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Stable pair liquid phase in fermionic systems
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We predict the existence of a pair-liquid phase in lattice fermion systems with finite-range attractive inter-
actions. This exotic state competes on one side with a normal Fermi liquid of unpaired fermions and on the
other side with a phase-separated state where all fermions are coupled into macroscopic clusters. We show that
such a phase is absent in bosonic systems and therefore is protected by the exclusion principle. In contrast with
zero-range attractive systems where clustering of more than two fermions is directly prohibited, here quantum
statistics acts dynamically and in a more subtle way. Since a many-fermion wave function must have nodes,
the cluster formation threshold is larger than the pair formation threshold. By directly solving a four-body
Schrödinger equation on one- and two-dimensional lattices, we map the boundaries of pair stability. The pair
liquid phase should be observable in cold-atom systems. We also discuss implications for the preformed-pair
mechanism of high-temperature superconductivity.
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I. QUANTUM PAIR LIQUIDS

The most famous example of quantum pair fluids is su-
perconductivity. Cooper pairs, however, are not individual
particles and are only stable as a collective entity. The question
of whether superconductivity can be explained by particle-
like preformed pairs has been debated for decades: starting
even before BCS [1–4], then after BCS [5–8], and most
intensely after the discovery of high-temperature supercon-
ductivity [9–13]. In this physical picture, the pseudogap state
of underdoped cuprates is a manifestation of the forma-
tion of real-space pairs, and Uemura scaling of the critical
temperature [14,15] is explained by Bose-Einstein condensa-
tion of strongly anisotropic pairs [16]. Recently, normal-state
hole pairs were observed in the shot noise in copper ox-
ide junctions [17]. This, together with the growing doubts
that high-temperature superconductivity can be explained
by purely repulsive mechanisms [18–20], lends support to
the old idea [9] that an intermediary subsystem such as
phonons [8,13,21], spin fluctuations [22], or polarizable or-
bitals [23] is necessary to provide direct weakly retarded
attraction between the carriers. Many properties of such sys-
tems can be studied without reference to a specific pairing
mechanism, but rather by postulating a phenomenological
attractive potential and then analyzing the consequences. The
simplest attractive Hubbard model, while providing useful
insights into pseudogap physics and the nature of BCS-BEC
crossover, disregards Coulomb repulsion, and can hardly be
considered a microscopic model of the cuprates or other
oxide superconductors. More realistic are extended attrac-
tive Hubbard models, to be called here “UV models,” that
combine a Hubbard repulsion U with a finite-range attrac-
tion V . Such models have been studied for a long time
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[9,24–31] but recently received renewed attention [32–38].
They are also supported by first-principles quantum chemistry
calculations [39,40].

What has been largely missing from these discussions
is analysis of the system’s stability against phase separa-
tion. Once the pairs are formed, what prevents them from
aggregating into a macroscopic cluster? In the attractive
Fermi-Hubbard model, the formation of trions and larger com-
plexes is prevented by the exclusion principle. This is not the
case for UV potentials. Due to a finite range of attraction,
an infinite cluster will always form for sufficiently large V ’s.
To have many individual pairs, V needs to be large enough
to bind two carriers into a mobile pair and at the same time
weak enough not to cause macroscopic phase separation. If
the pairing and phase separation thresholds are different, then
a pair liquid may be the system’s ground state. If the two
thresholds coincide, then a pair liquid state is impossible:
as soon as the pairs form, the system phase-separates. The
situation is illustrated in Fig. 1.

We believe these considerations are of the utmost im-
portance for pseudogap physics in particular and high-
temperature superconductivity (HTSC) in general. The correct
phenomenological model of cuprate superconductors must in-
clude a long-range attractive tail. If such an assumption leads
to the impossibility of a pair liquid even at a model level,
it would invalidate the entire real-space pairing mechanism.
However, if the pair liquid state is possible, not only would
it lend support to the mechanism, but it would also explain
why HTSC is rare: the system’s microscopic parameters must
fall within a narrow region of pair stability between the two
thresholds.

A different angle on these issues is provided by cold-
atom technology [41–44]. Whereas in solid crystals the
UV model is an approximation to real interparticle poten-
tials, in optical lattices it can be precisely engineered and
studied in pure form. The on-site interaction is controlled
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(a)             V < V2 (b)        V2 < V < V4 (c)             V > V4
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FIG. 1. Evolution of a Fermi-UV model with increasing intersite attraction V . (a) V is not strong enough to bind particles into pairs.
Effective interaction between fermions is repulsive. The system is a Fermi liquid and may become a BCS superconductor at low temperatures.
(b) V is strong enough to form pairs but not strong enough to form quads. Effective interaction between pairs remains repulsive. The system
is a pair liquid and may become a BEC superconductor at low temperatures. (c) V is strong enough to form quads C and larger clusters A.
The effective interaction between pairs becomes attractive. The system phase-separates and becomes an insulator. Quad threshold V4 can be
determined by solving a four-body lattice problem.

via Feshbach resonances and can be made either repul-
sive [45] or attractive [46]. The intersite interaction can
be controlled either by exciting dressed Rydberg atoms to
large quantum numbers [47] or via proper alignment of
dipolar quantum gases [48]. Precise manipulation of a few
particles in optical traps has been demonstrated [49–51].
Pseudogap behavior [52] and a pseudogap–Bose-gas evo-
lution [53] have both been observed. Local pairing can
now be measured directly using gas microscopy [54,55].
Thus the question of pair liquid stability can be answered
experimentally.

