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Possible restoration of particle-hole symmetry in the 5/2-quantized Hall state at small
magnetic field
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Motivated by the experimental observation of a quantized 5/2 thermal conductance at filling ν = 5/2, a result
incompatible with both the Pfaffian and the anti-Pfaffian states, we have pushed the expansion of the effective
Hamiltonian of the 5/2-quantized Hall state to third order in the parameter κ = EC/h̄ωc ∝ 1/

√
B controlling the

Landau-level mixing, where EC is the Coulomb energy and ωc is the cyclotron frequency. Exact diagonalizations
of this effective Hamiltonian show that the difference in overlap with the Pfaffian state and the anti-Pfaffian
state induced at second order is reduced by third-order corrections and disappears around κ = 0.4, suggesting
that these states are much closer in energy at smaller magnetic field than previously anticipated. Furthermore,
we show that in this range of κ the finite-size spectrum is typical of a quantum phase transition, with a strong
reduction of the energy gap and with level crossings between excited states. These results point to the possibility
of a quantum phase transition at smaller magnetic field into a phase with an emergent particle-hole symmetry
that would explain the measured 5/2 thermal conductance of the 5/2-quantized Hall state.

DOI: 10.1103/PhysRevB.107.115137

I. INTRODUCTION

Following up on Laughlin’s pioneering explanation of the
1/3 and 1/5 plateaus [1] in terms of wave functions, the theory
of the fractional quantum Hall effect (FQHE) has relied to a
large extent on variational wave functions, with considerable
success thanks, in particular, to Jain’s composite fermion the-
ory [2–5]. It was completed by its extension to the Pfaffian
(Pf) state by Moore and Read [6,7], and its particle-hole con-
jugate, the anti-Pfaffian (APf) state [8,9] in order to explain
the plateau observed at filling 5/2 [10,11]. This approach has
explained many plateaus and has led to the highly nontrivial
prediction that the system is gapless at filling 1/2 [12–14].
It seemed that all states observed in the FQHE could be ex-
plained in terms of variational wave functions. The alternative
approach in terms of an effective Hamiltonian to describe the
degeneracy lifting by Coulomb repulsion in a partially filled
Landau level has nevertheless proven to be extremely useful.
The variational wave functions were shown to be the ground
states of parent Hamiltonians that are truncated versions of the
effective model [2,15–18]. Effective Hamiltonians have also
played a crucial role in discussing the competition between
the Pf and the APf states for the 5/2-quantized Hall state
[19], with the conclusion that, to second order in κ = EC/h̄ωc,
where EC is the Coulomb energy and ωc ∝ B is the cyclotron
frequency, the APf state is favored when the effect of the
empty Landau levels is taken into account [20–27]. It thus
came as a big surprise when the quantized thermal conduc-
tance was found to be equal to 5/2 in the 5/2 plateau [28–30],
a value in contradiction with both the APf (3/2) state and the
Pf (7/2) state but consistent with particle-hole symmetry. This
restored symmetry would be consistent with the particle-hole
Pfaffian (PHPf) state [31,32], another candidate for the 5/2

plateau, but this state is usually believed to be gapless and en-
ergetically unfavored [33–36], except in a few field-theoretical
works [37,38]. Explanations in terms of domains or of lack of
equilibration have been put forward [39–54], but as of today
there is no consensus on the resolution of this discrepancy.

In view of the impressive corpus of theory, one may wonder
if there is still room for the identification of a particle-hole
symmetric ground state that would have been missed so far.
Our results point towards such an unlikely conclusion. The
starting point of our approach is the observation that the ef-
fective model is an expansion in κ ∝ 1/

√
B, hence a high-field

expansion. In experimental conditions, the field is around 4 T,
and κ � 1.38 [11]. This large value raises a natural question:
Is κ too large in experiments for the second-order expansion
to be justified? The only way to answer that question is to
push the expansion to higher order in κ , something that has
not been attempted so far.

In this paper, we have pushed this expansion to the next
order in κ . Although this simply relies on third-order pertur-
bation theory in the Coulomb repulsion, this turned out to be
a rather formidable task that could only be carried out with
the help of computer-aided formal calculations. As we shall
see, the third order changes the physics qualitatively already
around κ � 0.3–0.5, showing that relying on second-order
perturbation theory is definitely not justified for κ � 1.38. The
most remarkable effect is that the lifting of the degeneracy
in favor of the APf state is counteracted by the third-order
term, and that the degeneracy is restored at κ � 0.4. More-
over, and maybe more importantly, the excitation spectrum
of finite-size systems has all the characteristics of a quantum
phase transition which, in view of the apparent restora-
tion of particle-hole symmetry between the Pf and the APf
states, might lead to a phase with an emergent particle-hole
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symmetry. Let us already emphasize, however, that if there
is indeed a quantum phase transition, the physics beyond the
phase transition cannot be reached by perturbation theory, and
any attempt at discussing it on the basis of a truncated pertur-
bative Hamiltonian, as done previously for the second-order
model, is prone to fail. Nonperturbative approaches will have
to be employed to study that problem.

The paper is organized as follows. In Sec. II, we explain
the main ideas of the algorithm we have used to derive the
third-order Hamiltonian. In Sec. III A, we compare the results
we have obtained at second order with previous results, and
in Sec. III B we present and discuss the central results of
this paper obtained at third order. Section IV is devoted to
two related models that help assess the validity of our ap-
proach: a model that only includes the first two Landau levels
(Sec. IV A) and a model that assumes full polarization of the
lowest Landau level (Sec. IV B). Finally, the implications for
the 5/2 quantum Hall state are discussed in Sec. V. Details
about all aspects of this study can be found in Appendixes
A–D.

II. DERIVATION OF THE EFFECTIVE HAMILTONIAN

We consider two-dimensional electrons on a square torus
in a normal magnetic field and in the presence of Coulomb in-
teraction. Up to a constant, the Hamiltonian can be formulated
in a second-quantization formalism as

Hexact = H0 + H1, (1)

H0 = h̄ωc

∑
l

lNl − gB
∑

σ

σNσ , (2)

H1 = EC

∑
�m,�n,�l,�σ

A
�l,�σ
�m,�nc†

m1,lm1 ,σm1
c†

m2,lm2 ,σm2
cn2,ln2 ,σn2

cn1,ln1 ,σn1
.

(3)

ωc is the cyclotron frequency, EC = e2

εlB
is the Coulomb en-

ergy, lB is the magnetic length, B is the magnetic field, and g
is the electronic magnetic moment. In the rest of this paper,
we set both lB and EC to 1 for simplicity and generally neglect
the Zeeman splitting given its magnitude. l ∈ N denotes the
Landau level, σ = ±1 denotes its spin flavor, Nl denotes the
number of electrons in a given Landau level, and Nσ denotes
the number of electrons with spin σ . We also denote by L the
total number of Landau levels we consider (the spin degener-
acy is not included in the counting). We will show results with
up to L = 11, although our results depend very little on L as
soon as L � 3, i.e., when we take into account the influence
of the empty Landau levels. Finally, the operator c†

m,l,σ creates
an electron in the mth orbital of the lth Landau level with spin
σ . On a torus, m ∈ [0, Nφ − 1] with Nφ being the number of
elementary magnetic fluxes through the torus. The interaction

coefficient A
�l,�σ
�m,�n can be straightforwardly obtained for any

translation-invariant interaction as detailed in Appendix B.
For a Coulomb-like interaction (central and spin-diagonal),
symmetry enforces m1 + m2 = n1 + n2 [Nφ] and σm1 + σm2 =
σn1 + σn2 .

