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Average symmetry protects the topological surface states of topological (crystalline) insulators with time-
reversal symmetry from disorder-induced localization. However, the nature of such average symmetry for
magnetic topological insulators and, in particular, its connection to surface transport await inspection. Here,
we investigate the impact of imperfect magnetic order on an antiferromagnetic topological insulator, which is a
solid with a bulk axion field θ = π . We find that the disordered topological surfaces of an antiferromagnetic topo-
logical insulator can be generally gapped and localized. The behavior of topological surfaces is now controlled
by a mesoscopic average time-reversal symmetry that requires a magnetically imperfect system to be divisible
into finite and magnetically neutral slabs. In the presence of this mesoscopic average time-reversal symmetry,
the topological surface states will be gapless in the thermodynamic limit and tend to delocalize at a single energy
similar to the delocalization transition in the chiral universality class. The notion of average-symmetry-induced
delocalization is thus extended to account for magnetic topological insulators, and the spectroscopic and transport
signatures clarified herein are relevant to future experimental investigations.
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I. INTRODUCTION

A topological crystalline insulator (TCI) is protected by
a discrete crystalline symmetry [1,2] whose Hamiltonian
cannot be continuously deformed to that of an atomic insu-
lator while maintaining that symmetry and harbors gapless
states on symmetry-preserving boundaries. Examining such
bulk-boundary correspondence in a broader context beyond
the single-particle, clean limit is a topic of current interest
[3–8]. Disorder usually breaks the topology-protecting crys-
talline symmetry and is thus expected to be detrimental to
the bulk-boundary correspondence of TCIs [9]. Nonetheless,
previous studies indicate that the topological surface states of
a TCI cannot be localized by disorder thanks to the existence
of average symmetry [2,10,11]. In the SnTe-family mirror
Chern insulators with nonmagnetic disorder, for example,
a topological surface is divided into two kinds of insulat-
ing domains with Dirac masses of different signs related by
the mirror symmetry, which results in one-dimensional (1D)
helical states bound to the domain walls and protected by
time-reversal symmetry from backscattering. If two kinds of
domains appear with equal likelihood when the disordered
system preserves average mirror symmetry, the topological
surface evades localization due to the percolation of domain
wall states [9]. The idea is clearly very important in clarifying
the nature of topological surfaces in real materials with disor-
der and imperfection that breaks the symmetry underlying the
bulk topology.
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When the concept of TCI is extended to magnetic sys-
tems [12], a representative example is the antiferromagnetic
(AFM) topological insulator (TI), which is protected by the
symmetry S = �T1/2 (� is time reversal and T1/2 is a half
lattice translation) and characterized by a nontrivial Z2 topol-
ogy [13] and a bulk axion field θ = π [14]. Unlike the TCIs
considered previously, the magnetic order in an AFM TI
breaks time-reversal symmetry. The relevant question in this
case is then how magnetic disorder affects the spectral and
transport properties on topological surfaces, as well as the
nature and role of average symmetry, which clearly requires
investigation.

Therefore it is the purpose of the present study to examine
the impact of magnetic imperfections on the topological sur-
face states of AFM TIs. In finite-supercell models with AFM
domain walls, spectral gaps are generally observed on topo-
logical surfaces, whose size is a function of a single variable,
dubbed the Ising moment, characterizing the imperfect AFM
orders. It is further discovered that the topological surface
states of AFM TIs tend to be gapless in the thermodynamic
limit when the system can be divided into finite slabs with
zero net magnetization. This is thought to be the average time-
reversal symmetry preserved on a mesoscopic scale, which
further affects the transport of topological surfaces. Subse-
quently, employing the transfer matrix and the stochastic
Dirac equation, it is uncovered that though topological surface
states are usually localized, delocalization occurs at a single
energy when the mesoscopic average time-reversal symmetry
is present. Though this delocalization transition is intimately
related to that in the chiral universality class, it displays dis-
tinct critical behaviors. These results are then argued to be
generalizable to disordered AFM TIs beyond the domain wall
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FIG. 1. The effective tight-binding model of MnBi2Te4. (a) A
lattice model on a hexagonal lattice with layer-dependent on-site
exchange field (blue and yellow arrows) along c = cẑ. a = (1, 0, 0)
and b = 1

2 (1,
√

3, 0). (b) A ferromagnetic bilayer as a kink in the
AFM order. A configuration with periodically arranged kinks can
preserve a S̄ = �T̄1/2 symmetry.

models studied herein. These findings provide insights into the
effects of average symmetry on a disordered magnetic TCI,
as well as some of the spectroscopic and transport signatures
relevant to experimental measurements on AFM TIs, such as
the MnBi2Te4 family [14–17].

II. SURFACE SPECTRUM AND ISING MOMENT

We begin with an examination of the topological surface
states using a tight-binding (TB) model for an AFM TI,
MnBi2Te4, introduced in Ref. [18], which is derived from
the layered topological insulator Bi2Se3 [19] with a layer-
dependent exchange field (see Appendix A). This model
indeed produces an AFM TI in the case of perfect AFM
ordering, m� = (−1)� [see Fig. 1(a)], where m� is the sign
of the exchange field (magnetization) of the �th layer. The
particular type of magnetic imperfection to be investigated is
the AFM domain wall, which shows up as a ferromagnetic
bilayer [or a kink; see Fig. 1(b)] and occurs in the Ising limit
(strong anisotropy with an easy z axis). It is noteworthy that
a superlattice with equidistant domain walls with alternating
magnetization can possess a composite symmetry S̄ = �T̄1/2.
Such a superlattice will be subject to a Z2 topological clas-
sification protected by S̄ and is necessarily an AFM TI in
the weak-field limit because it can continuously deform into
a TI with in-gap surface states. However, as the exchange
field increases, a topological transition into a trivial insulator
(Z2 = 0) can happen.

This can be intuitively understood: Without interlayer cou-
pling, every monolayer undergoes a Chern-insulator transition
in the strong-field limit and develops a chiral edge state (see
Appendix A). Adjacent layers with opposite magnetization
have opposite Chern numbers, and the counterpropagating
chiral edge states are coupled when interlayer hopping is
turned on and gapped except at the kinks. The remaining
chiral edge states at separated opposite (magnetized) kinks are
also gapped by coupling mediated by the topological surface
states (of the TI), resulting in an overall spectral gap across
the topological surface (i.e., Z2 = 0).