Rigorous analysis of phase separation with nonlocal at-
traction is difficult. Emin [56] argued for the existence of
a stable liquid of large bipolarons. In Refs. [57,58], phase
boundaries of a bipolaronic superconductor were determined
by counting kinetic and lattice energy contributions following
a displaced oscillator (Lang-Firsov) transformation of the bare
unscreened electron-ion model. It was found that the pair
(bipolaron) liquid was stable within a narrow but finite range
of the polaron binding energy. Finite stability intervals were
reported in a “hole-rich” phase of the t-J model [59,60],
which is equivalent to the UV model in the U → ∞ limit.
More recently, Chakraborty, Tezuka, and Min reported [61]
a finite stability region of bipolarons in the one-dimensional
extended Holstein model [62]. The present author analyzed
the formation of fermionic trions in one-dimensional [63],
two-dimensional [64], and three-dimensional [65] UV mod-
els. The analysis was based on direct solution of a three-body
Schrödinger equation, which was a generalization of the
approximation-free methods of Mattis [66] and Rudin [67] to
finite-range potentials. The obtained results were numerically
exact. It was found that in 1D [63] the region of pair liquid
stability is finite but narrow and it shrinks to zero in the limit
of large Hubbard repulsion. In contrast, in 2D [64] and 3D
[65] the region of stability remains finite (of order t) even in
the U → ∞ limit.

In this paper, we extend the integral equation method
of Refs. [63–67] to four fermions. The motivation for such

an extension lies in the topology of the two-dimensional
square lattice. When two pairs attempt to form a four-particle
cluster (a quad), they form two new attractive bonds. This
contrasts with the formation of a trion, when only one at-
tractive bond is formed. Additionally, the kinetic energy
lost in quad formation is less than in trion formation since
a pair is heavier than a single particle. These two effects
suggest that a quad threshold V4 might be smaller than a
trion threshold V3, which would shrink the pair liquid do-
main of stability. The above picture is valid in the large-V
limit when pairs are tightly bound and confined to nearest
neighbors. At threshold, however, pairs are loosely bound
and spread over many lattice sites. The argument based on
counting the number of attractive bonds may not hold at the
threshold. Thus, an exact solution is required to settle the
issue.

Solving a four-body problem on large lattices is difficult
because of the large number of basis states involved. Mattis’
integral equation method utilizes conservation of total mo-
mentum and the finite radius of interaction to eliminate two
internal variables. As a result, the four-variable Schrödinger
equation reduces to a set of coupled two-variable integral
equations, which is then solved by direct discretization. With
this approach, we are able to study lattices as large as 10 × 10
and then perform a meaningful extrapolation to obtain thresh-
olds for an infinite system. By restricting the symmetry of
a four-body wave function from the start, we are able to
study bosons and fermions separately, and in the case of
fermions, separate states with different total spins S = 0, 1,
and 2. As a byproduct, we also provide solutions of a four-
body problem on the 1D chain, which is simpler numerically.
We are not aware of any prior studies that utilized a similar
approach.

II. THE MODEL

We consider a tight-binding UV model with isotropic
hopping t and isotropic nearest-neighbor attraction on the
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two-dimensional (2D) square lattice

H = −t
∑

m,b,σ

c†
mσ cm+b,σ

+ U

2

∑
m

n̂m(n̂m − 1) − V

2

∑
m,b

n̂mn̂m+b. (1)

Here, c† and c are spin- 1
2 fermion operators, index m runs over

lattice sites, index b = ±x,±y enumerates the four nearest
neighbors within the xy plane, σ = ± 1

2 is the z-axis spin
projection, and n̂m = ∑

σ c†
mσ cmσ is the total fermion number

operator on site m. As discussed in the Introduction, the
model is designed to describe a normal-state pseudogap and
pair superconductivity with mediated attraction. Equation (1)
may be considered a phenomenological model of hole-doped
copper-oxygen planes in the underdoped regime. With this
connection in mind, we focus on the case U > 0, V > 0,
although Hamiltonian (1) is well defined for any values of U
and V .

The two-body sector of Eq. (1) admits an exact solution and
was studied by several authors [9,24–26,28–30]. There are
four pair states: one extended s-symmetric spin singlet, two
p-symmetric spin triplets, and one d-symmetric spin singlet.
The s-state is always the lowest, and it forms when

V > V2 = 2Ut

U + 8t
. (2)

One should mention that threshold V2 corresponds to a sta-
tionary pair with zero total momentum. Pairs with nonzero
momenta form at smaller V [30,68]. This interesting effect
may be related to variation of a gap function along the Fermi
surface observed in some cuprates [69]. This topic is outside
the scope of the present work and will be addressed elsewhere.