In the rest of this paper, we focus on the physics of the 5/2
filled Landau levels. In a strong magnetic field, the splitting
of the Landau levels dominates, and it appears reasonable to

project the Hamiltonian on its low-energy sector (depending
on the filling). Despite the weak Zeeman effect, numerical
simulations seem to indicate that the half-filled Landau level
is spin polarized. We therefore introduce P0, the projector on
the subspace where the zeroth Landau level is fully occupied
for both spin flavors and where the first Landau level with
spin +1 is half filled. We project the Hamiltonian Hexact on
this subspace and define

H0 = P0H0P0 = E0 with E0 = (h̄ωc − gB)
Nφ

2
, (4)

H1 = P0H1P0 = EC

∑
�m,�n

A
�l,�σ
�m,�nc†

m1
c†

m2
cn2 cn1 + E0,1

C , (5)

with cn = cn,1,+1 and E0,1
C being the static energy due to the

presence of the filled Landau levels. Note that this energy
constant plays a crucial role in the third-order expansion
and cannot be neglected. This projected Hamiltonian with
no Landau-level mixing has been extensively studied [15,55–
59]. On the square torus, it admits six quasidegenerate ground
states in six different translation sectors corresponding to the
sixfold topological degeneracy of the Pf or APf state. Unless
specified, we show results in the (π, 0) sector: Our results
are largely independent of this choice. This Hamiltonian is
particle-hole symmetric at half filling. Due to this symmetry,
it cannot discriminate between the Pf and APf phases. The
ground state in a given sector is unique and has equal overlap
with both Pf and APf states.

In order to reach the experimentally relevant regime, we
compute perturbatively the effect of the presence of the empty
and occupied Landau levels using κ = e2

εh̄lBωc
as a small pa-

rameter. Following Rezayi [27], who performed a calculation
to second order, we compute directly the effective Hamilto-
nian without attempting to project onto pseudopotentials. The
development in pseudopotentials is not convenient on a finite
torus due to the periodicity, and the complexity of the higher-
body terms rises quickly. The second-order and third-order
terms of the degenerate perturbative expansion are given by

H2 = −P0H1G0H1P0,

H3 = P0H1G0H1G0H1P0 − 1
2

{
H1, P0H1G2

0H1P0
}
, (6)

where

G0 = Id − P0

H0 − E0
. (7)

H2 includes two- and three-body terms as discussed in previ-
ous works. H3 also includes an additional four-body term. The
five-body terms generated by P0H1G0H1G0H1P0 are exactly
canceled by the anticommutator.

We perform the numerical computation of the effective
Hamiltonians directly at the operator level. The details of our
algorithm can be found in Appendix B. As a quick summary,
our computational process consists of four parts: (1) com-
putation of the effective interaction in the Landau basis, (2)
derivation of all the Feynman diagrams corresponding to H2

and H3, (3) exact summation of all processes corresponding to
a given diagram, and (4) computation of the effective many-
body Hamiltonian and diagonalization. The latter two steps
are the most computationally expensive. The complexity of
the third step scales as O( max(5!LN7

φ , (2L)4N4
φ )), depending
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on the diagrams considered. The fourth step has the stan-
dard exponential complexity of exact diagonalization (ED),
but with an additional difficulty: The effective Hamiltonian
consists of a sum of 3 × 106 n-body operators. To give a
concrete illustration, for Nφ = 28, although the symmetry-
resolved Hilbert space is only of dimension ≈105, it includes
≈1.5 × 107 operators (≈106 if we take into account transla-
tion invariance). Even if we were to discard coefficients below
10−6, we would need to apply 3 × 106 operators to each basis
element. Consequently, it is not surprising that the effective
Hamiltonians themselves are also very dense (approximately a
quarter of the matrix elements are nonzero for Nφ = 28). This
density limits the practically achievable sizes significantly:
Both the memory cost to store the matrix and the cost of
applying it to a state become quickly prohibitive.

III. PERTURBATIVE EXPANSION

A. Second-order expansion

We start with a brief discussion of the second-order
expansion of Hexact as a benchmark of our approach.
This computation has been previously done on the sphere
[20–23,25–27,60] and on the hexagonal torus [25,27], and we
verify that we qualitatively and quantitatively recover known
results.

Concretely, we work with the Hamiltonian

H (2) = H1 + κH2 (8)

and compute its ground state. In Figs. 1(a)–1(d), we show
the low-energy spectrum of H (2). The color represents the
difference in overlaps between the Pf and APf states. More
precisely, the color is a measure of

|〈	Pf |	ED〉c| − |〈	APf |	ED〉c|, (9)

with ( 〈	Pf |	ED〉c

〈	APf |	ED〉c

)
= M−1

( 〈	Pf |	ED〉
〈	APf |	ED〉

)
(10)

and

M =
( 〈	Pf |	Pf〉 〈	Pf |	APf〉

〈	APf |	Pf〉 〈	APf |	APf〉
)

. (11)

In Fig. 1(e), we show the overlap of the corresponding ground
state with several reference states. At small κ , for L � 3, the
second-order expansion favors the APf state (for L = 2, the
Pf state is actually favored). At κ ≈ 0.8, the gap closes, and
a large number of low-energy states collapse onto the ground
state. After a transitory regime, a small gap opens. Its ground
state is adiabatically connected to the ground state of H3b

2 , the
three-body contribution of H2. A second transition then occurs
towards the ground state of H2 (which is approximately also
the ground state of H2b

2 ).
It is important to note the following. Firstly, the collapse

of the energy levels we observe at κ ≈ 0.8 is qualitatively
different from the typical second-order phase transitions in
finite systems. Instead of a well-defined minimum that de-
creases with the system size, we observe several crossings or
anticrossings in the ground state over a range of κ . Secondly,
the two large κ phases correspond to a limit where the per-
turbation theory dominates and are unphysical. The ground

FIG. 1. (a)–(d) Low-energy spectrum in the sector (π, 0) at sec-
ond order. The color code is given in Eq. (9): positive (negative)
numbers mark that the Pf (APf) state is favored. (e) Overlap between
the ground state and several reference states for different system
sizes. Here the overlap is not corrected as in Eq. (9) for simplicity.
Below κ ≈ 0.8, the APf state is favored. We then observe a collapse
of all low-energy levels. After a small transitional regime, two con-
secutive phases open. The large κ � 1.4 regime is strongly gapped
in the translation-invariant sector.

state of H2b
2 has nearly perfect overlap with the maximally

excited state of the first two-body Haldane pseudopotential
V1. In other words, it is the ground state of a globally attractive
potential. Additionally, it becomes 2Nφ degenerate in the limit
κ 
 1 (in contrast, the topological degeneracy of both the Pf
state and the APf state is equal to 6) with ground states in
each sector of the form (π, ·) and (·, π ). It is particle-hole
symmetric, and due to the periodicity of the torus, it is not
a simple packed state. The recent results of Ref. [60] could
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potentially be explained by a state similar to either of the two
large κ phases.