FIG. 2. (010) surface gaps at � of 60-layer supercells with
(a) four kinks and (b) six kinks, plotted against the Ising moment I.
(c) An elementary kink migration is accomplished by a transposition
of an adjacent pair of oppositely magnetized layers. Processes I → II
and II → III demonstrate how the change in I due to migration of
one kink can be canceled by migration of another.

Hereinafter, we stick to a moderate exchange field in which
a superlattice with S̄ symmetry is topologically nontrivial,
Z2 = 1. When AFM domain walls are introduced such that
the system possesses a net magnetization, the exchange field
at the mean-field level will shift the Dirac point. Taking
the (010) surface (normal to the y axis) as an example,
the surface spectrum corresponding to a surface Hamiltonian
H = vxkxσz + vzkzσx is shifted along the kx axis when
particle-hole symmetry is broken (and the surface electrons
possess a finite z component of real spin) [18]. The degeneracy
at a Dirac point shifted away from � is accidental and can
be easily lifted by higher-order terms such as the intrinsic C3

warping term in our Hamiltonian [18,20]. In the following, we
focus on configurations with zero net magnetization, which
requires an equal number of ⇑ and ⇓ kinks (n⇑ = n⇓). By en-
forcing the average time-reversal symmetry across the whole
sample, the (gapped) Dirac point of the surface states is pinned
near � of the surface Brillouin zone (BZ).

We calculate the band gaps of (010) surface states [21] at �

of plenty of AFM-ordered supercells made of N = 60 layers
with n randomly placed kinks. Remarkably, the computed
surface gap is seen to be a function of a single variable, which
we call the Ising moment

I = �m� mod 1, (1)

where the overbar stands for averaging over all magnetic lay-
ers. Evidently, I is invariant under supercell multiplications or
origin shifts. As exemplified in Figs. 2(a) and 2(b) for n = 4
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and 6, respectively, the surface gap has a few branches charac-
teristic of different permutations of kink magnetization. Given
a kink permutation, the surface gap is singularly determined
by the value of I, irrespective of the detailed placements of the
kinks. Significantly, the surface states turn out to be gapless at
a single special I, whose value I∗ can be one of the following:

I∗ = p/n, p = 0, 2, . . . , n − 2. (2)

Each I∗ corresponds to multiple configurations, which can be
inferred from the fact that the change in I due to the move-
ment of one kink can always be canceled by the movement of
another kink, as illustrated in Fig. 2(c).

A pair of ⇑ and ⇓ kinks can bump into each other and
annihilate. All kinks can be removed by consecutive pair
annihilations, ending in the perfect AFM order. Keeping track
of the changes in I in this process of approaching the perfect
AFM order (I = 0.5) provides us with a formula for I, up to
modulo 1,

I = 0.5 − 1

N

n∑
i=1

αi pi
pi→ p̄= I∗, (3)

where we define the number of monolayers between the ith
and (i + 1)th kinks to be pi − 2. αi is the excess magnetization
n⇑ − n⇓ in the first i kinks and measures the total magnetiza-
tion transferred from the region below the ith kink (inclusive)
to the region above in order to annihilate all kinks. We observe
that I∗ is attained at equal separations p̄ = 1

n

∑
i pi = N

n .
This result has significant consequences: Assuming that

|αi|’s possess an upper bound, |αi| < αmax, and that there is no
correlation between pi’s, the deviation I − I∗ ∼ |αmax|/√n
will tend to zero in the thermodynamic limit n → ∞ and
N/n → const due to cancellation of statistical fluctuation in
pi’s. The existence of |αmax| indicates the presence of the
mesoscopic average time-reversal symmetry: If the configu-
ration can be divided into slabs with zero net magnetization,
each slab with at most 2nmax kinks, then |αmax| � nmax. The
mesoscopic average time-reversal symmetry makes any slab
in the configuration have a net magnetization that is bounded
instead of increasingly scaled with the thickness of the slab,
and results in gapless topological surface states in the thermo-
dynamic limit.

III. SURFACE TRANSPORT
IN THE THERMODYNAMIC LIMIT

The transport of topological surface states of the AFM TI
with kinks in the thermodynamic limit can be investigated
by establishing a transfer matrix description. We will begin
with the (010) topological surface and will then generalize
the results to any topological surface in the Discussion. The
(010) surface is chosen because it preserves the nonmagnetic
x-mirror symmetry, Mx, in the D3d crystal point group of
MnBi2Te4. We can exploit this mirror operation as a local
gauge transformation that conducts a change of bases locally
within each site in ↓ layers. Since Mx flips the z component
of spin, the transformed Hamiltonian will possess a uniform
+ẑ exchange field and now describes a nominal perfect ferro-
magnetic phase. The model at kx = 0 after this local gauge
transformation has uniform on-site terms and uniform (but

FIG. 3. (a) A local gauge transformation changes the AFM kink
model (top) into the FM bond defect model (bottom). The bond
defect zones are highlighted as pink blocks, and FM regions are
highlighted as green blocks. (b) and (c) (010) surface spectra of a
homogeneous FM bulk without bond defects (b) and a superlattice of
defect zones (c). When the unit cell is doubled, both spectra will be
folded, and a Dirac point will appear at � of the folded BZ protected
by the S or S̄ symmetry. Thus the momenta of two surface states at
the same energy should be kz and π − kz, respectively.

modified) interlayer hoppings for the original perfect AFM
phase. With a bilayer domain wall, the interlayer hopping
between these two layers remains unchanged after the local
gauge transformation (see Appendix B). In the case of multi-
ple kinks, this gauge transformation leads to a random “bond
defect” model [see Fig. 3(a)], which is conducive to a transfer
matrix treatment.

