation properties of the Berry curvature
multipoles are understood, their explicit forms under cer-
tain MPGs can be obtained with the Bilbao Crystallographic
Server [26]. We have identified the leading-order Berry cur-
vature moments for all the 122 3D MPGs, as tabulated in
Table II.

3. Symmetry properties for Berry curvature
multipoles in 2D space

In this section, we first show that there are n + 1 indepen-
dent components for the nth moment of Berry curvature in 2D
space. By linear combination, they form the eigenvectors of
the angular momentum operator, with quantum numbers ±n,
±(n − 2), . . . . Apart from the zero angular momentum com-
ponents, such as the monopole and the trace of quadrupole,
all the other components are forced to vanish under a p-fold
rotational symmetry with p > n. Based on the symmetry anal-
ysis, we further determine the leading-order Berry curvature
moments for all the 31 2D MPGs.

The zeroth moment of Berry curvature is the Berry curva-
ture monopole M = ∫

k f0�, which has only one component as
the Berry curvature becomes a pseudoscalar in 2D space. The
first moment is the Berry curvature dipole Dα = ∫

k f0∂α�,
which transforms as a pseudovector. The two components
can be rearranged as D±1 = Dx ± iDy = ∫

k f0∂±� with ∂± =
∂x ± i∂y, which are the eigenvectors of the angular momen-
tum operator (the generator of rotations): L̂zD±1 = ±h̄D±1,
with the angular moment quantum numbers m = ±1. Under
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the rotation operator R̂z(θ ) = exp(−i L̂z

h̄ θ ), they will acquire
phase factors respectively: R̂z(θ )D±1 = e∓iθ D±1. For a p-
fold rotational symmetry θ = 2π/p, it imposes a constraint:
e∓i2π/pD±1 = D±1, which forces the dipole to vanish since
e∓i2π/p �= 1. This was first pointed out by Sodemann and
Fu [9], and we will generalize it to higher-order Berry
curvature moments as shown below. Furthermore, a mirror
symmetry Mx will force the y component to vanish, and the
dipole will be perpendicular to the mirror plane.

The Berry curvature quadrupole Qαβ = ∫
k f0∂α∂β� has

three independent components Qxx, Qxy, and Qyy, which can
be rearranged to form the eigenvectors of the angular momen-
tum operator: Q+2 = ∫

k f0∂
2
+�, Q0 = ∫

k f0∂+∂−�, Q−2 =∫
k f0∂

2
−�. Q0 is the trace of the quadrupole, which transforms

the same as the monopole M, and the traceless components
Q±2 have angular momentum m = ±2 respectively. Under
a p-fold rotation, R̂z( 2π

p )Qm = e−2iπm/pQm, which imposes a

constraint on the quadrupole: (e−2iπm/p − 1)Qm = 0. For any
p > |m|, i.e., any rotational axis with order higher than |m| =
2, the traceless part Q±2 of quadrupole is forced to vanish as
e−2iπm/p �= 1. Next, considering a mirror symmetry, which for
simplicity can always be written as Mx by choosing the x-axis
to be perpendicular to the mirror plane. The quadrupole trans-
forms as MxQm = −Q−m, therefore the component Q2 + Q−2

is odd under Mx thus forced to vanish, while Q2 − Q−2 is even
under Mx and can still be finite.

It can be further generalized to the higher-order Berry
curvature moments. For the nth Berry curvature moment
Pα1α2···αnβ = ∫

k f0∂α1∂α2 · · · ∂αn�β , there are n + 1 indepen-
dent components:

∫
k f0(∂x )l (∂y)n−l�, with l = 0, 1, . . . , n. By

linear combination, they can construct the eigenvectors of the
angular momentum operator:

Pn
n−2l =

∫
k

f0∂
n−l
+ ∂ l

−�, (C3)

where the lower-index indicates the angular momentum,
and the upper-index labels the order of the Berry curva-
ture moment. Explicitly, they are Pn

n = ∫
k f0∂

n
+�, Pn

n−2 =∫
k f0∂

n−1
+ ∂−�, . . . , Pn

−n = ∫
k f0∂

n
−�, with quantum numbers

n, n − 2, . . . , −n. Under a p-fold rotation, R̂z( 2π
p )Pn

m =
e−2iπm/pPn

m, which requires

(e−2iπm/p − 1)Pn
m = 0. (C4)