The three-body sector of Eq. (1) was studied in Ref. [64]
using the integral equation method. It was found that trion-
formation threshold V3 was larger than V2 by about 2t . That
was explained as being due to the requirement of a three-
fermion wave function to have at least one node, which
increased the kinetic energy of internal motion. Since the trion
is a compact object, the energy increase is of order t . A similar
increase in V is required to overcome the excess in kinetic
energy, which explains why V3 − V2 ∼ t . In determining quad
threshold V4, quad stability needs to be tested not only against
decaying in two pairs [4] ↔ [22], but also against decaying
in a trion plus one free particle, [4] ↔ [31]. The results of
Ref. [64] are incorporated in the phase boundaries presented
below.

In the context of cold atoms, lattice sites m are assumed
to be painted by Gaussian beams on a single optical pancake

[70]. Hopping t originates from the overlap of atomic wave
functions localized in neighboring wells [41], U is controlled
by Feshbach resonances, and V by the excitation number
of dressed Rydberg atoms. (We assume that the attraction
between dressed Rydberg atoms falls off as the sixth power of
separation [47]. That still results in a second-neighbor attrac-
tion of about V/8. We assume that the influence of second and
more distant neighbors is not qualitative and can be accounted
for by a redefinition of V . In other words, the nearest-neighbor
V serves as a pseudopotential for real cold-atom systems
much like V approximating a complex long-range attractive
tail in the solid-state case.) Thus, cold-atom technology offers
great flexibility in fine-tuning model parameters as well as
lattice geometry. Out of all the theoretical possibilities, in
this work we will consider only one geometric extension of
Eq. (1), namely its one-dimensional version. The four-body
problem in 1D is numerically simpler than in 2D and pro-
vides a convenient point of comparison. It also highlights the
important role of orbital motion in stabilizing pair liquids in
2D. In the 1D version of Eq. (1), the nearest-neighbor vector
assumes only two values, b = ±x. A 1D analog or Eq. (2)
reads V2(1D) = 2Ut/(U + 4t ) [30].

The cold-atom technology also enables us to extend the
model, Eq. (1), to bosons. Indeed, bosonic atoms can be
trapped by lasers as well as fermionic ones, and all the experi-
mental knobs listed above apply equally to cold Bose systems.
Hamiltonian (1) remains valid for (spin zero) bosons as long
as spin index σ is omitted from summations and c, c† are
understood as Bose operators. The Bose version of Eq. (1) will
be referred to hereafter as the Bose-UV model. Regarding pair
stability, comparison between Bose and Fermi cases is critical
as the wave-function node argument does not apply to bosons.
Indeed, we will see that Bose-UV pair liquids are unstable
in both 1D and 2D. Since cold-atom technology can be used
to study both cases, it should be possible to demonstrate the
Fermi-Bose distinction experimentally.

III. METHOD

An attempt to solve a four-body Schrödinger equation in
real space leads to very large matrices. For example, on a
10 × 10 lattice, the number of states is of order 1004 = 108.
Although the matrices are sparse, diagonalizing them directly
is impractical. A method due to Mattis [66] formulates the
problem in momentum space and takes advantage of two re-
duction steps. The first reduction utilizes conservation of total
momentum P and effectively reduces the number of variables
by 1. The second reduction originates from a finite range
of the interaction potential. The Schrödinger equation for a
four-particle wave function �(q1, q2, q3, q4) has the form

[E − ε(q1) − ε(q2) − ε(q3) − ε(P − q1 − q2 − q3)] �(q1, q2, q3, P − q1 − q2 − q3)

= U
∑

k

�(k, q1 + q2 − k, q3, P − q1 − q2 − q3) + permutations of � arguments

−V
∑

k

[cos (kx − q1x ) + cos (ky − q1y)] �(k, q1 + q2 − k, q3, P − q1 − q2 − q3)

+ permutations of � arguments, (3)
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where ε(q) = −2t (cos qx + cos qy) is the one-particle disper-
sion and E is the total energy. The right-hand side of Eq. (3)
splits into a linear combination of a finite number of integrals,

J (q1 + q2, q3) =
∑

k

f (k) �(k, q1 + q2 − k, q3,

P − q1 − q2 − q3), (4)

in which f (k)’s are simple kernels: f = 1, f = cos kx, f =
sin kx, f = cos ky, or f = sin ky. Note that J (Q12, q3) is a
function of only two variables: combined momentum Q12 =
q1 + q2 and one-particle momentum q3. From Eq. (3), the
four-particle wave function can be expressed as a linear com-
bination of two-variable auxiliary functions J . Substituting
the wave function back into the definitions, Eq. (4), one arrives
at a system of coupled integral equations for J’s. Thus, the
original four-variable Schrödinger equation has been reduced
to a system of two-variable integral equations. The latter sys-
tem can be discretized into one large matrix equation, and
energy E can be determined from the condition that the matrix
has an eigenvalue λ = 1. The method is fully described in
Appendixes A–F, and final equations are given in the Sup-
plemental Material [71].