A bond defect configuration is composed of homogeneous
FM blocks without defects and bond defects gluing adjacent
blocks. The homogeneous FM bulk supports a pair of gapless
surface modes, as shown in Fig. 3(b), since it corresponds
to an S-symmetric AFM TI before the local gauge transfor-
mation. We define a “defect zone” as being composed of 2L
layers centered at a bond defect, as depicted in Fig. 3(a). L
is large enough so that surface states at the boundaries of
a defect zone can be adequately expanded in terms of the
homogeneous FM surface modes [L = 3 is enough for the
(010) surface]. Apparently, the superlattice of defect zones
also supports gapless surface modes, as shown in Fig. 3(c),
as it corresponds to an S̄-symmetric AFM TI before the local
gauge transformation. The existence of gapless surface modes
enables us to read the eigenvalues of their transfer matrices
across the low-energy regime of interest from their surface
spectra. We write down their transfer matrices:

T0(kz ) = diag[eikz , ei(π−kz )] ≡ σzT (kz ) (4)

for a monolayer and

Tb(θ, u) = W (u)T0(θ )W (u)−1 (5)

for a defect zone, where T (ξ ) = diag[eiξ , e−iξ ] and kz(θ )
is the phase acquired by the branch of the surface mode
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propagating in the −ẑ direction across the monolayer (defect
zone). W (u) = [[1, u]T , [u∗, 1]T ] accounts for the scattering
of the homogeneous FM surface modes by the bond defect
and encodes the formal constraint of current conservation.
The construction of the transfer matrix given here is valid
irrespective of any adiabatic S-invariant deformation on the
AFM TI’s Hamiltonian.

With these elemental transfer matrices, we can compute the
total transfer matrix of a bond defect configuration. One can
verify that the total transfer matrix Tn of a configuration that
corresponds to an AFM-ordered supercell with n kinks that
preserves the average time-reversal symmetry satisfies (see
Appendix G)

tr Tn = 2 + 16N2k2
z |u′|2(I − I∗)2 + O(|u′|4), (6)

at the energy where θ ′ = 0, with θ ′ and u′ defined by the equa-
tion Tb(θ ′, u′) = T (φ̄)Tb(θ, u). φ̄ = kz( p̄ − 2L) is the average
phase acquired by traveling from one defect zone to the next.
θ ′ ≈ φ̄ + θ in the small-u limit, i.e., the sum of phases from
traveling between defect zones and from crossing a defect
zone. Thus the condition θ ′ = 0 indicates a complete phase
cancellation, and a traveling mode acquires no net phase on
average across the entire surface. Therefore Eq. (6) describes
the trace of Tn at � in the surface Brillouin zone of the super-
cell. This is consistent with the eigenvalues of Tn, λ1 = λ2 = 1
at I = I∗ for θ ′ = 0 (tr Tn = 2, det Tn = 1). When I 
= I∗,
tr Tn > 2 and there are no traveling modes at the energy where
θ ′ = 0, which corresponds to the band-gap opening at � for
I 
= I∗ observed in the previous section.

Equation (6) demonstrates that the band-gap closure at
I = I∗ given by Eq. (3) is generally valid for supercells with
arbitrary numbers of pairs of opposite kinks, and a (gapped)
Dirac point would show up at �. Equation (6) results solely
from the generic forms of T0 and Tb, which in turn, as we
shall see in the Discussion, are dictated solely by S- (S̄-
)symmetry-protected nontrivial topology. Consequently, the
empirical observation regarding the existence and value of
I∗ when the surface gap closes applies to any topological
surfaces. Since Eq. (6) holds irrespective of the permutation of
kink magnetization, the universal condition θ ′ = 0 indicates
that different configurations with the same kink density will
open a surface gap at the same energy on the same topological
surface.

In the thermodynamic limit n → ∞ and N/n → const, the
localization of the topological surface is characterized by the
Lyapunov exponent [22,23] of Tn:

γ = lim
n→∞

ln ‖Tn‖
n

, (7)

which is related to the dimensionless conductance through
g ∼ sech2 nγ [24]. γ > 0 corresponds to localization,
whereas γ = 0 in a delocalized case. Assuming that pi’s in-
dependently follow an identical exponential distribution, we
calculate the Lyapunov exponent γ of Tn [25], as shown
in Figs. 4(a) and 4(b). Concerning the distribution of kink
magnetizations, we have examined two disordered ensem-
bles: Each sample in ensemble I only preserves average
time-reversal symmetry across the whole sample, while each
sample in ensemble II preserves the mesoscopic average time-
reversal symmetry. A configuration drawn from ensemble II is

FIG. 4. Computed Lyapunov exponent γ for (a) ensemble I and
(b) ensemble II. γ are averaged over 100 samples with 215 kinks
for each point in the φ̄-θ plane, with u = 0.1eiπ/8/ cos θ . Dashed
lines indicate a typical θ = κφ̄ + θ0 (blue) and θ ′ = 0 (green). Crit-
ical scaling of γ is shown for (c) ensemble I, γ ∝ 1/ ln |φ̄|, and
(d) ensemble II, γ ∝ |φ̄|ν with ν � 1.76. Vertical bars represent the
standard deviations. Note that φ̄ = kz( p̄ − 2L) and note the linear
relation between energy E and kz, θ : E = v0kz + ω0 = vdθ + ωd , so
φ̄ ∝ E .

made up of finite slabs of zero net magnetization, where each
slab has at most six kinks.

For a specific set of tight-binding model parameters in-
cluding the strength of the field, γ should be a function of
two independent parameters, energy E and the kink density.
However, we compute it as a function of another set of two
independent parameters, θ and φ̄, to achieve the universality
of calculated results across models. Due to the linear dis-
persion of surface states in the low-energy regime, kz and
θ bear approximate linear relations (fixed by TB model pa-
rameters) to E , and φ̄ = kz( p̄ − 2L) is also proportional to
the average spacing between defect zones. Thus a straight
line θ = κφ̄ + θ0 in the parametric plane will correspond to a
specific set of TB model parameters with a given kink density.