B. Third-order perturbation theory

We now discuss our results for the third-order Hamiltonian

H (3) = H1 + κH2 + κ2H3. (12)

We first investigate the effect of H (3) directly on the reference
Pf and APf wave functions, before turning to the study of its
ground state.

The Pf and APf states have a large overlap with the low-
energy eigenstates of the Coulomb Hamiltonian H1 and are
therefore a good first ansatz to qualitatively study the model.
If there is an emergent particle-hole symmetry at low energies,
they should become degenerate. We therefore investigate the
average energy in both states and define the energies per
orbital

Eref = 1

Nφ

〈	ref |H (3)|	ref〉. (13)

For L = 11, Nφ = 24 in the (π, 0) subsector, we obtain

EPf = −1.3540 − 0.3083κ + 0.1015κ2, (14)

EAPf = −1.3540 − 0.3090κ + 0.1033κ2. (15)

Due to the particle-hole symmetry, H1 does not discriminate
between these two states, and in agreement with Rezayi [27],
H2 favors the APf state. By contrast, H3 favors the Pf state.
More precisely, its three-body contribution H3b

3 favors the
Pf state, while the four-body contribution H4b

3 still advan-
tages the APf state. For κc ≈ 0.42, the Pf state and the APf
state are degenerate. We therefore expect a restoration of
the particle-hole symmetry in the low-energy subspace near
this critical κ . Note that due to finite-size effects, they can
have a significant overlap with each other but are orthogonal
in the thermodynamic limit. A more complete analysis of
the Pf and APf subspace, along with data for different L
and Nφ , can be found in Appendix C. Our conclusions are
unaffected.

We now turn to the study of the ground state of H (3)

to confirm this naive approach. In Fig. 2(a), we show the
overlaps of the third-order ground state with the Pf state and
the APf state, corrected with Eq. (9). While the APf state
is still favored at small κ , the amplitude of the difference in
overlaps is significantly reduced. For κ � 0.2, the difference
starts decreasing, and at κc ≈ 0.4 the ground state has equal
overlap with the Pf and the APf states. κc depends very little
on the system size, and the ground state becomes particle-
hole symmetric as shown in Fig. 3. The low-energy spectrum
depicted in Figs. 2(b)–2(e) presents numerous level crossings
and a curvature coherent with the finite-size spectrum of a
second-order phase transition. Finally, for larger κ , the ground
state has a large overlap with the Pf state. All these results
are in agreement with the previous naive analysis of Eq. (13).
They suggest a possible restoration of the particle-hole sym-
metry at intermediate κ , which could explain the experimental
thermal conductance. In the following section, we discuss the
validity of this hypothesis.

anti-Pfaffian

FIG. 2. (a) Overlaps of the third-order ground state with the Pf
and APf states. All overlaps are corrected following Eq. (9). (b)–(e)
Low-energy spectra. Below κc ≈ 0.4, the APf state is favored, while
for larger κ , it is the Pf state. We observe a series of energy level
crossings strongly reminiscent of a second-order phase transition.

Before that, let us assess the limit of validity of the second-
order expansion. In Fig. 4(a), we compare the ground-state
energies of H (2) and H (3) for Nφ = 28, and in Fig. 4(b) we
measure the overlaps between the two ground states for dif-
ferent values of Nφ . The energies already differ at κ = 0.2
and the overlaps start falling in the range 0.1 � κ � 0.3, de-
pending on Nφ . The second-order expansion therefore cannot
be trusted to describe the experimentally relevant regime.

IV. TWO RELATED MODELS

To put our results in perspective, we discuss in this sec-
tion two related models: (i) the model L = 2 obtained by
keeping only the lowest Landau level for the virtual states
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FIG. 3. Overlaps between the third-order ground state and its
particle-hole symmetric partner. For all system sizes, the particle-
hole symmetry is restored around κ = 0.4. Note that for most system
sizes, it is only weakly broken at low κ .

and (ii) the fully polarized case where all Landau levels are
assumed to be filled only by electrons with a given spin
polarization. One of the main reasons is that for both models,
we can compare the third-order expansion in κ with other
approaches, with very encouraging results. Interestingly, the
physics of these two models turn out to be significantly dif-
ferent from that of the full model, showing that it is crucial to
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FIG. 4. (a) Ground-state energy for second- and third-order ex-
pansion at Nφ = 28 and L = 3. Visible differences are already
present at κ ≈ 0.2. (b) Overlap between the ground states of H (2)

and H (3) at small κ . The expansions agree with an overlap � 0.99 up
to κ ≈ 0.15 only.
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FIG. 5. Comparison between the exact calculation and several
orders of the perturbative expansion for spinful electrons with Nφ =
8 and L = 2. (a) Ground state of the exact Hamiltonian and the first
five orders of the expansion. (b) Overlaps between the perturbative
ground states and the normalized projection of the exact ground state.
In the inset, we show the norm of the projected ground state. (c) and
(d) Comparison of the overlaps with the Pf state and the APf state for
odd (c) and even (d) orders. We observe the same overlaps crossing
for odd orders as in the exact limit, albeit at much smaller κ . In the
inset in (d), overlaps between the ground states and their particle-hole
symmetric partners for the exact and odd-order states are shown.

include at least one unoccupied Landau level and to take into
account both spin orientations in the lowest Landau level.

A. The L = 2 model

The main motivation to investigate this model is that if
we keep only the lowest Landau level, we can perform exact
diagonalizations and compare the results with a perturbative
expansion in κ . The dimension of the Hamiltonian grows
as O(N−2

φ (
LNφ

Nσ=+1
)(

LNφ

Nσ=−1
)) after taking into account charge, spin,

and momentum conservation and translation invariance. As
a consequence, the only nontrivial case on which we could
do exact diagonalizations is Nφ = 8 fluxes per Landau level
and L = 2. Indeed, Nφ = 8 is the smallest system size where
one can see a difference between the Pf and APf states,
and going to L = 3 would mean working with a Hilbert
space of dimension 250 × 109 (without taking into account
translation invariance, but with charge, spin, and momentum
conservation).

We show in Fig. 5(a) the ground-state energy for the exact
model and the first five orders of the perturbative expansion.
Even for such small systems, we observe a significant de-
viation of the energy of the second-order correction already
at κ ≈ 0.2. Third-order perturbation extends this range of
validity up to κ ≈ 0.35. The fifth order is only valid up to
κ ≈ 0.65.