Reduction of the number of variables by 2 is a common
property of few-body lattice problems. Fundamentally, this
is the reason why many two-body lattice problems can be
solved analytically: the reduction procedure leads to a sys-
tem of linear rather than integral equations (two minus two
equals zero). Often, the system’s coefficients can be evaluated
analytically, which leads to an exact solution [25,27–32]. A
three-body lattice problem can be reduced to one-variable
integral equations, which was utilized by Mattis [66], Rudin
[67], and more recently by the present author [63–65]. In
this paper, we take the next logical step and show how a
four-particle problem in a model of practical interest can be
analyzed using this method. Motivation for such an exten-
sion was explained in the Introduction. One should add that
solving a set of two-variable equations numerically is much
more demanding than one-variable equations. The situation is
still manageable in low dimensions. Two 1D variables have
the same number of degrees of freedom as one 2D variable.
Computational complexity of a four-particle problem on a 1D
chain is of the same order as that of a three-particle problem
on a 2D lattice, which has already been done [64]. However,
four particles in 2D take the complexity to the next level, and
at this point they seem to exhaust the capabilities of desktop
computers.

IV. 1D RESULTS

A. 1D Bose-UV model

We begin exposition of results with an illustration of
bosonic energy levels in the strong-coupling limit V � t . In
this case, kinetic energy is small and the states are accurately
represented by the real-space configurations shown in Fig. 2.
The seven quad states split into two groups: two states A and
B with a leading energy term −4V , and five states C1,2, D1,2,
and F with a leading energy term −3V . In addition, there are
six [31] states G1−4 and H1,2, in which a three-boson cluster
(trion) coexists with a “detached” fourth particle. The leading

 4V + 2U  4V + U 

 3V + 3U  3V + 3U  3V + U  3V + U  3V 

 2V + U  2V + U  2V 

Two pairs: E =  2V 

A B 

C1 C2 D1 D2 F 

G1 G2 

G3 G4 

H1 

H2 

FIG. 2. Four-boson configurations in the 1D Bose-UV model in
the large-V limit. Energy scaling is indicated under the diagrams.

energy term for these states is −2V , which is of the same order
as for two separate boson pairs. (Since the detached particle
can move freely along the lattice, energy dispersion of the [31]
states is of order t rather than t2/V .) Since not all energies
have the same U dependence, the states are easily identifiable
when energy is plotted as a function of U , as done in Fig. 3 for
V = 20t . Notice how energies of A and B are systematically
pushed up by increasing U . By U > V , state F with no double
occupancy becomes the system’s ground state.

The focus of the present work is stability of pair liquid
phases. Accordingly, our main interest is V values near the
pair-binding threshold, Eq. (2). At weak couplings, only the
lowest quad state remains, and its energy becomes visibly
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FIG. 3. Twelve lowest quad energies vs U in the 1D Bose-UV
model for V = 20t , P = 0, and chain length N = 16. The energies
were computed with step �U = 1.0t . Notice how states disappear
into the [22] continuum with increasing U . The state with energy
nearly independent of U corresponds to configuration F with four
bosons occupying four nearest-neighbor sites. It becomes a ground
state in the U → ∞ limit.
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[31]
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[4]

FIG. 4. Energy of the lowest bosonic quad state in the 1D Bose-
UV model as a function of V and linear chain length N . U = 15t
and P = 0. Quad energies were computed with step �V = 0.002t .
The blue line is the lowest energy of four free particles, E1111 =
−8t . The red line [22] is the lowest energy of two bound pairs
[30]. The red circle marks the pair threshold for U = 15t : V2(15) =
2 × 15 t/(15 + 4) = 1.578 947 t . The green line [31] is the lowest
energy of a trion plus one free particle. Trion energies [63] were
computed for chain lengths as large as N = 256 and extrapolated
to N = ∞. The [31] line terminates at the red circle indicating that
in this system trion threshold V3 equals V2. Notice how the quad
threshold (intersection of black and red lines) also approaches V2 as
N → ∞.

N-dependent. (N is the chain length; see the Appendixes.)
This is because the wave function of a weakly bound quad
extends over many lattice sites and is affected by boundary
conditions. An example of a V and N-dependent ground-state
energy is shown in Fig. 4.