For ensemble I, γ is typically finite over the energy range
examined as displayed in Fig. 4(a), suggesting localized sur-
face states in the presence of imperfect magnetic order. The
configurations in ensemble I generally correspond to I 
= I∗
because |αi| = |n⇑ − n⇓| in the first i kinks is now approxi-
mately a sum of i independent random integers ±1 sampled
with equal probability and typically of O(

√
n), so the devi-

ation I − I∗ will be of O(1). Delocalization appears only
at θ = φ̄ = 0, when the homogeneous bulk and the defect
zone superlattice have surface modes of equal energy at �,
and θ ′ = 0 at the very same energy. According to Eq. (6),
tr Tn = 2 due to kz = 0 and Tn exceptionally supports trav-
eling eigenmodes at θ ′ = 0, which display a propensity for
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delocalization. The tendency toward delocalization at θ ′ = 0
becomes more pronounced in ensemble II, where a tilted oval-
shaped region with vanishing γ appears near the origin and
is more likely to be observed. Beyond the oval region, the
Lyapunov exponent stays finite indicating localization. Now
we see the second consequence of the mesoscopic average
time-reversal symmetry: The generally localized topological
surface states tend to delocalize at a single energy.

IV. DISCUSSION

We have seen that the mesoscopic average time-reversal
symmetry has important impacts on the bulk-boundary cor-
respondence of AFM TIs: leaving topological surface states
gapless and driving a delocalization transition at a sin-
gle energy in the thermodynamic limit. We can view the
S symmetry as the clean limit of the mesoscopic average
time-reversal symmetry as it enforces neutralization of mag-
netization within any adjacent bilayers, and in this sense, the
latter is a kind of “average S symmetry.” The mesoscopic av-
erage time-reversal symmetry discussed is physically relevant
for two considerations. First, a mediated AFM interaction be-
tween neighboring kinks will favor the cancellation of the net
magnetization. Second, the magnetic dipolar interaction that
leads to magnetic domains in ferromagnetic materials tends to
suppress magnetization on macroscopic scales [26]. Here, we
put our theory in contact with systems described by stochastic
Dirac equations (SDEs) to understand the critical behaviors
of the delocalization transition near zero energy. The map to
SDEs also allows us to generalize our conclusions to AFM TIs
with various types of interlayer imperfections beyond AFM
domain walls.

The computed delocalization transition is closely related
to that in disordered systems belonging to the chiral uni-
versality class [27–29]. First, we note that both T0 and Tb

satisfy σ1T0|bσ1 = −T ∗
0|b; so the total transfer matrix Tn of an

arbitrary bond defect configuration can be decomposed into
the product of a sequence of transfer matrices (Mi ) that satisfy
an effective time-reversal symmetry σ1Miσ1 = M∗

i , ∀i [30].
Tn = Mn · · · M1 can be seen as the evolution operator of a 1D
SDE (see Appendix F) [31].

[−iσ3∂x + V (x, E ) + m(x, E )σ1]� = 0, (8)

which is invariant under σ1K (K for complex conjugation).
This is similar to the one-dimensional random hopping model
[27,28], whose Schrödinger equation in the continuum limit
near the band center takes the form

h� = [−iσ3∂x + m(x)σ2]� = E�, (9)

where h satisfies a chiral symmetry σ1hσ1 = −h. Eigenstates
of Eq. (9) show delocalization at E = 0 if the average mass
〈m(x)〉 = 0 where the critical scaling of the Lyapunov expo-
nent near E = 0 is γ ∼ 1/ ln |E |. In fact, the delocalization
criticality in ensemble I near θ = φ̄ = 0 shows a similar
scaling γ ∼ 1/ ln |φ̄| see Fig. 4(c) and note that E ∝ φ̄. Fur-
thermore, γ in ensemble I possesses a finite fluctuation at
delocalization as in the chiral universality class, which means
that a typical sample at θ = φ̄ = 0 is generally expected to be
a bad conductor.

The Dirac equation in Eq. (8) also helps explain the de-
localization behaviors in ensemble II within the oval-shaped
parametric region tilted along θ ′ = 0. θ ′ = 0 leads to the
average potential 〈V 〉 = 0 since both are proportional to the
average phase accumulated by traveling modes across the
sample. The topological surface states of a sample drawn
from ensemble II are gapless at θ ′ = 0. On the other hand, a
finite 〈m〉 definitely opens a gap. Therefore it can be inferred
that 〈m〉 = 0 for the gapless ensemble II. Thus samples in
ensemble II at θ ′ = 0 are indeed close to the delocalization
criticality. However, the delocalization transition in ensemble
II is computed to exhibit an algebraic scaling

γ ∼ φ̄ν (10)

with ν ∼ 1.76, which results in a broadened region with van-
ishing γ . Furthermore, the fluctuation of γ is suppressed at
delocalization, and a topological surface of a sample with
magnetic disorder akin to ensemble II may actually corre-
spond to a good conductor. We believe that this peculiarity
of ensemble II is closely related to the mesoscopic average
time-reversal symmetry: Samples in ensemble II by design
can be divided into slabs with zero net magnetization, and
as proved in Appendix F, the mass terms of each slab can
effectively cancel out when 〈V 〉 = 0, leading to a delocalized
state.

It is important to put our results in the context of recent
studies on disordered θ = π topological systems, which also
point to disorder-induced surface localization [32–34]. The
surface localization in these studies is a result of the breaking
of average time-reversal symmetry necessary to access the
axion insulator phase. In contrast, the surface localizes in
our systems with average time-reversal symmetry, which is
usually expected to result in surface delocalization [10]. The
departure of our results from the conventional wisdom can be
attributed to the surface anisotropy of time-reversal breaking
in the presence of background magnetic order. The surface
of a disordered θ = π bulk phase can be described by a 2D
random-mass Dirac Hamiltonian where surface delocaliza-
tion is governed by transport properties of 1D chiral modes
bound to the walls between insulating domains of positive
and negative masses. It is usually assumed that the random
Dirac Hamiltonian can be mapped to the Chalker-Coddington
network model [35,36] that takes into account the quantum
tunneling between chiral modes at nodes and effectively de-
scribes a 2D percolation picture of surface delocalization.
With the background layered magnetic order, however, the
orientation of chiral edge modes bound to almost parallel
domain walls is highly anisotropic. Especially, in the presence
of translation invariance along edges of layers as in our model,
the disorder problem can be effectively reduced to 1D with a
good quantum number kx, where the 2D percolation picture
apparently does not apply.