In Fig. 5(b), we show the evolution of the overlaps between
the perturbative ground states and the projection of the exact
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ground state on the spin-polarized manifold. The norm of the
projection is represented in the inset. If one stops at an even or-
der, the overlap with the exact ground state falls dramatically
as soon as finite-order effects appear. By contrast, the overlap
remains significant if one stops at an odd order. The difference
comes from the fact that the last term of the expansion is
attractive if it is even, and this is not representative of the exact
model at large κ . So, to discuss the physics beyond the small-κ
range on the basis of a truncated expansion, it is better to stop
at an odd order.

More importantly, in Figs. 5(c) and 5(d), we show the
overlap of the different ground states with the Pf and APf
states. The degeneracy is indeed lifted between the Pf state
and the APf state, but if one keeps only the lowest Landau
level, it is the Pfaffian state that is favored. So keeping higher
Landau levels when including Landau-level mixing is crucial
to get the right physics at small κ . At larger κ , the difference
in overlap between the Pf state and the APf state decreases,
and at κ ≈ 1.1, the ground state of the exact Hamiltonian
has a restored particle-hole symmetry, as shown in the in-
set in Fig. 5(d). Now, as could be anticipated from their
poor overlap, even-order ground states systematically miss the
emerging particle-hole symmetry. By contrast, the odd-order
ground states, and, in particular, the third-order one, agree
qualitatively with the restoration of particle-hole symmetry
and only underestimate the critical κc.

To summarize, the third-order perturbation theory is in
qualitative agreement with the exact result on a small clus-
ter regarding the restoration of particle-hole symmetry, but
to include more than the fully occupied Landau level when
taking into account Landau-level mixing is necessary to get
the correct behavior at small κ , namely, the lifting of the
degeneracy in favor of the APf state.

B. Fully polarized case

In Ref. [26], Zaletel et al. have investigated the ground state
of the ν = 5/2 FQHE on an infinite cylinder of finite (but
large) circumference using the infinite density matrix renor-
malization group (iDMRG) algorithm, a method that exactly
treats Landau-level mixing. In this investigation, the authors
of Ref. [26] make two approximations: They only take into
account a small number of Landau levels, and they consider
spinless electrons, i.e., they assume full polarization, disre-
garding completely the filled zeroth Landau level of opposite
polarization. Up to κ = 1.37, they found that the APf state
is systematically favored, with no sign of a restoration of the
particle-hole symmetry.

To compare our perturbative approach with these results,
we have performed an investigation of the fully polarized
model up to third order in κ . Our results do not show any
qualitative differences in the ground-state properties between
L = 4 and L = 11, even if the energies vary significantly, and
so keeping only a few Landau levels, as done in Ref. [26],
appears to be innocuous. This is not the case for the assump-
tion of full polarization, however. In H2 (H3), the down spins
do not contribute to the term with the three-body (four-body)
operators due to spin conservation and diagrammatic substrac-
tion. At second order, only H3b

2 distinguishes between the Pf
and APf states, and going from spinless to spinful does not

anti-Pfaffian

FIG. 6. (a) Overlaps of the third-order ground state for spinless
electrons with the Pf and APf states. All overlaps are corrected
following Eq. (9). (b)–(e) Corresponding low-energy spectra. While
the results are qualitatively similar to the spinful case, the critical
κc ≈ 1 is well beyond the range of the perturbation theory, and the
energy spectra have fewer features.

change the small-κ qualitative result. At third order, this is no
longer the case. The down spins do not change H4b

3 , but they
contribute to H3b

3 , and the energy difference induced by this
term is reduced for spinless electrons. As a result, the sum of
these two contributions, H3, still favors the Pf state, but with
a significantly weaker energy difference. Therefore the APf
regime should survive to larger κ .

In order to check this simple argument, we performed both
an exact calculation similar to the computation of Sec. IV A
for smaller systems, and a third-order expansion at large
Nφ . The results of the perturbative expansion are presented
in Fig. 6. Overlaps with the Pf state and the APf state in
Fig. 6(a) show a restoration of the particle-hole symmetry at
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FIG. 7. (a) Energy of the exact ground state for spinless electrons
with L = 2 and Nφ = 8, compared with the energy obtained from
the perturbation theory up to fifth order. (b) Overlaps between the
perturbative ground states and the normalized projection of the exact
ground state. In the inset, we show the norm of the projected ground
state. (c) and (d) Comparison of the overlaps with the Pf state and the
APf state for odd (c) and even (d) orders. The particle-hole symmetry
is not restored in the exact ground state, in contrast to all the odd-
order perturbative expansions. The splitting remains limited as can
be seen from the inset in (d) showing the overlaps of the ground state
with its particle-hole symmetric partner.

much larger κc � 1.1, well beyond the range of perturbation
theory. We also evaluated the effective Hamiltonian in the
Pf-APf subspace as well as their average energies. They also
predict a critical κ of order 1 (see Appendix C for details). In
order to properly interpret these results, it is important to note
that, independent of the exact large-κ physics, as long as H3

opposes H2, we will always observe a crossing of the overlaps
at large κ at third order. So this result should not be interpreted
as evidence that a crossing takes place at a much larger κc.
The fact that the crossing occurs for a very large value of
κ could simply indicate the absence of a restoration of the
particle-hole symmetry. The quasisaturation of the overlaps
with the APf state for Nφ = 24 and 0.35 � κ � 0.8 is also
strongly reminiscent of the saturation observed in Fig. 7 and a
marked difference from what we observed in the spinful limit.

We also note that the excitation spectrum shown in
Figs. 6(b)–6(e) has significantly fewer features than in the
spinful case, with no obvious tendency to a gap closing, but
only an avoided crossing between the two low-lying states for
Nφ = 24. These results do not suggest the existence of a phase
transition in this region.

The exact calculation presented in Fig. 7 confirms this
picture. We computed the ground state of Hexact for spinless
electrons with L = 3 and Nφ = 8 and Nφ = 12. We only show
the results for Nφ = 8 here for comparison with Sec. IV A.
Remarkably enough, there is no restoration of the particle-
hole symmetry for the exact ground state. As expected, all

expansions stopping at an odd order predict a crossing in
overlaps at sufficiently large κ , a clear artifact of truncating the
perturbation theory. The odd orders capture the curvature of
the overlaps but overcorrect, which should be expected given
that the quasisaturation we observe can only be visible in the
perturbative expansion if the exact ground state at large κ is
also the ground state of the higher-order term of the series.
Note that the even orders still predict incorrectly the large-κ
limit and severely overestimate the splitting between the Pf
state and the APf state.

Altogether, these results point to the possibility of a sig-
nificant difference between the fully polarized case studied
in Ref. [26] and the case where both spin orientations are
allowed for in the lowest Landau level.

V. IMPLICATIONS FOR THE 5/2 QUANTUM HALL STATE

Our numerical results demonstrate unambiguously that to
third order in κ , and when the spin of the electrons is taken
into account, the particle-hole symmetry is restored in the
ground state at κ � 0.4 regardless of the size of the system.
What are the physical implications of this result for the actual
system? The answer is by necessity speculative because we do
not have access to higher orders, but two possibilities emerge
which could both, to a certain extent, explain the experimental
result of the 5/2 thermal conductivity.