To obtain quad-forming threshold V4, quad energy E4

should be compared with the lowest energy of two bound pairs
[22] (Ref. [30]) and of a [31] complex (Ref. [63]) at the same
total momentum P. Computing the latter energies is relatively
easy at P = 0 since all subcomplexes have zero momenta in
the ground state. The situation is more complicated at P �= 0.
For two pairs, one can show that the total momentum is split
equally between the pairs, and min{E22(P)} = 2E2(P/2). For
the [31] complex, momentum split between a trion and a free
boson is unknown a priori and must be determined numeri-
cally using tabulated trion energies [63]. Fortunately, stability
of pair fluids is typically considered in the ground state. In the
following, we only present P = 0 phase diagrams where the
above complications are absent.

To determine V4 for a given lattice size N , it is not neces-
sary to compute energy curves like Fig. 4 and then extrapolate
E4(V ) until it crosses with E22(V ). Rather, the solution pro-
cess can be organized as a direct binary search for V4 with
the response function being the presence or absence of a quad
state with E4 < E22. The computational cost of this method
only slightly exceeds that of finding one E4 with the same
numerical accuracy.
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1D Bose-UV model

U = 15 t
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V

4
(U = 15 t)

V
2
(U = 15 t)

V
4
(U = 10 t)

V
2
(U = 10 t)

FIG. 5. Open symbols are quad thresholds V4 of the 1D Bose-UV
model for two values of U and several chain lengths, N , determined
from the condition E4(V ) = E22(V ). The largest N = 64. Numerical
values are given in the Supplemental Material [71], Sec. VII J. The
lines are cubic extrapolations to N = ∞. Solid symbols are pair
thresholds V2 = 2Ut/(U + 4t ). Notice how extrapolated V4’s match
V2’s.

Threshold values V4 for decay channel [4] → [22] are
plotted in Fig. 5. The entire table V4(U, N ) is given in the Sup-
plemental Material [71], Sec. VII J. One can see that V4(N )
is smooth and has a well-defined N → ∞ limit. We used
cubic extrapolation to estimate V4(∞). We also calculated V4

for decay channel [4] → [31] in a similar way. However, as
can be observed in Fig. 4, the energy difference E22 − E31

becomes vanishingly small near the threshold. The threshold
values are essentially the same as for the [4] → [22] channel,
and therefore they are not presented here.

Finally, we plot V4(U,∞) together with pair threshold
V2(U ) in Fig. 6. Within our numerical accuracy, V4’s land
exactly on top of the analytical solution V2(U ) = 2Ut/(U +
4t ) [30]. Physically, this means that as soon as bosonic pairs
form, bosonic quads form as well. In an earlier work, we
found that bosonic trions form at the same threshold, too [63].

Taken together, these results lead to our first major conclu-
sion: A liquid of boson pairs is unstable in the 1D Bose-UV
model. As soon as pairs form, the entire system phase-
separates.

We close this section by noting that the numerical match
between V2, V3, and V4 seems to be too precise to be coin-
cidental. We therefore conjecture that the above conclusion
might be proven analytically. However, we are unaware of any
theorems relating pair formation with instability of a many-
boson system.

B. 1D Fermi-UV model

Because of the spin degree of freedom, there are many
more fermionic than bosonic states for the same U and V .
It is not the goal of this work to comprehensively analyze
the fermion spectrum. Instead, we focus on weak coupling
near threshold. Figure 7 shows various states with small
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FIG. 6. Phase diagram of four bosons in the 1D Bose-UV model.
The red line is the pair threshold: V2 = 2Ut/(U + 4t ). The circles are
quad thresholds V4 extrapolated to N = ∞.

binding energy for U = 20t and P = 0. Notice how trion
energy, E31, crosses two-pair energy, E22, near V = 2.01t .
To determine quad thresholds, it is important to know the
preferred decay channel, [4] → [31] or [4] → [22]. Whereas
E22 is known analytically [30], E31 needs to be computed
numerically [63] as accurately as possible. For the present
study, E31 were computed for linear chains as long as N =
256 and then extrapolated to N = ∞. In the strong-coupling
limit, and at large U like U = 20t , the [31] energy scales as
E31(U,V � t ) = −2V − 2t + O(t2/V ) and the [22] energy
as E22(U,V � t ) = −2V + O(t2/V ). For sufficiently large
V , E31 < E22 thanks to the free fermion contribution, E1 =
−2t . However, at small V , the relation between E31 and E22

is not known a priori. Exact numerical solution reveals that at
least for the parameters of Fig. 7, E22 < E31. Thus, the quad
threshold should be determined by comparing E4 and E22.

The technical procedure of calculating V4 is the same as in
the boson case. The ground-state energy, which has total spin
S = 0, is computed for progressively increasing chain lengths
N . For example, Fig. 7 shows quad energy for N = 32. For
each N , V4 is obtained from the condition E4(V ) = E22(V ).
Then V4 versus 1/N is plotted as in Fig. 5 and extrapolated
to N = ∞. The largest chain length reached in this process
was N = 64. Numerical values of V4(U, N ) are given in the
Supplemental Material [71], Sec. VII K.