We are then in a position to clarify the connection between
our results and the nontrivial topology of an AFM TI. To this
end, let us consider a more generic configuration that loses
the S symmetry due to any of the various imperfections, e.g.,
fluctuation in the exchange field strength, on-site potential,
hopping strength, and magnetic domain wall or kinks, etc.,
although within each layer homogeneity stays intact. We study
an arbitrary imperfect slab from the disordered configuration,
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FIG. 5. Any imperfect slab in a disordered configuration can be
made into an S̄-symmetric superlattice with its time-reversal images.
ψk and φ−k are two branches of superlattice surface modes along the
kz axis, and S̄ (green arrows) specifies the form of the transfer matrix
of the imperfect slab as described in the text.

whose cleaving surfaces on both ends are separately located
in a perfect AFM block. An S̄-symmetric superlattice can be
built from a supercell composed of the imperfect slab and its
time-reversal image, as depicted in Fig. 5. The superlattice
can be an AFM TI [37] and thus accommodates two branches
of gapless surface states along the kz axis ensured by the
nontrivial topology. The wave functions of these surface states
near both ends of the slabs (within perfect AFM layers) will
be linear superpositions of the surface modes of the perfect
AFM TI at the same energy, which enables a transfer matrix
description of the transport property of the slab in terms of
how coefficients in the linear superpositions evolve across the
slab.

At a given energy E , if the wave function at a ↑ layer
(within a perfect AFM block) can be expanded in terms of
two components ψ and φ, then the wave function at a ↓
layer (within a perfect AFM block), by S symmetry in the
perfect AFM TI, can be expanded in terms of �φ and �ψ .
We consider evolution of expansion coefficients using ψ and
φ (�φ and �ψ) as bases in ↑ (↓) layers and choose ψ and
φ to be the wave functions of two branches of surface modes
ψ0k and φ0−k of the perfect AFM TI at a ↑ layer, dubbed ψ0

and φ0. S symmetry relates ψ0k and φ0−k:

Sψ0k = αkφ0−k, Sφ0−k = β−kψ0k, (11)

where αk and βk are phase factors that satisfy α∗
k β−k = −e−ik

since S2 = −T1 (T1 is a lattice translation). With these rela-
tions we can write down the transfer matrix T↓↑ going from a
↑ layer to its adjacent ↓ layer, and T↑↓ from a ↓ layer to the
next ↑ layer,

T↓↑ = α∗
k

[
e−ik 0

0 1

]
, T↑↓ = αk

[−1 0
0 e−ik

]
. (12)

Upon fixing the U (1) gauge degree of freedom to our advan-
tage by assigning αk = −eik/2, we have T↓↑ = T↑↓ taking the
form identical to T0 [38].

Similar arguments apply to the S̄-symmetric superlattice
(see Fig. 5). The transfer matrix M1 going from the slab to its
time-reversal image as well as M2 from the time-reversal im-
age to the next supercell will take the form identical to T0 but

in a different set of bases. Transformed back to the bases ψ0

and φ0, the transfer matrix of the imperfect slab must take the
form Tb of a bond defect in Eq. (5) as required by the current
conservation. Therefore, without knowing the details of the
imperfection associated with the superlattice, the S̄ symmetry
already dictates the form of the surface transfer matrices. Con-
sequently, the generic imperfect configuration considered can
be described by the same SDE as Eq. (8). Similar behaviors
to those of ensemble II are then expected when a (properly
generalized) mesoscopic average time-reversal symmetry is
preserved.
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APPENDIX A: THE EFFECTIVE TIGHT-BINDING
MODEL OF MnBi2Te4

Here we describe the lattice model of an AFM TI used in
the main text. We follow Zhang et al. [18] for the effective
tight-binding model of MnBi2Te4, by regularizing the four-
band effective k · p model of Bi2Se3 [19],

H0(k) = ε0(k)14×4 + M(k)s0σ3 + v(kxsx + kysy)σ1

+ vzkzszσ1 + w(k3
+ + k3

−)s0σ2, (A1)

on a 3D hexagonal lattice. In Eq. (A1), k± = kx ±
iky, ε0(k) = C0 + C1k2

z + C2(k2
x + k2

y ), and M(k) = M0 +
M1k2

z + M2(k2
x + k2

y ). si and σi are Pauli matrices (i = 1, 2, 3)
or the unit matrix (i = 0) for spin and orbital degrees of
freedom, respectively. The hexagonal lattice is defined by
the lattice vectors a1 = (1, 0, 0), a2 = 1

2 (1,
√

3, 0), and c =
(0, 0, 1). Regularization on this lattice results in a non-
magnetic tight-binding model with only nearest-neighbor
hoppings

H0 =
∑
�q

ψ
†
�qD0(q)ψ�q + ψ

†
�qJqψ�+1q + ψ

†
�+1qJ†

q ψ�q, (A2)

where � is the layer index, q = (qx, qy) is the in-plane crys-
tal momentum, and ψ�q (ψ†

�q) is a four-component vector of
annihilation (creation) operators. D0(q) and Jq are given by

D0(q) = [ε0(q)14×4 + M(q)s0σ3

+ v(qxsx + qysy)σ1 + w(q3
+ + q3

−)s0σ2

+ 2C114×4 + 2M1s0σ3] regularized,

Jq = −C114×4 − M1s0σ3 + 1

2i
vzszσ1, (A3)
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FIG. 6. Bulk and surface spectra of effect lattice model of MnBi2Te4 in (a) and (b) the paramagnetic phase (m = 0), (c) and (d) the AFM
phase [ml = (−1)l ], and (e) and (f) the FM phase (ml = 1).

where lattice regularization within each monolayer is accom-
plished by the following substitutions:

qx → 1

3
[2 sin(q1) + sin(q2) + sin(q3)],

qy → 1√
3

[sin(q2) − sin(q3)],

q2
x + q2

y → 4 − 4

3
[cos(q1) + cos(q2) + cos(q3)],

q2
x − q2

y → 4

3
[−2 cos(q1) + cos(q2) + cos(q3)],

qxqy → 2√
3

[− cos(q2) + cos(q3)],

q3
+ + q3

− → 16[− sin(q1) + sin(q2) + sin(q3)].