The first possibility is that the Pf state and the APf state
remain well separated from the other states, and that the
physics is simply controlled by their competition. The fact
that they cross at a fairly small value κ = 0.4 at third order
suggests that they will cross at least once even if higher
orders are included. This is at the least the case for the L = 2
model. This crossing would correspond to a first-order phase
transition from the APf state to the Pf state. At the crossing
point, the particle-hole symmetry is restored. In the vicinity
of this crossing, the ground state will be almost degenerate.
If the temperature of the sample is comparable to the level
separation, the explanation of Refs. [39,42] in terms of Pf and
APf domains due to disorder would be viable if the exper-
imental value κ = 1.38 is close to this level crossing, or to
another one if there are several crossings [61–63] as a function
of κ [64].

The second possibility is that the gap to other excitations
closes upon increasing κ , and that a (second-order) quantum
phase transition occurs at a certain κc. The state at κ > κc

could simply be the Pf state. However, since the particle-
hole symmetry is restored at the transition, the state could
also belong to a phase with an emergent particle-hole sym-
metry. Quite interestingly, this particle-hole symmetric phase
would provide a direct explanation for the experimentally
measured 5/2-quantized thermal conductance. The existence
of a second-order transition is supported by the fact that the
excited states come down around the point where particle-hole
symmetry is restored at third order before going up again at
larger κ . This is typical of the finite-size spectrum of quantum
phase transitions as a precursor of criticality in the thermo-
dynamic limit. Note that, since the particle-hole symmetry is
broken as soon as κ �= 0, the symmetry on the other side of
the quantum phase transition has to be an emergent one, i.e.,
the low-energy physics is that of a particle-hole symmetric
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model, but the full spectrum still has traces of the explicit
breaking of the particle-hole symmetry in the Hamiltonian. If
this possibility is realized, it is important to keep in mind that
any finite-order calculation, and, in particular, the third-order
one reported here, has nothing to say about the nature of
the phase beyond the quantum phase transition. Indeed, at
the quantum phase transition, the energy must be singular,
implying that the perturbation in κ diverges at that point, or
in other words that the expansion in κ of the energy has a
finite radius of convergence equal to κc. So the fact that the
Pf is clearly favored for large κ must be considered as an
artifact of the third-order expansion since, for large κ , the
ground state must be that of the higher-order term of the
series. If the expansion was pushed to higher order, another
term would be selected, leading to the stabilization of another
state.

In that respect, we would like to note that the first terms of
the series contain a hint that the radius of convergence is finite
and hence that there is a quantum phase transition. Indeed,
as discussed decades ago in the context of high-temperature
expansions of thermal phase transitions [65], the radius of
convergence is the infinite-order limit of the ratio of subse-
quent coefficients of the series. The evolution of this ratio with
the order can give a hint of the radius of convergence, even if
only the first orders are available. In particular, if the ratio
decreases with the order, this is a strong indication that the
radius of convergence is finite and hence that there is a phase
transition. This is illustrated in Appendix D in the case of the
one-dimensional (1D) transverse field Ising model, for which
we show that the ratio decreases smoothly with the order
and that the critical field hc = 1 can be accurately deduced
from the first three terms of the series by a polynomial fit.
In the present case, the ratio also decreases with the order, a
behavior consistent with a finite radius of convergence (see
Appendix D for details). Given the finite order of the series,
let us emphasize that this is just an indication and by no means
a proof since the argument relies on the assumption that this
ratio is monotonous, an assumption that can only be tested by
calculating higher orders.

To summarize, we believe that our results unambiguously
point to a change of behavior at small field that could explain
the puzzling experimental result of a 5/2 thermal conduc-
tance. This is of course not the end of the story, however,
because the physics at large κ is not accessible to perturbation
theory in κ . To finish, let us briefly discuss the alternative
approaches that could possibly shed light on the nature of this
state.

Since the expansion in κ cannot access this phase, one
might be tempted to turn to an expansion in 1/κ , starting
from small magnetic field. Unfortunately, this is probably
not going to work either. At zero magnetic field, the ground
state of the 2D interacting electron gas is a Wigner crys-
tal, and there is almost certainly a phase transition between
that state and the 5/2 quantum Hall state we are after. So
this state is probably in an intermediate parameter range
that cannot be accessed by perturbation theory from either
side.

Turning to variational approaches using wave functions is
also tricky because the wave functions one can write down
explicitly are projected onto a Landau level, and as argued

above we do not have access to an accurate effective model in
the range of κ relevant to experiments.

So it seems that the most promising alternative is to
turn to numerics to investigate the intermediate-κ regime.
This has already been done using DMRG on cylinders for
ν = 5/2, but for fully polarized electrons [26], a case for
which the physics at third order is clearly different from the
spinful case, as explained in Sec. IV B. One obvious sugges-
tion is thus to extend this DMRG calculation to the spinful
case.

Finally, we note that tensor network approaches have been
successfully developed for 2D models of quantum many-body
physics. It would be very interesting to see if these methods
can be extended to the FQHE.
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APPENDIX A: CONVENTIONS

We work with the following form for the Landau-level
orbitals on the torus:

	m,l (x, y) = 1√
Ly

√
π2l l!

∞∑
k=−∞

e
2iπ
Ly y(m+kNφ )

×Hl

(
x − 2π

Ly
(m + kNφ )

)
e−(x− 2π

Ly (m+kNφ ))2/2
.

(A1)

We have fixed the gauge such that �A = (0,−Bx, 0). Here, we
denote by Lx (Ly) the dimension of the torus in x (y). In the
main text, we consider a square torus with Lx = Ly = √

2πNφ .
We checked that this does not affect our result. We fixed the
magnetic length lB to 1 for convenience.

APPENDIX B: ALGORITHM

As discussed in the main text, we directly compute the
second- and third-order contributions of the empty and oc-
cupied Landau levels by using a Schrieffer-Wolff or resolvant
type expansion.

The expansion is performed entirely numerically, directly
at the operator level in a second-quantization formulation.
It can be divided into several conceptually simple steps
which can be easily parallelized: (1) computation of the
second-quantization coefficients of our chosen interaction
for arbitrary Landau levels, (2) generation of all possible
Feynman diagrams, (3) computation of the effective co-
efficients, taking into account normal ordering, and (4)
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Evaluation of the matrices and determination of their ground
states. In the following, we will briefly summarize some of the
key points and difficulties of each step.

1. Interaction coefficients

The computation of second-quantization coefficients is a
standard exercise and requires the evaluation of

〈
	m1,lm1

	m2,lm2

∣∣VC

∣∣	n1,ln1
	n2,ln2

〉
(B1)

for all combinations of m’s and l’s. The main technical chal-
lenge here is the number of such coefficients: O(N4

L N3
φ ).