The resulting phase diagram is shown in Fig. 8. Its most
important feature is the separation between pair and quad
thresholds. The ground state between the red and black lines
is two spin-singlet fermion pairs. The ground state above
the black line is an S = 0 quad cluster. For reference, we
also show the S = 1/2 trion threshold V3 in a three-fermion
system [63]. Figure 8 might suggest that the ground state
between the green and black lines is a combination of an
S = 1/2 trion and a free fermion. However, our numerical
analysis unambiguously shows that E22 is always lower than
E31; see, for example, Fig. 7. We have verified that the same
conclusion holds for all U within the interval studied here,
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FIG. 7. Fermionic states at U = 20t and P = 0 in the 1D Fermi-
UV model. The blue line is four free fermions, E1111 = −8t . The thin
red line is one singlet pair plus two free fermions, E211 = E2 − 4t .
The thick red line is two singlet pairs, E22 = 2E2. Both E211(V )
and E22(V ) terminate at the pair threshold, V2 = 2 × 20t/(20 + 4) =
(5/3)t , marked by the red circle. The green line is the lowest S = 1/2
trion plus one free fermion, E31. The trion energies [63] were com-
puted for chain lengths up to N = 256 and extrapolated to N → ∞.
E31(V ) terminates at the trion threshold V3 = 1.73t , marked by the
green circle, where E31 = E211. Finally, the black lines are quad
energies, E4(V ), computed for N = 32. Solid lines correspond to
total spin S = 0 and dashed lines to S = 1. There are no S = 2 quad
states visible within the figure window. All energies are computed
with step �V = 0.01 t .

0�U � 50t . Thus, the region between the black and red lines
is where a “liquid” of two fermion pairs is stable against phase
separation.

An interesting feature of the phase diagram is that the
gap between V2 and V4 shrinks with increasing U . This is
specific to one dimension. In 1D, a large on-site repulsion
imposes wave-function nodes to the same effect as antisym-
metry. As a result, all symmetry sectors behave similarly in the
U → ∞ limit, differences between bosons and fermions dis-
appear, and the pair stability region shrinks to zero. The
situation is different in 2D, as we will see in the next section.

Figure 7 is qualitatively similar to the phase diagram of
bipolarons in the 1D Hubbard-extended-Holstein model re-
ported in Ref. [61]. Our conclusion from this section is as
follows: There is a narrow but finite region of pair stability
in the 1D Fermi-UV model. The region is ≈ t wide at U = 0
but shrinks to zero as U → ∞.

V. 2D RESULTS

The 2D case is harder computationally than 1D, as can be
appreciated by comparing matrix sizes listed in Tables I and II
in the Appendixes. Generally, method validation calculations
were done on 4 × 4 and 6 × 6 lattices, and energy calculations
were done on 6 × 6 and 8 × 8 lattices. The use of rotational
symmetries in the ground state described in Appendix D al-
lowed us to reach the 10 × 10 lattice. In the latter case, we
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FIG. 8. Phase diagram of four fermions in the 1D Fermi-UV
model. The red line is the singlet pair threshold known analytically
[30], V2 = 2Ut/(U + 4t ). The black circles are S = 0 quad thresh-
olds obtained by numerical extrapolation of V4(U, N ) to N = ∞. The
black line is a guide to the eye. The green dashed line is the trion
threshold in a three-fermion system [63].

computed only quad thresholds V4(U ), which required much
less effort than full energy landscape E4(U,V ).

A. 2D Bose-UV model

There are many more bosonic states in 2D than in 1D. For
example, there are 22 configurations that scale as E4 ∝ −3V
in the (U,V ) → ∞ limit (“Tetris shapes”), as compared with
only one such state in 1D (state F in Fig. 2). Additionally,
there is one new state that scales as E4 ∝ −4V , when four
bosons occupy a 2 × 2 plaquette. Although the situation is
less intuitive at weak coupling, we expect this “plaquette”
state to always remain the ground state because of its four
nearest-neighbor attractive bonds. Figure 9 shows the six low-
est bosonic quad states for U = 5t and Nx = 8. Although
the top five states decay into [31] (the green line) as V is
reduced, we extend the lines to the [22] continuum for vi-
sual purposes. The pairs and trions disappear below the pair
threshold V2 = 0.769t marked by the red circle. At V > V2,
the pairs’ binding energy is exponentially small as expected in
2D. The lowest quad state terminates very near V2, suggesting
V4 ≈ V2. Numerical scaling confirms that indeed V4 = V2 in
the Nx = Ny = ∞ limit.

An example of bosonic quad dispersion is given in Fig. 10.
Six lowest bands were computed on the 8 × 8 lattice. The
dispersion looks “normal” in the sense that it resembles dis-
persion of an electron in a complex potential. This confirms
that quads behave as single particles. It is an additional vali-
dation of the entire method.