(A4)

Here, q1, q2, and q3 are defined as

q1 = q · a1, q2 = q · a2, q3 = q1 − q2. (A5)

We then add a layer-dependent Ising field modulated by the
order parameter m� = ±1 to each layer

Dq(m�) = D0(q) + m� · mszσ0, (A6)

which finally leads to the Hamiltonian:

H =
∑
�q

ψ
†
�qDq(m�)ψ�q + ψ

†
�qJqψ�+1q + ψ

†
�+1qJ†

q ψ�q. (A7)

We have used M0 = −1, M1 = 1, M2 = 1, C0 = 0,
C1 = −0.3, C2 = 0, vz = 1.5, v = 1.5, w = 1.5/16, and m =
1.5 (default for magnetic phases) as our choice of parameters
throughout this paper. With this choice, we can reproduce the
bulk topology of MnBi2Te4 in different magnetic phases [16],
namely, a TI in the paramagnetic phase, an antiferromagnetic
(AFM) TI in the AFM phase, and a Weyl semimetal in the
ferromagnetic (FM) phase. The bulk and surface spectra in
the nonmagnetic, AFM, and FM regimes are shown in Fig. 6.

Now we describe the electronic structure of an AFM-
ordered supercell with kinks, noting especially a topological
phase transition driven by varying exchange strength m.
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FIG. 7. Topological transition of an S̄-symmetric supercell.
(a) Unfolded bulk band structure of the S̄-symmetric supercell shown
in (d) at m = 1.5. Kink modes are highlighted (in the green box). The
inset shows the energy of kink modes as a function of m, which sug-
gests a band inversion. (b) (010) surface spectra at m = 1.5 (before
band inversion). (c) (010) surface spectra at m = 2.25 (after band
inversion); the inset shows how the surface states are hybridized.
(d) Structure of the S̄-symmetric supercell. O1 and O2 are the centers
of inversions P1 and P2.

Shown in Fig. 7(a) is the bulk band structure of the S̄-
symmetric superlattice in Fig. 7(d), unfolded [39] back to the
Brillouin zone of the nonmagnetic primitive cell. The bands
are at least doubly degenerate due to the symmetry P1�,
where P1 is an inversion centered at O1. The system also pre-
serves an inversion symmetry P2 centered at O2. Remarkably,
there are two groups of quasi-2D bands dispersionless in kz

across the band gap, which are localized on the kinks (see
Fig. 8). The upper and lower degenerate pair of kink modes
possess opposite parity at �. Increasing the exchange field
drives a band inversion between them, leading to a topolog-
ical transition from the nontrivial Z2 = 1 phase to the trivial
Z2 = 0 phase.

As described in the main text, this topological transition is
accomplished through each magnetic monolayer undergoing
a Chern-insulator transition. This is evident by noting that
without interlayer coupling, the effective Hamiltonian of
each monolayer resembles that of Hg1−yMnyTe quantum
wells [40], which transforms into a Chern insulator in
the strong-exchange-field limit. The chiral edge state of
a monolayer is coupled by interlayer hopping with its
counterpropagating (two-half) partner(s) from adjacent layers
with opposite Chern numbers, and becomes gapped except at
kinks. Chiral edge states at opposite kinks merge into helical
states and hybridize with the Dirac surface states of (AFM)
TI, leading to an overall surface gap as shown in Figs. 8(b)
and 8(h). This picture is further supported by the surface
spectrum calculation of supercells shown in Figs. 8(c) and
8(g), where two kinks are of the same magnetization. Their
surface spectra possess two chiral states in the strong-field
limit as shown in Figs. 8(d) and 8(h).

APPENDIX B: THE LOCAL GAUGE TRANSFORMATION

The Hamiltonian Eq. (A1) has the point group symmetry
D3d , which includes an x-mirror symmetry Mx = −isxσ3

(according to Sec. III of Ref. [19], Mx = Rx(π )P = isxσ0

before a gauge transformation U1 = diag(1,−i, 1, i), differ-
ing from our convention by an insignificant minus sign). As
Mx flips the exchange field along the z axis, we have the
following symmetry relations:

MxDq(m�)M−1
x = Dq̄(−m�),

MxJqM−1
x = Jq̄, (B1)

with q̄ = (−qx, qy).
We consider a local gauge transformation to the

Hamiltonian Eq. (A7) that applies iMx to every ↓ layer, and
the resultant Hamiltonian is

H ′ =
∑
�q

ψ
†
�qD�qψ�q + ψ

†
�qJ�qψ�+1q + ψ

†
�+1qJ†

�qψ�q, (B2)

where

D�q =
{

Dq(+1), m� = +1
Dq̄(+1), m� = −1

and the interlayer hopping J�q depends on the magnetization
of two layers it connects in the kink model:

J�q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Jq, ↑↑
iMxJqiMx = Jq̄, ↓↓
JqiMx = iMxJq̄, ↑↓
iMxJq, ↓↑ .

The model in Eq. (B2) describes a bond defect model at
kx = 0 (q = q̄) that possesses a uniform on-site term D�q =
D�ky and uniform interlayer hoppings J�q = iMxJky except at
the center of kinks J�q = Jky .

APPENDIX C: CALCULATION DETAILS
OF FIGURES 2 AND 4

We have generated a series of AFM-ordered supercells
with kinks, whose surface gaps are calculated using the it-
erative Green’s function method [21] and plotted against the
Ising moment in the main text. The supercells are generated by
first shuffling 30 ↑ and 30 ↓ layers and performing simulated
annealing on the magnetic moments assuming an AFM inter-
layer coupling. Supercells with a net moment or with domain
wall separation of <3 layers are discarded. In the end, we
obtain, from 4000 generated samples, 934 supercells with two
domain walls, 2025 supercells with four domain walls, and
892 supercells with six domain walls. Surface gaps of super-
cells with two domain walls are also found as a function of
Ising moments but are not displayed because supercells with
equal I are equivalent up to translation, and the confinement
effect cannot be excluded as a confounding factor.