For any rotational axis with order p higher than the order n of
the Berry curvature moment, e−2iπm/p �= 1 when m �= 0, thus
Pn

m (m �= 0) will be forced to vanish. Furthermore, when the
mirror symmetry Mx is present, the Berry curvature moments
transform as

MxPn
m = (−1)n+1Pn

−m, (C5)

therefore the component Pn
m − (−1)n+1Pn

−m is odd under Mx

thus forced to vanish, while Pn
m + (−1)n+1Pn

−m is even under
Mx and can still be finite.

Special attention should be paid to the spatial symme-
tries combined with time-reversal symmetry, namely the C2T ,
C4T , C6T , and MxT symmetries. In general, p-fold rotation
combined with T imposes the constraint on the Berry curva-
ture moment: (−1)n+1e−2iπm/pPn

m = Pn
m, where an additional

factor (−1)n+1 is acquired due to the T symmetry. Specifi-
cally, C2T = (C6T )3 forces the Berry curvature to vanish in
the entire BZ. C4T forces both the monopole and dipole to
vanish. For quadrupole components Q±2, the C4T symmetry
requires Ĉ4T̂ Qm = −e−2iπm/pQm = Qm. Since −e−2iπm/p = 1
for p = 4 and m = ±2, the above condition is always satisfied
and C4T has no constraint on Q±2, thus a finite quadrupole is
allowed. Finally, for the MxT symmetry, the Berry curvature
moments transform as M̂xT̂ Pn

m = Pn
−m, therefore the compo-

nent Pn
m − Pn

−m is odd under MxT thus forced to vanish, while
Pn

m + Pn
−m is even under MxT and can still be finite.

Based on the previous symmetry analysis, we can deter-
mine the leading-order Berry curvature moments in all the 2D
MPGs. Out of the 31 MPGs in 2D space, 10 of them respect
the C2T symmetry, which forces the Berry curvature to vanish
in the entire BZ. Among the remaining 21 MPGs, 10 of them
break both the time-reversal and mirror symmetries, therefore
a nonvanishing monopole is allowed. 11′, m, and m1′ MPGs
respect at most a mirror symmetry, therefore the Berry curva-
ture dipole is allowed. The remaining 8 MPGs are 2mm, 4′,
4′m′m, 3m, 31′, 3m1′, 4mm, and 6mm. For Berry curvature
quadrupole which is the second moment of Berry curvature,
any rotational symmetry with order higher than 2 will force
Q±2 to vanish. Therefore it can only be the leading-order
moment in 2mm, 4′, 4′m′m. Similarly, the Berry curvature
hexapole vanishes under any rotational symmetry with order
higher than 3, thus can only be the leading-order moment in
3m, 31′, 3m1′. Berry curvature octopole is the leading-order
moment in 4mm, and the 12-pole is the leading-order moment
in 6mm.

APPENDIX D: NLAH EFFECT IN QUANTUM
ANOMALOUS HALL MATERIALS

In this Appendix, we study the third-order NLAH effect
induced by Berry curvature quadrupole in quantum anoma-
lous Hall (QAH) materials. In general, the trace of quadrupole
Qααγ has the same symmetry property as the monopole∫

k f0�γ , thus is finite in all materials which exhibit anomalous
Hall effect. In particular, QAH materials are good platforms
to study the NLAH effect due to their nontrivial topological
nature. Here, we will first use a general model Hamiltonian to
show that sizable Berry curvature quadrupole can be achieved
in QAH materials when the chemical potential is tuned to
the band edge, which can possibly describe the states near
the QAH phase in few-layer MnBi2Te4 [35,41]. Then we will
use the spin and valley polarized continuum model [58] to de-
scribe the QAH state near 3/4 filling [37,38] in twisted bilayer
graphene aligned with boron nitride substrate. Giant Berry
curvature quadrupoles ∼4000 Å2 can be achieved, when the
chemical potential is gated to the band edges.