Translation invariance on the torus allows us to compute only
O(N4

L N2
φ ) such terms in practice. Naively, each coefficient

requires a double integration over R2, which becomes quickly
untractable. Instead, the common approach is to express the
interaction in Fourier space

VC =
∑

�q
VC (�q)ei �q·(�r1−�r2 ) (B2)

and factorize the computation
〈
	m1,lm1

	m2,lm2

∣∣VC

∣∣	n1,ln1
	n2,ln2

〉
=

∑
�q

VC (�q)
〈
	m1,lm1

∣∣ei �q·�r∣∣	n1,ln1

〉〈
	m2,lm2

|e−i �q·�r∣∣	n2,ln2

〉
.

(B3)

Performing the integral on y, after several change of variables
we obtain
〈
	m,lm

∣∣ei �q·�r∣∣	n,ln

〉 = δ′
m,n+qy

ei
qx qy

2 eiqx
2π
Ly

ne− q2

4
1√

π2lm+ln lm!ln!

×
∫ ∞

−∞
Hlm

(
x − qy

2
+ i

qx

2

)

×Hln

(
x + qy

2
+ i

qx

2

)
e−x2

. (B4)

Note that up to the exponential phase prefactor, this integral
no longer depends on m and n. It also decreases exponentially
with q2. We therefore can systematically evaluate it for all
values of qx and qy up to our precision cutoff, and simply
resum the relevant contributions to obtain each of the second-
quantization coefficients. In practice, we need of the order of
O(N2

φL2) such terms for a given precision. The integral can in
fact be computed analytically such that

〈
	m,lm

∣∣ei �q·�r∣∣	n,ln

〉 = δ′
m,n+qy

ei
qx qy

2 eiqx
2π
Ly

ne− q2

4
1√

π2lm+ln lm!ln!

×
min lm,ln∑

k=0

(
lm
k

)(
ln
k

)
2kk!(iqx − qy)lm−k

×(iqx + qy)ln−k . (B5)

We use the above form with heavy memoization in our com-
putation. Finally, we note that it also accepts an interesting
formulation in terms of the Lagrange polynomials:

〈
	m,lm

∣∣ei �q·�r∣∣	n,ln

〉 = δ′
m,n+qy

ei
qx qy

2 eiqx
2π
Ly

ne− q2

4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Llm

( q2

2

)
if lm = ln

(qy − iqx )lm−ln

√
2ln ln!√
2lm lm!

L(lm−ln )
lm

( q2

2

)
if lm > ln

(qy + iqx )ln−lm

√
2lm lm!√
2ln ln!

L(ln−lm )
ln

( q2

2

)
if lm < ln.

(B6)

2. Feynman diagrams

The second- and third-order expansions of the Hamiltonian
are given in Eq. (6) in the main text. Terms of the form
P0H1Gm1

0 · · ·H1P0 can be naturally expressed using Feynman
diagrams. While we only compute the perturbation up to third
order, we actually have to take into account a large number of
diagrams due to the complexity of H1. It is convenient to sep-
arate the Landau levels into three groups: the fully occupied
levels, the fully empty ones, and our target. Each operator c
or c† then belongs to three possible groups. For convenience,
we strictly order the c (c†) by the label of their Landau levels
(and by spin in case of equality). H1 is then separated into 36
terms, each corresponding to a possible vertex in the Feynman
representation of the perturbative expansion. At second order,
it is still possible to implement by hand the relevant diagrams:
27 diagrams to obtain all contributions, and only 12 for the
nondiagonal ones (neglecting all symmetries). At third order,
we have to deal with several hundred diagrams (835 diagrams
if we want all contributions, and 458 if we are only interested
in the nondiagonal contributions) [66], and it is necessary
to do that automatically. Straightforward linear programming

with constraints easily lists all the relevant combination of
vortices, which we use as inputs for the last block of our code.

Note that we compute Feynman diagrams leading to di-
agonal terms in our expansion as they are necessary for the
computation of the anticommutators appearing in the third-
order contributions. Their computational cost is negligible.

3. Effective interactions

Once we have the list of diagrams, we can compute the
effective Hamiltonian in second-quantized form. To do so, we
automatically generate all possible combinations of Landau
levels and orbitals allowed by the vertices. This can again
be done using programming under constraints and memo-
ization to speed up and limit redundant evaluations. The
number of orbitals in a given diagram scales approximately as
O(Nnt +no/2+ne/2−3

φ Ln0
o Lne

e ), where ne, no, and nt are the number
of operators in empty, occupied, and targeted Landau levels,
respectively, and Le and Lo are the number of empty and
occupied Landau levels, respectively. Taking into account the
translation invariance allows us to reduce the complexity by
an additional factor Nφ at the price of symmetrization.
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The last step is to normal-order the obtained interactions
to keep the number of coefficients to implement manageable.
As the complexity is exponential, it is key to implement
the normal ordering in a memory-allocation and complexity
optimal fashion. The most expensive diagrams to compute
are those leading to the five-body terms. They contribute
to lower-body terms after normal ordering, even though the
five-body interaction itself vanishes as the contribution from
P0H1G0H1G0H1P0 and the anticommutator exactly cancels.

Parallelization can be realized either at the diagram levels
or within the diagrams themselves. We chose the latter for
convenience (at the price of a larger memory footprint). For
the largest system sizes, it is also more efficient to compute
the anticommutator in Eq. (6) directly at the operator levels.

4. Evaluation of the Hamiltonian

Finally, the evaluation of the Hamiltonian from the
second-quantization coefficients is straightforward. The main
limitation lies in the density of the Hamiltonians which restrict
the achievable system sizes. For the largest size considered
here Nφ = 28, more than 10 × 106 operators are present in the
Hamiltonian if we discard all contributions smaller than 10−10

(and 3 × 106 if we choose a cutoff at 10−6). This translates
into Hamiltonians that have 25% filling even for Nφ = 28,
strongly limiting our possibilities. Nφ = 32, the next relevant
size for paired systems (such that the number of electrons re-
mains even), admits ≈106 vectors in the translation-invariant
basis. Even a 10% filled matrix would occupy approximately 1
TB of RAM (using 64-bit floating points), which is technically
achievable but numerically heavy to build and use. Similarly,
applying the Hamiltonian on the fly without constructing it
would require ∼1012 operations per vector application. While
technically achievable, we limited ourselves to Nφ = 28 given
the massive numerical costs.

The explosion of the number of coefficients will actually
also hard-limit the possible orders of the expansion as long as
we keep this second-quantized formulation. Even including
only the five-body terms appearing at the next order would re-
quire the computation and evaluation of 100 × 106 operators
per basis state. Given the results of the exact calculation for
small systems (even-order expansions are physically wrong
faster than the odd order), it appears impractical or impossible
to extend this naive expansion up to fifth order in the foresee-
able future. Other approaches such as DMRG would be more
appropriate.