The total transfer matrix Tn of a bond defect configuration
discussed in the main text is

Tn = T dn
0 (kz )Tb(θ, u) · · · T d1

0 (kz )Tb(θ, u), (C1)

where di = pi − 2L is the number of monolayers between the
ith and (i + 1)th defect zones. We calculate the Lyapunov
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FIG. 8. (a), (c), (e), and (g) Local density of kink modes at � in different supercells at m = 2.25 (after band inversion). (b), (d), (f), and (h)
(010) surface spectra of the same supercells.

exponent of Tn by QR decomposition [25] with T di
0 (kz ) cal-

culated as σ di
z T (φi ), where φi = kzdi. On the premise that

separations of the neighboring kinks independently follow an
identical exponential distribution, φi is sampled as a continu-
ous variable via φi = φ̄x with x drawn according to the prob-
ability density p(x) = exp(−x), x ∈ [0,∞). As only whether
di is even or odd enters into σ di

z , they are sampled as a binary
sequence. In ensemble I, di’s are sampled as a sequence of ran-
dom integers ±1, fulfilling the condition n⇑ = n⇓. In ensem-
ble II, di’s of each slab are randomly chosen from all possible
sequences of di’s of maximum length 6 satisfying n⇑ = n⇓.

APPENDIX D: DERIVATION OF EQUATION (3)

The definition of the Ising moment

I = 1

N

N∑
�=1

�m� mod 1 (D1)

is simple for numerical calculation but not intuitive. As men-
tioned in this paper, keeping track of the change in I in
restoring the perfect AFM ordering (I = 0.5) by pair anni-
hilation of opposite kinks ⇑ and ⇓ leads to an expression of I
in terms of separations between kinks

I = 0.5 − 1

N

n∑
i=1

αi pi, (D2)

where pi − 2 is the number of monolayers between the ith and
(i + 1)th kinks and αi is n⇓ − n⇑ calculated from the (i + 1)th
to the nth kinks.

An elementary kink migration is accomplished by a trans-
position of an adjacent pair of oppositely magnetized layers,
which can be either ↑↓ �→ ↓↑ (transposition A) or ↓↑ �→ ↑↓
(transposition B) and results in a kink moving by ±2 layers.
Transposition A (B) changes I by 2/N (−2/N). Neighboring
kinks with identical (opposite) magnetization are separated by
an odd (even) number of layers. To annihilate a neighboring
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pair of opposite kinks, say, the ith kink ⇑ and the (i + 1)th
kink ⇓, we have to apply transposition A to the ⇑ kink pi−2

2
times to bring two kinks in touch and one more transposition
A to annihilate them. This process causes a total change of
the Ising moment �I = pi. There will be net αi ⇑ kinks
propagating upward across this pi slab to restore zero net
magnetization on both sides, and thus we arrive at Eq. (D2).

We set up a symbolic representation of AFM-ordered su-
percells with kinks. As usual, ⇑ and ⇓ stand for kinks with
upward and downward magnetization, respectively. We fur-

ther use p′
i to denote a perfectly AFM-ordered separation

between the ith and (i + 1)th kinks made of p′
i = pi − 2 lay-

ers. We list here the results of the Ising moments for supercells
with four and six kinks with I∗ read from the surface gap
calculation labeled as follows.

(i) Supercell “⇓ p′
1 ⇑ p′

2 ⇓ p′
3 ⇑ p′

4 ,” I∗ = 0

I = 0.5 + p1 + p3

N
mod 1. (D3)

(ii) Supercell “⇓ p′
1 ⇓ p′

2 ⇑ p′
3 ⇑ p′

4 ,” I∗ = 0.5

I = 0.5 + p1 + 2p2 + p3

N
mod 1. (D4)

(iii) Supercell “⇓ p′
1 ⇓ p′

2 ⇓ p′
3 ⇑ p′

4 ⇑ p′
5 ⇑

p′
6 ],” I∗ = 0

I = 0.5 + p1 + 2p2 + 3p3 + 2p4 + p5

N
= mod 1. (D5)

(iv) Supercell “⇓ p′
1 ⇓ p′

2 ⇑ p′
3 ⇑ p′

4 ⇓ p′
5 ⇑

p′
6 ],” I∗ = 1/3

I = 0.5 + p1 + 2p2 + p3 + p5

N
mod 1. (D6)

(v) Supercell “⇑ p′
1 ⇑ p′

2 ⇓ p′
3 ⇓ p′

4 ⇑ p′
5 ⇓

p′
6 ],” I∗ = 2/3

I = 0.5 − p1 + 2p2 + p3 + p5

N
mod 1. (D7)

(vi) Supercell “⇓ p′
1 ⇑ p′

2 ⇓ p′
3 ⇑ p′

4 ⇓ p′
5 ⇑

p′
6 ,” I∗ = 0

I = 0.5 + p1 + p3 + p5

N
mod 1. (D8)

We notice that I∗ is achieved when separations are equal
pi = N/n. We further mention that

∑
i pi = N can be used to

cancel a specific pi in the above expressions, which amounts

to choosing a different supercell with p′
i at the end and will

not change the value of the Ising moment I.

APPENDIX E: SURFACE TRANSFER MATRIX
OF A DEFECT ZONE

We have defined a defect zone composed of 2L layers
centered at a bond defect. L should be large enough to write

FIG. 9. A generic scattering state of Tb.

down its surface transfer matrix Tb in the channel basis of the
homogeneous FM bulk.

The generic eigendecomposition of Tb is

Tb =
(

1 ε

η 1

)(
λ1

λ2

)(
1 ε

η 1

)−1

, (E1)

where λ1 = eiθ and λ2 = −eiθ supports traveling modes. By
considering a scattering state made of the linear combination
of eigenvectors of Tb (see Fig. 9), we are led to the following
constraints due to flux conservation:

(1 − |λ1|2)(1 − |η|2) = 0,

(1 − |λ2|2)(1 − |ε|2) = 0,

(ε − η∗)(1 − λ∗
1λ2) = 0. (E2)

From the third line in Eq. (E2), we find ε = η∗ if λ∗
1λ2 
= 1,

which is exactly our case.