1. Berry curvature quadrupole with general model Hamiltonian

In this section, we use the model Hamiltonian [59,60] to
describe a QAH state:

H(k) = ε(k) + v(kyσx − kxσy) + M(k)σz, (D1)
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FIG. 4. (a) Band structures for the QAH model in Eq. (D1), with
different M2 parameters. The other parameters are M0 = 1, v = 1,
ε(k) = 0, and the length scale a = v/M0. (b) Gate dependence of the
quadrupole at temperature T = 0. The solid dashed line is given by
the analytic result in Eq. (D6) for M2 = 0.

where ε(k) = tk2 is the parabolic background and M(k) =
M0 − M2k2 is the mass term, k = |k|, and σ denotes the Pauli
matrices. The system is in the QAH phase when M0M2 > 0.

The energy spectra of the two bands are E±(k) = tk2 ±
|d(k)|, where ± denote the conduction and valence bands,
respectively, and d(k) = [vky,−vkx, M(k)]. The band struc-
tures for different parameters M2 are shown in Fig. 4(a).

The Berry curvatures of the two bands can also be
calculated as

�±(k) = ±1

2
d̂ · (∂xd̂ × ∂yd̂ ) = ±v2(M0 + M2k2)

2|d(k)|3 , (D2)

and the Chern numbers of the two bands are

C± = −2π

∫
k
�± = ∓1

2
[sgn(M0) + sgn(M2)]. (D3)

The model has continuous rotational symmetry, which re-
quires Q±2 = 0, or equivalently

Qxx = Qyy, (D4)

Qxy = 0. (D5)

The component Qxx is obtained numerically for different pa-
rameters M2, as shown in solid lines in Fig. 4(b), which
exhibits two peaks near the two band edges.

In order to understand the behavior of the Berry curvature
quadrupoles near band edges, we focus on the states near
k = 0, where the M2 term can be neglected. For simplic-
ity, we also neglect the ε(k) term which does not change
the Berry curvature, and then the QAH Hamiltonian is re-
duced to a massive Dirac Hamiltonian. The energy dispersion
is approximated as E±(k) ≈ ±

√
v2k2 + M2

0 , and the Berry
curvature �±(k) ≈ ± v2M0

2(v2k2+M2
0 )3/2 . By taking the derivative,

we get ∂xE±(k) = ± v2kx√
v2k2+M2

0

and ∂x�±(k) = ∓ 3v4M0kx

2(v2k2+M2
0 )5/2 .

The two bands have the same Berry curvature quadrupole, and
the quadrupole of the conduction band can be calculated at

zero temperature as

Qxx =
∫

k
∂xE+∂x�+δ(E+ − μ)

= −3v2M0

8π

∫
E2

+ − M2
0

E5+
δ(E+ − μ)dE+

= −3v2M0

8π

μ2 − M2
0

μ5
. (D6)

The result of Eq. (D6) is depicted in dashed line in Fig. 4(b),
which can help to understand the behavior of quadrupole in
the QAH model near the band edges.

2. NLAH effect in twisted bilayer graphene near 3/4 filling

In this section, we study the Berry curvature quadrupole
near the QAH state of TBG near 3/4 filling [37,38], with the
spin and valley polarized continuum model [58]. Giant Berry
curvature quadrupoles ∼4000 Å2 can be achieved, when the
chemical potential is gated to the band edges.

At a small twist angle θ , the low-energy physics of TBG
can be described by the continuum model formed by Dirac
fermions in each layer [61]. In the layer basis, the effective
Hamiltonian for valley ξ = ±1 can be written as

H0,ξ =
(

Hb,ξ (k) Tξ (r)

T †
ξ (r) Ht,ξ (k)

)
, (D7)

where t (b) labels the top (bottom) layer, which is rotated
by +(−) θ

2 around the z axis. The top layer is described by
a massless Dirac Hamiltonian:

Ht,ξ (k) = −h̄vF R̂− θ
2
(k − Kt,ξ ) · (ξσx, σy), (D8)

where h̄vF = 5.253 eV Å is the original Fermi velocity, R̂ is
the rotation operator, and σ denotes the Pauli matrices acting
on the AB sublattice space. Kt/b,ξ = ξ |K|(

√
3

2 ,∓ 1
2 ) are the BZ

corners, with the magnitude |K| = 8π
3a sin θ

2 and a = 2.46 Å is
the graphene lattice constant.