The process of determining phase boundaries between
quads, pairs, and trions is the same as in 1D. There are two
possible decay channels, [4] → [22] and [4] → [31]. The for-
mer threshold was determined from the condition E4(V ) =
E22(V ), where E4 is the energy of the ground “plaquette” state.
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FIG. 9. Six lowest quad energies in the 2D Bose-UV model for
U = 5t , P = (0, 0), and Nx = Ny = 8. The energies are computed
with step �V = 0.1 t . The red circle marks the pair threshold, V2 =
2 × 5t/(5 + 8) = 0.769t . Trion energies were computed [72] for
several lattice sizes up to 32 × 32 and then extrapolated to Nx = ∞.

Threshold values V4(U, Nx ) for Nx = 6, 8, and 10 are tabulated
in the Supplemental Material [71], Sec. VII L. Next, data
were fitted to a parabola, V4(N ) = V4∞ + cN−2

x , to estimate
the quad threshold in an infinite square lattice. Those V4∞’s
are shown in Fig. 11 as black circles. To determine the second
threshold, we first computed bosonic trion energies using
the trion integral equations derived in an earlier work [72].
Then, we computed trion thresholds V3 from the condition
E3(V ) = E21(V ) and extrapolated to Nx = ∞ using the same
parabolic fit method. The V3 values are also given in the
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FIG. 10. Six lowest quad bands E4(P) in the 2D square Bose-UV
model. U = 5t , V = 6t , Nx = Ny = 8. The circles represent calcu-
lated energies. The lines are guides to the eye. Notice a degeneracy
at the �-point.
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FIG. 11. Phase diagram of four bosons in the 2D square Bose-
UV model. The red line is the pair threshold, Eq. (2), known
analytically. The open circles are trion thresholds, V3, extrapolated
to Nx = ∞. The filled circles are quad thresholds, V4, extrapolated to
Nx = ∞.

Supplemental Material [71], Sec. VII L. From that analysis,
we established that V3 = V2 within our numerical accuracy,
i.e., bosonic trions form simultaneously with pairs. Although
E31 < E22 for V > V2, E31 → E22 from below as V → V2

from above. As a result, the two conditions, E4(V ) = E31(V )
and E4(V ) = E22(V ), produce the same threshold V4 in the
Nx = ∞ limit, although the two are slightly different at any
finite Nx.

The resulting phase diagram is displayed in Fig. 11. Like
in 1D, there is only one boundary line, described by Eq. (2).
There is no pairing below the line: the ground state consists
of four interacting but individual bosons. However, above
the line there are all sorts of clustering: a pair forms in a
two-boson system, a trion forms in a three-boson system, and
a quad forms in a four-boson system. Based on these results,
we expect a many-boson system to form a macroscopic cluster
and phase-separate at the same threshold. One should also
note the qualitative similarity between the Bose-UV phase
diagrams in 1D, Fig. 6, and 2D, Fig. 11. Quantitatively, the
2D phase boundary is slightly flatter than its 1D counterpart.

Our conclusion about the 2D Bose-UV model is the same
as in 1D: A liquid of boson pairs is unstable against forming
larger clusters. As soon as pairs form, the entire system phase-
separates.

B. 2D Fermi-UV model

We now proceed to the technically most challenging but
physically most interesting case: four spin- 1

2 fermions on
the 2D square lattice. There is great proliferation of states
compared with the 2D Bose case. There are dozens of quad
states within each S sector. Additionally, quads mix with [31]
states at elevated energies. Since E31 are sensitive to boundary
conditions, the high-energy part of the spectrum depends on
lattice size. For example, the 6 × 6 and 8 × 8 energy ladders

look quite different at high energies. Untangling this compli-
cated web and making sense of the entire energy landscape
amounts to a separate investigation that is not attempted here.
Suffice it to say that we conducted rigorous validation checks
described in Appendix F to make sure energies and wave
functions produced by the integral equation method are nu-
merically accurate.

Before presenting our main result, it is useful to recall the
motivation for this work. In an earlier investigation [64], we
established that in the 2D Fermi-UV model, pair formation
and trion formation are separated by a stability interval of
about �V ≈ 2t . This can be interpreted as effective repulsion
between a spin-singlet fermionic pair and a free fermion. An
even better predictor for pair liquid stability is the effective
interaction between two pairs, which amounts to a four-body
problem. The origin of the repulsion is antisymmetry of many-
fermion wave functions. Being qualitative in nature, we expect
this repulsion mechanism to remain effective for four, five,
six fermions, and so on, and eventually in a macroscopic
system. However, quantitatively, the pair stability region may
shrink as density increases. The transition from three to four
fermions is particularly interesting. A fourth fermion, when
trying to bind with a trion, is forming two new attractive
bonds rather than one; see process B in Fig. 1(c). Although
it must create an additional wave-function node at the same
time, dynamic energy gain may exceed kinematic energy loss.
In other words, the quad may be more stable than the trion,
and the quad threshold may be lower than the trion one. The
real question is how much lower? If insignificantly, in relative
terms, it would leave the wide stability region essentially
unaffected. In the opposite case, the stability region could be
significantly reduced, which would leave the question of what
happens in the thermodynamic limit open. Determining the
quad threshold and its position relative to the trion threshold
is the main goal of this work.