APPENDIX C: EFFECTIVE HAMILTONIANS BETWEEN
PFAFFIAN AND ANTI-PFAFFIAN STATES

This Appendix summarizes the effective Hamiltonians we
obtained in the Pf-APf subspace. They are included in this Ap-
pendix both as a reference for benchmarking and to illustrate
the opposite effects of the second- and third-order perturbative
expansion. Concretely, we define the reduced effective Hamil-
tonian

hn = 1

Nl=1

(
	Pf 	APf

)
Hn

(
	Pf

	APf

)
. (C1)

Due to the nonorthogonality of the states, we also investigate
the corrected effective Hamiltonian

h̃n = M− 1
2 hnM− 1

2 (C2)

with M defined in Eq. (9). h̃n is in principle a better measure
of the energy splitting and the coupling between the Pf and
APf states. Our conclusions are nonetheless unaffected.

First, we show the results for the spinful system. In
Table I, we directly list the effective Hamiltonian hn defined
in Eq. (C1) in the Pauli matrix basis. In Table II, we present
h̃n for the same systems. hn sees more significant finite-size
effects, even at fixed L. The crossing point is reliably at κc ≈
0.4. The Padé (1, 1) approximant of the series (h1, h2, h3)
gives similar results, with a restoration of the particle-hole
symmetry at κc ≈ 0.6. In Tables III and IV, we show the same
quantities for spinless systems, with κc ≈ 1. The influence of
the third-order expansion is reduced. If we perform the same
Padé (1, 1) approximant, κc is pushed above 2 with significant
variations with the system size. Note nonetheless that this
approximant is here extremely sensitive to the details of the
computation: Were we to not include the trivial constant terms
in H3, we would see no crossing for any Nφ .

APPENDIX D: PERTURBATIVE EXPANSION
AND QUANTUM PHASE TRANSITION

In this Appendix, we discuss in more detail the connection
between the perturbative expansion of the ground-state energy
of a Hamiltonian as a function of a parameter, say, x, and the
occurrence of a quantum phase transition at a critical parame-
ter xc. In the context of thermal phase transitions, this has been
discussed at length [65] for high-temperature expansions. If a
phase transition occurs at inverse temperature βc, this means
that the free energy has a singularity, which in turns implies
that the radius of convergence of the series must be equal to
βc. By analogy, a quantum phase transition can be expected
to take place at xc if the radius of convergence of the series of
the ground-state energy is finite and equal to xc.

Now, if we denote by an the coefficients of the expansion
of the ground energy, the radius of convergence is given by
the limit of |an−1/an| when n goes to infinity. In principle,
this implies that one should know the series to infinite order
to know if there is a quantum critical point. However, if the
series is well behaved, the first terms of the series can already
contain some relevant information. In particular, if the ratio
|an−1/an| decreases with n, the radius of convergence cannot
be infinite, and a quantum phase transition has to take place.

Let us consider as an example the transverse field Ising
model whose Hamiltonian is

H = −J
∑

j

σ x
j σ

x
j+1 − h

∑
j

σ z
j . (D1)

The exact expression for the ground-state energy as a function
of the transverse field h [67] can be used to evaluate the
coefficients of the expansion. All odd coefficients vanish, and
the even coefficients are given by a0 = −1 and

an = −
n∏

p=2,p even

(
p − 3

p

)2

, n � 2. (D2)
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TABLE I. Effective Hamiltonians in the Pf-APf subspace for spinful electrons, defined in Eq. (C1). We use the notation hn = n0σ
0 +

nxσ
x + nzσ

z ≡ (n0, nz, nx ).

Nφ Sector L h1 h2 h3

28 (π, 0) 4 (−1.3829, 0, −0.2279) (−0.1983, 0.0004, −0.0322) (0.0657, −0.0009, 0.0103)
28 (π, π ) 4 (−1.3828, 0, −0.6516) (−0.1983, 0.0003, −0.0925) (0.0652, −0.0008, 0.0291)
24 (π, 0) 11 (−1.354, 0, −0.3511) (−0.3087, 0.0004, −0.0796) (0.1024, −0.0009, 0.0256)
24 (π, π ) 11 (−1.3539, 0, −0.4565) (−0.3087, 0.0004, −0.1038) (0.102, −0.001, 0.0334)
20 (π, 0) 11 (−1.3172, 0, −0.4494) (−0.3084, 0.0003, −0.1049) (0.102, −0.0008, 0.0338)
20 (π, π ) 11 (−1.3172, 0, −0.118) (−0.3085, 0.0004, −0.0274) (0.1024, −0.0009, 0.0086)
16 (π, 0) 11 (−1.268, 0, −0.658) (−0.308, 0.0003, −0.1581) (0.1024, −0.0008, 0.0514)
16 (π, π ) 11 (−1.2687, 0, −0.9211) (−0.3074, 0.0003, −0.2207) (0.1029, −0.0007, 0.0725)
12 (π, 0) 11 (−1.1948, 0, −0.9699) (−0.3088, 0.0005, −0.2488) (0.1028, −0.0011, 0.0812)
12 (π, π ) 11 (−1.1947, 0, −0.4337) (−0.3104, 0.0005, −0.1107) (0.1077, −0.0013, 0.0382)

TABLE II. Effective Hamiltonians h̃n = M− 1
2 hnM− 1

2 in the Pf-APf subspace corrected by the overlap matrix for spinful electrons. We
round at the fourth decimal.

Nφ Sector L h̃ h̃2 h̃3

28 (π, 0) 4 (−1.3828, 0, −0.0003) (−0.1984, 0.0004, 0.0005) (0.0658, −0.0009, −0.0005)
28 (π, π ) 4 (−1.3826, 0, −0.0006) (−0.1988, 0.0004, 0.0011) (0.0661, −0.0009, −0.002)
24 (π, 0) 11 (−1.354, 0, −0.0001) (−0.3088, 0.0004, 0.0004) (0.1027, −0.0009, −0.001)
24 (π, π ) 11 (−1.3538, 0, −0.0001) (−0.3088, 0.0004, 0.0004) (0.1024, −0.001, −0.0011)
20 (π, 0) 11 (−1.3172, 0, −0.0001) (−0.3085, 0.0004, 0.0004) (0.1024, −0.0008, −0.0012)
20 (π, π ) 11 (−1.3172, 0, 0) (−0.3085, 0.0004, 0.0002) (0.1025, −0.0009, −0.0006)
16 (π, 0) 11 (−1.2671, 0, −0.0016) (−0.309, 0.0004, 0.002) (0.1036, −0.0009, −0.0023)
16 (π, π ) 11 (−1.2659, 0, −0.0038) (−0.3107, 0.0004, 0.0045) (0.1059, −0.001, −0.0042)
12 (π, 0) 11 (−1.1921, 0, −0.0033) (−0.3125, 0.0008, 0.0046) (0.1079, −0.0019, −0.0063)
12 (π, π ) 11 (−1.194, 0.0, −0.0019) (−0.3111, 0.0006, 0.0018) (0.108, −0.0014, −0.0009)

TABLE III. Effective Hamiltonians in the Pf-APf subspace for spinless electrons, defined in Eq. (C1). We use the notation hn = n0σ
0 +

nxσ
x + nzσ

z ≡ (n0, nz, nx ).