The bottom layer Hamiltonian contains a mass term in-
duced by the hexagonal boron nitride substrate:

Hb,ξ (k) = −h̄vF R̂ θ
2
(k − Kb,ξ ) · (ξσx, σy) + �σz, (D9)

with � = 17 meV [62]. The interlayer hopping is

Tξ (r) =
(

u u′
u′ u

)
+

(
u u′e−iξφ

u′eiξφ u

)
eiξG1·r

+
(

u u′eiξφ

u′e−iξφ u

)
eiξ (G1+G2 )·r, (D10)

with φ = 2π/3. G1 and G2 are the reciprocal lattice vec-
tors of the moiré superlattice, which are chosen as G1 =
|G|(− 1

2 ,−
√

3
2 ), G2 = |G|(1, 0),with the magnitude |G| =√

3|K|.The parameters u = 79.7 meV and u′ = 97.5 meV are
adopted from Ref. [63], which has taken the effect of lattice
corrugation into consideration.

In order to describe the QAH state near 3/4 filling, where
the valley and spin degeneracies are lifted by interactions,
we adopt the valley and spin polarized Hamiltonian from
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FIG. 5. (a) Band structures for valley and spin polarized twisted
bilayer graphene aligned with hexagonal boron nitride at θ = 1.05◦,
with valley splitting Ev = 3 meV and spin splitting Es = 2.5 meV.
The high-symmetry points are marked in the moiré BZ in (b), where
K = Kt,+ = Kb,− and K ′ = Kb,+ = Kt,−. (b) Berry curvature distri-
bution of the conduction band at K valley with s = ±1. (c) Enlarged
energy spectra near 3/4 filling, with the origin of the energy axis
shifted to E0 = 8.85 meV. (d) Gate dependence of the quadrupole
Qxx near 3/4 filling, with the temperature T = 2 K.

Ref. [58]:

Hξ,s = H0,ξ + ξEv + sEs, (D11)

where Ev and Es are the valley and spin splittings, respec-
tively, and s = ±1 is the spin index.

The band structures at the magic angle θ = 1.05◦ are
shown in Fig. 5(a),where the red and blue lines denote the
band structures at K and −K valleys respectively, while solid
and dashed lines represent the states with spins up and down.
The black dashed line indicates the energy E0 = 8.85 meV
which corresponds to the 3/4 filling, and the high-symmetry
points are marked in the moiré BZ in Fig. 5(b). The en-
larged energy spectra are shown in Fig. 5(c), with the origin
of the energy axis shifted to E0 which corresponds to 3/4
filling.

The conduction bands at K valley with spin up and
down have the same Chern number C = −1, and the same
Berry curvature distribution as shown in Fig. 5(b), while the
bands at −K valley have the Chern number C = 1. At 3/4
filling, three of the conduction bands are filled while one
band is left empty, leading to the QAH phase with Chern
number C = 1.

The pristine TBG respects the D6 symmetry, which
is reduced to C3 when it is aligned with the hexagonal
boron nitride substrate. The C3 symmetry requires Qxx =
Qyy andQxy = 0, and the gate dependence of Qxx component
is shown in Fig. 5(d). When the chemical potential is gated to
the band edges, giant Berry curvature quadrupoles ∼4000 Å2

can be achieved.

APPENDIX E: ANGULAR DEPENDENCE OF THE NLAH
RESPONSES IN 2D SPACE

In this Appendix, we discuss the angular dependence of
the NLAH responses induced by Berry curvature multipoles
in 2D space for three purposes. First of all, by applying the
current in a general direction, we see how the multipole com-
ponents contribute to the NLAH voltage so that their physical
meanings can be understood. In general, the NLAH voltage
induced by the Berry curvature moment with angular mo-
mentum quantum number m has m-fold angular dependence.
Second, due to the unique angular dependence of the NLAH
voltage, it can be a characteristic signature to identify the
NLAH response. Third, the angular dependence can also be
used to distinguish the NLAH responses related to the anti-
symmetric part of the conductivity tensor from the Drude-like
contributions which are related to the symmetric part of the
conductivity tensor.