APPENDIX F: MAPPING TO 1D DIRAC EQUATION

The surface transfer matrices of a single FM layer T0 and a
defect zone Tb both satisfy σ1T0|bσ1 = −T ∗

0|b. Thus any com-
posite transfer matrix M composed of an even number of T0|b
will satisfy the effective time-reversal constraint σ1Mσ1 = M∗
characteristic of Hamiltonians of orthogonal class [30,41]. It
follows that M has the following polar decomposition:

M = exp(iρσ3) exp(ησ2) exp(iζσ3). (F1)

Clearly, configurations in ensemble I and ensemble II can
be easily divided into such slabs whose transfer matrices Mi

satisfy the time-reversal constraint and equivalently describe
the solution of a 1D SDE:

[−i∂x + V (x, E )σ3 − im(x, E )σ2]�(x) = 0, (F2)

where V (x, E ) = −∑
i(ζi(E )δ(x − xi1) + ρi(E )δ(x − xi3))

and m(x, E ) = −∑
i ηi(E )δ(x − xi2) describe an energy-

dependent potential and mass term due to point scatters
(xi1 = xi − 0+, xi2 = xi, xi3 = xi + 0+, xi < xi+1 ∀i). The
solution of the Dirac Eq. (F2) can be expressed as

�(x, E ) = P exp

[
−i

∫ x

0
dx′(V (x′, E )σ3 − im(x′, E )σ2)

]
×�(0, E ), (F3)

where the path-ordering P ensures separation of the transfer
matrix into the product of exponentials as in Eq. (F1). Equa-
tion (F2) has been transformed into

[−iσ3∂x + V (x, E ) + m(x, E )σ1]�(x) = 0 (F4)

in the main text, a more popular form found in the literature
[27,29,42].

A configuration in ensemble II by construction has a nat-
ural division in which each slab has zero magnetization. The
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transfer matrix of one such slab is related to the Ising moments
at the energy when its own θ ′ = 0 as discussed in this paper.
This connection seems to suggest the following relations:

ρ j (E ) + ζ j (E ) ∼
∑
i∈S j

(kzdi + θ ), (F5a)

η j (E ) ∼ 4u′ ∑
i∈S j

αi(kzdi + θ ), (F5b)

where Sj stands for the jth slab and the summations run over
all the kinks within this slab. At θ ′ = 0, we have

−
∫

dxV (x) =
∑

j

ρ j (E ) + ζ j (E ) ∼
∑

i

(kzdi + θ ) = 0,

(F6)

which means θ = −kzd̄ . The sum of m(x) becomes

−
∫

dxm(x) =
∑

j

η j (E ) ∼ 4u′ ∑
i

αikz(di − d̄ )

= 4u′Nkz(I − I∗). (F7)

This “explains” how nonzero I − I∗ typically corresponds
to a nonzero average mass that opens the surface gap. The
relation Eq. (F7) is supported by Eq. (6) in the main text,
trMi = 2 + η2

i + O(η4) when its own θ ′ = ρi + ζi = 0.
It remains to establish that the mass of each slab can be

meaningfully added, as we merge slabs into one. This can be
proved by noting the following identity:

exp(η1σ2) exp(iξσ3) exp(η2σ2)

� exp(iξ1σ3) exp(ησ2) exp(iξ2σ3) + o (2nd order terms)

(F8)

with η = η1 + η2, ξ1 = ξη2/η, and ξ2 = ξη1/η when η 
= 0.
Thus the composition M(ρ1, η1, ξ1)M(ρ2, η2, ξ2) will be a
transfer matrix M(ρ, η, ξ ) with η = η1 + η2. We will provide
a proof of the conjecture Eqs. (F5a) and (F5b) next.

APPENDIX G: DERIVATION OF EQUATION (6)

The transfer matrix Tb of a defect zone has the following
decomposition:

Tb = W (u)T0(kz )W (u)−1 = exp(iρσ3) exp(ησ1) exp(iζσ3)σ3.

In the limit of small u, ρ + ζ = θ , and η ∼ O(|u|). The
total transfer matrix Tn of a bond defect configuration is
given by

Tn = T dn
0 (kz )Tb(θ, u) · · · T d1

0 (kz )Tb(θ, u)

= exp(iφnσ3)σ dn
3 Tb · · · exp(iφ1σ3)σ d1

3 Tb(θ, u)

= exp(−iζσ3)[exp(i�nσ3)σ dn
3 exp(ησ1)σ3]

· · · [exp(i�1σ3)σ d1
3 exp(ησ1)σ3] exp(iζσ3), (G1)

with �i = ρ + ζ + φi. Using σ3 exp(ησ1)σ3 = exp(−ησ1),
we will eliminate all σ

di
3 terms in Eq. (G1), which leads to

Tn = exp(−iζσ3) exp(i�nσ3) exp(mnησ1)

· · · exp(i�1σ3) exp(m1ησ1) exp(iζσ3), (G2)

where mi = ±1 and m1 = −1. It can be shown that mi and
mi+1 will have opposite (identical) signs when di is even
(odd). This is similar to the situation of kink magnetization,
i.e., an even (odd) number of monolayers separate opposite
(identical) kinks. Thus mi’s just indicate the sign of the z
component of the ith kink magnetization (up to an overall
minus sign). This one-to-one correspondence between mi’s
and the sequence of kink magnetization leads us to consider
the counterpart of pair annihilation,

· · · exp(±ησ1) exp(i�iσ3) exp(∓ησ1) · · ·

� · · · exp

(
i
�i

2
σ3

)
exp(±2η�iσ2) exp i

�i

2
σ3 · · · (G3)

� · · · exp(i�iσ3) · · · exp(±2η�iσ2) + o (2nd order terms),

(G4)

where we have used the fact that exp(±2η�iσ2) commutes
with other exp(i�iσ3) or exp(±ησ1) terms up to second order
in �i and η. After annihilating all pairs of opposite kinks, the
coefficient before σ2 will bear a similar mathematical structure
to that of the Ising moment. We find

Tn � exp

(
i
∑

i

�iσ3

)
exp

(
±2η

∑
i

αi�iσ2

)

+ o (2nd order terms). (G5)

where the ± sign should be + (−) when the first kink is ⇓
(⇑). After identification �i = kzdi + θ and η = 2u′, Eq. (G5)
confirms the conjecture Eqs. (F5a) and (F5b) in Appendix F
and therefore validates all the deductions from it, including
Eq. (6) in the main text.
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