Nφ Sector L h1 h2 h3

24 (π, 0) 11 (−0.8849, 0, −0.2295) (−0.0289, 0.0004, −0.0071) (0.0067, −0.0003, 0.0015)
24 (π, π ) 11 (−0.8848, 0, −0.2984) (−0.0287, 0.0004, −0.0092) (0.0066, −0.0003, 0.002)
20 (π, 0) 11 (−0.8629, 0, −0.2944) (−0.0288, 0.0003, −0.0093) (0.0066, −0.0003, 0.002)
20 (π, π ) 11 (−0.8629, 0, −0.0773) (−0.029, 0.0004, −0.0024) (0.0067, −0.0003, 0.0005)
16 (π, 0) 11 (−0.8335, 0, −0.433) (−0.029, 0.0003, −0.0144) (0.0069, −0.0003, 0.0032)
16 (π, π ) 11 (−0.8342, 0, −0.6063) (−0.0293, 0.0003, −0.0206) (0.0071, −0.0003, 0.0048)
12 (π, 0) 11 (−0.7892, 0, −0.641) (−0.0286, 0.0005, −0.0224) (0.0068, −0.0004, 0.005)
12 (π, π ) 11 (−0.7891, 0, −0.287) (−0.0306, 0.0005, −0.0108) (0.0077, −0.0005, 0.0025)

TABLE IV. Effective Hamiltonians h̃n = M− 1
2 hnM− 1

2 in the Pf-APf subspace corrected by the overlap matrix for spinless electrons.

Nφ Sector L h̃ h̃2 h̃3

24 (π, 0) 11 (−0.8849, 0, −0.0001) (−0.0291, 0.0004, 0.0004) (0.0067, −0.0003, −0.0002)
24 (π, π ) 11 (−0.8848, 0, −0.0001) (−0.0289, 0.0004, 0.0005) (0.0066, −0.0003, −0.0003)
20 (π, 0) 11 (−0.8629, 0, −0.0001) (−0.029, 0.0004, 0.0005) (0.0067, −0.0003, −0.0003)
20 (π, π ) 11 (−0.8629, 0, 0) (−0.029, 0.0004, 0.0002) (0.0067, −0.0003, −0.0001)
16 (π, 0) 11 (−0.8327, 0, −0.0016) (−0.0294, 0.0004, 0.0008) (0.0071, −0.0003, −0.0005)
16 (π, π ) 11 (−0.8315, 0, −0.0038) (−0.0303, 0.0004, 0.0014) (0.0076, −0.0004, −0.0008)
12 (π, 0) 11 (−0.7866, 0, −0.0033) (−0.0305, 0.0008, 0.0023) (0.0079, −0.0006, −0.0014)
12 (π, π ) 11 (−0.7884, 0, −0.0019) (−0.0307, 0.0006, 0.0003) (0.0078, −0.0005, −0.0003)
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TABLE V. Ground-state energy per particle and its first two derivatives estimated from the third-order perturbative expansion for different
Nφ and L. Higher derivatives cannot be estimated from the expansion. For Nφ = 8, we performed the computation exactly, and we have access
to higher orders of the derivative.

Nφ L E3(π, 0) ∂κE3(π, 0) ∂2
κ E3(π, 0) E3(π, π ) ∂κE3(π, π ) ∂2

κ E3(π, π )

28 4 −1.3839 −0.1974 0.1316 −1.384 −0.1973 0.1322
24 11 −1.3548 −0.3081 0.2044 −1.3549 −0.3085 0.2063
24 4 −1.3548 −0.1979 0.1316 −1.3549 −0.1982 0.134
20 11 −1.3187 −0.308 0.2087 −1.3181 −0.3082 0.2077
20 4 −1.3187 −0.1976 0.1365 −1.3181 −0.1979 0.1353
16 11 −1.27 −0.3062 0.2045 −1.2704 −0.3059 0.2044
16 4 −1.27 −0.1959 0.1322 −1.2704 −0.1955 0.1323
12 11 −1.1963 −0.3076 0.2055 −1.1959 −0.3093 0.2142
12 4 −1.1963 −0.1973 0.1326 −1.1959 −0.199 0.142
Nφ L E (π, 0) ∂κE (π, 0) ∂2

κ E (π, 0) ∂3
κ E (π, 0) ∂4

κ E (π, 0)
8 2 −1.0778 −0.04912 0.04228 −0.0590 0.115

For n � 4, (an−2/an)1/2 = n
n−3 . The radius of convergence is

thus given by

hc = lim
n→∞(an−2/an)1/2 = lim

n→∞ 1 + 3

n − 3
= 1 (D3)

or equivalently by

1/hc = lim
n→∞(an/an−2)1/2 = lim

n→∞ 1 − 3

n
= 1. (D4)

The radius of convergence is hc = 1, in agreement with the
exact result, but more importantly the ratio (an−2/an)1/2 de-
creases with n for n � 4. Besides, expressed as a function of
1/n, the ratio giving 1/hc, (an/an−2)1/2, reduces to a polyno-
mial of degree 1. Hence a linear regression of this ratio for
the first two terms, n = 4 and n = 6, gives the correct limit,
hc = 1.

For our model, we have computed the derivatives of the
ground-state energy for the third-order perturbation Hamilto-
nian and for the exact Hamiltonian with L = 2. They are listed
in Table V. In terms of the derivatives, coefficients and their
ratio are given by

an = 1

n!
∂n
κ E (κ = 0), (D5)

an−1/an = n∂n−1
κ E (κ = 0)/∂n

κ E (κ = 0). (D6)

For our ground state, the ratio an−1/an also decreases between
n = 1 and n = 2. Taken naively at n = 2, it gives κc ≈ 3
for L = 4 and L = 10. These values of course are but naive
approximations, and should just be seen as a suggestion of
the existence of a critical point. For L = 2, we extracted the
first four derivatives following our exact computation, and we
found κc ≈ 2 performing a naive linear regression.

[1] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[2] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
[3] B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984).
[4] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[5] B. I. Halperin and J. K. Jain, Fractional Quantum Hall Effects

(World Scientific, Singapore, 2020).
[6] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[7] N. Read and G. Moore, Prog. Theor. Phys. Suppl. 107, 157

(1992).
[8] M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett. 99,

236806 (2007).
[9] S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys. Rev.

Lett. 99, 236807 (2007).
[10] R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C.

Gossard, and J. H. English, Phys. Rev. Lett. 59, 1776 (1987).
[11] J. S. Xia, W. Pan, C. L. Vicente, E. D. Adams, N. S. Sullivan,

H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and
K. W. West, Phys. Rev. Lett. 93, 176809 (2004).

[12] B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312
(1993).

[13] R. L. Willett, R. R. Ruel, K. W. West, and L. N. Pfeiffer, Phys.
Rev. Lett. 71, 3846 (1993).

[14] V. W. Scarola, K. Park, and J. K. Jain, Nature (London) 406,
863 (2000).

[15] M. Greiter, X.-G. Wen, and F. Wilczek, Phys. Rev. Lett. 66,
3205 (1991).
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