1. Third-order NLAH response induced by Berry
curvature quadrupole

In the DC limit ω � 1
τ

, The NLAH and Drude-like con-
tribution to the third harmonic generation can be simplified
as

σ
(3),H
μαβγ (3ω) = −e4τ 2

4h̄3

∫
k

f0∂β∂γFμα, (E1)

σ
(3),D
μαβγ (3ω) = e4τ 3

4h̄4

∫
k

f0∂μ∂α∂β∂γ εk. (E2)

A generic electric field E(ω) = (Ex, Ey) will generate a
third-order NLAH current jH (3ω) = ( jH

x , jH
y ), with

jH
x = −e4τ 2

4h̄3

(
QxxE2

x Ey + 2QxyExE2
y + QyyE3

y

)
, (E3)

jH
y = e4τ 2

4h̄3

(
QxxE3

x + 2QxyE2
x Ey + QyyExE2

y

)
, (E4)

as well as a Drude-like contribution jD(3ω) = ( jD
x , jD

y ), with

jD
x = σ D

xxxxE3
x + 3σ D

xxxyE2
x Ey + 3σ D

xxyyExE2
y + σ D

xyyyE3
y , (E5)

jD
y = σ D

xxxyE3
x + 3σ D

xxyyE2
x Ey + 3σ D

xyyyExE2
y + σ D

yyyyE3
y .

(E6)

Now, we consider a general case in which a current j(ω) =
j(cos θ, sin θ ) is applied at angle θ away from the x direction,
where j = I/W is the current density and W is the width in the
transverse direction. For simplicity, we consider an isotropic
linear resistivity ρ(1)(ω) = ρ0(1 0

0 1), which can be achieved
in systems with p-fold (p � 3) rotational symmetry. Then the
corresponding applied electric field E(ω) = ρ0 j(cos θ, sin θ ).
The third-order NLAH current induced by the electric field
can be obtained by Eqs. (E3) and (E4) as

jH
⊥ (3ω) = − jH

x sin θ + jH
y cos θ

= e4τ 2

8h̄3 (ρ0 j)3[(Qxx + Qyy) + (Qxx − Qyy) cos(2θ )

+ 2Qxy sin(2θ )]. (E7)
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Or equivalently the NLAH voltage is

V H
⊥ (3ω)/W

(I/W )3
= e4τ 2

8h̄3 ρ4
0 [(Qxx + Qyy) + (Qxx − Qyy) cos(2θ )

+ 2Qxy sin(2θ )]. (E8)

The contribution from the trace of quadrupole has no angular
dependence, while the contributions from the traceless com-
ponents have twofold angular dependence.

The third-order Drude-like current can be obtained by
Eqs. (E5) and (E6), and its component along the transverse
direction (θ + π

2 ) is

jD
⊥(3ω) = − jD

x sin θ + jD
y cos θ

= 1
4 (ρ0 j)3

[( − σ D
xxxx + σ D

yyyy

)
sin(2θ )

+ 2
(
σ D

xxxy + σ D
xyyy

)
cos(2θ )

+ (
3σ D

xxyy − 1
2σ D

xxxx − 1
2σ D

yyyy

)
sin(4θ )

+ 2
(
σ D

xxxy − σ D
xyyy

)
cos(4θ )

]
. (E9)

Or equivalently the corresponding voltage is

V D
⊥ (3ω)/W

(I/W )3
= 1

4
ρ4

0

[( − σ D
xxxx + σ D

yyyy

)
sin(2θ )

+ 2
(
σ D

xxxy + σ D
xyyy

)
cos(2θ )

+
(

3σ D
xxyy − 1

2
σ D

xxxx − 1

2
σ D

yyyy

)
sin(4θ )

+ 2
(
σ D

xxxy − σ D
xyyy

)
cos(4θ )

]
. (E10)

The first two terms contributed by −σ D
xxxx + σ D

yyyy and σ D
xxxy +

σ D
xyyy have the same symmetry properties as the anisotropic

conductivity −σ D
xx + σ D

yy and σ D
xy respectively, which vanish

under p-fold (p � 3) rotational symmetry or p-fold rotation
combined with time-reversal symmetry. The contributions
from last two terms have fourfold angular dependence.

As a conclusion, in isotropic 2D materials, the third-order
NLAH contributions which have twofold or no angular de-
pendence, can be easily distinguished from the Drude-like
contributions which have fourfold angular dependence.

Especially, under 4′m′m MPG which is the case for mono-
layer SrMnBi2, Qxx = −Qyy, Qxy = 0, σ D

xxxx = σ D
yyyy, σ D

xxxy =
σ D

xyyy = 0, the NLAH and the Drude-like contributions can be
simplified as

V H
⊥ (3ω)/W

(I/W )3
= e4τ 2

4h̄3 ρ4
0 Qxx cos(2θ ), (E11)

V D
⊥ (3ω)/W

(I/W )3
= 1

4
ρ4

0

(
3σ D

xxyy − σ D
xxxx

)
sin(4θ ). (E12)

The NLAH voltage shows a twofold angular dependence,
while in contrast the Drude-like response shows a fourfold
angular dependence. In particular, when the electric current is
applied along the x or y direction, the Drude-like contribution
vanishes and the NLAH voltage optimizes.

2. Fourth-order NLAH response induced by Berry
curvature hexapole

Since the Drude-like contribution to the fourth-order re-
sponse vanishes in time-reversal invariant systems, we will
only focus on the angular dependence of the NLAH contri-
bution.

In the DC limit ω � 1
τ

, The NLAH contribution to the
fourth harmonic generation can be simplified as

σ
(4),H
μαβγ δ (4ω) = e5τ 3

8h̄4

∫
k

f0∂β∂γ ∂δFμα. (E13)

A generic electric field E(ω) = (Ex, Ey) will generate a
fourth-order NLAH current jH (4ω) = ( jH

x , jH
y ), with

jH
x = e5τ 3

8h̄4

(
HxxxE3

x Ey + 3HxxyE2
x E2

y

+ 3HxyyExE3
y + HyyyE4

y

)
, (E14)

jH
y = −e5τ 3

8h̄4

(
HxxxE4

x + 3HxxyE3
x Ey

+ 3HxyyE2
x E2

y + HyyyExE3
y

)
, (E15)

which can be rewritten as

jH
± = jH

x ± i jH
y

= ∓ e5τ 3

64h̄4 i
(
H3E3

− + 3H1E2
−E+

+ 3H−1E−E2
+ + H−3E3

+
)
E±, (E16)

where E± = Ex ± iEy, Hn−2l = ∫
k f0∂

n−l
+ ∂ l

−� with n = 3 and
l = 0, 1, 2, 3.

Now, we consider a general case in which a current j(ω) =
j(cos θ, sin θ ) is applied at angle θ away from the x direction,
where j = I/W is the current density and W is the width
in the transverse direction. For simplicity, we consider an
isotropic linear resistivity ρ(1)(ω) = ρ0(1 0

0 1), then the cor-
responding applied electric field E(ω) = ρ0 j(cos θ, sin θ ), or
equivalently E± = ρ0 je±iθ . The fourth-order NLAH current
induced by the electric field can be obtained by Eq. (E16) as

jH
⊥ (4ω) = − jH

x sin θ + jH
y cos θ

= 1

2i
( jH

+ e−iθ − jH
− eiθ )

= − e5τ 3

64h̄4 (ρ0 j)4(H3e−3iθ + 3H1e−iθ

+ 3H−1eiθ + H−3e3iθ ). (E17)

Or equivalently the NLAH voltage is

V H
⊥ (4ω)/W

(I/W )4
= − e5τ 3

64h̄4 ρ5
0 (H3e−3iθ + 3H1e−iθ

+ 3H−1eiθ + H−3e3iθ ). (E18)

The contributions from H±1 have onefold angular depen-
dence, while the contributions from H±3 have threefold
angular dependence.

In particular, under 3m1′ (C3v) MPG which is the case for
the surface states of topological insulators, H±1 = 0, H3 =
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H−3 = 4Hxxx, and the NLAH response can be simplified as

V H
⊥ (4ω)/W

(I/W )4
= −e5τ 3

8h̄4 ρ5
0 Hxxx cos(3θ ). (E19)

The NLAH voltage shows a threefold angular dependence and
optimizes when the electric current is applied perpendicular to
the mirror plane.
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