Strictly speaking, when determining S = 1 and 2 quad
thresholds, conservation of total spin needs to be respected.
That is, the lowest quad energy of the S = 1 sector should be
compared with the lowest energy of one spin-singlet pair plus
one spin-triplet pair. Likewise, the lowest quad energy of the
S = 2 sector should be compared with the lowest energy of
two spin-triplet pairs. However, we assume that in any real
system there is enough perturbation to flip the spin if that
lowers overall energy. Therefore, in the following, all spin
sectors will be compared with the lowest energy of two singlet
pairs.

Figure 12 shows an example of V -dependent quad ener-
gies. Notice how the ground state E4(V ) intersects E22(V ) at
a V4 substantially larger than pair threshold V2.

Quad thresholds for S = 0, 1, and 2 were computed for
6 × 6, 8 × 8, and 10 × 10 lattices and extrapolated to Nx =
∞. Values are listed in the Supplemental Material [71],
Sec. VII M. The resulting phase diagram is shown in Fig. 13.
Together with the quad thresholds, the pair threshold V2

[Eq. (2)] and the trion threshold V3 [64] are also shown. One
interesting feature of the phase diagram is the U -dependence
of the S = 2 threshold. Although E4 (S = 2) itself does not
depend on U , E22 does, so the threshold that follows from
the two energies being equal is also U -dependent. As a re-
sult, V4 (S = 2) decreases with U : at larger U singlet pairs
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FIG. 12. The ten lowest quad states in the 2D Fermi-UV model.
U = 10 t , P = (0, 0), Nx = Ny = 6. All three spin sectors, S = 0, 1,
and 2, are present. Two S = 1 states are double-degenerate. They are
shown by bold dashed lines. The energies are computed with step
�V = 0.1 t . The lowest quad threshold is marked by the black circle.
Trion energies were computed [64,72] for several lattice sizes up to
32 × 32 and then extrapolated to Nx = ∞. The pair threshold, V2 =
2 × 10t/(10 + 8) = 1.111 t , is outside the V -axis limits.

become less stable, which expands the stability domain of
S = 2 quads. Another interesting feature of Fig. 13 is the
closeness of the S = 0 and 1 thresholds. This is a consequence
of the lowest S = 0 and 1 states being close in energy; cf.
Fig. 12. In fact, our numerical data suggest a crossover. At
U < 6.4t , the S = 0 quad is lower. As a result, it forms at
a slightly smaller V4 than the S = 1 quad. At U > 6.4t , the
order is reversed.
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FIG. 13. Phase diagram of four fermions in the 2D square Fermi-
UV model. Pair liquid is stable in the space between V2 and the
lowest V4. The hatched area approximately corresponds to high-
temperature superconductivity.

The most important feature of the phase diagram is the rel-
ative positions of the quad, trion, and pair thresholds. We first
note that V4 < V3. Fermionic quads are formed at a weaker
attraction and are more stable than trions, as expected on qual-
itative grounds. At the same time, V4 remains well-separated
from the pair threshold V2. The addition of a fourth fermion
shrinks the region of pair stability, but not by much in relative
terms. Another important property of Fig. 13 is that the gap
V4 − V2 does not tend to zero as U → ∞. This is a manifes-
tation of a fundamental difference between 1D and 2D. As
noted in Sec. IV B, in 1D a large U forces the wave function
to go to zero whenever two fermions occupy the same site. It is
the same condition as that imposed by antisymmetry. In other
words, fermions and bosons behave similarly in the U = ∞
limit. That is why in 1D all thresholds converge to the same
limit at large U ; see Fig. 8. In contrast, in 2D an infinite on-site
repulsion is not equivalent to full antisymmetry. An infinite
U does not prevent two fermions from being exchanged by
rotating around their center of mass. The many-body wave
function must possess additional nodes along angular coordi-
nates that cannot be provided dynamically by a large U . These
extra nodes elevate kinetic energy by an amount of order t . To
overcome such an increase and still form a quad, V needs to be
raised by a value ∼t , too. This explains why V4 − V2 remains
of order t for all U .

The U → ∞ limit of Fig. 13 is consistent with the
phase-separation thresholds computed on 4 × 4 t − J clusters
[59,60].

Here is our conclusion for the 2D square Fermi-UV model:
Two fermion pairs are stable against quad formation within
a finite V interval ≈2t wide for all values of U . This can
be interpreted as an effective repulsion between pairs. The
repulsion is kinematic in nature and originates from antisym-
metry of the four-fermion wave function.

C. Relevance to HTSC

We now apply the obtained results to high-temperature
superconductivity, specifically to the superconductivity of
copper oxides. Unlike the preceding discussions, this one is
going to be more speculative. First, we note that any realistic
model of the cuprates must include an interlayer hopping
t⊥. However, even a small t⊥ ∼ 0.01 t profoundly changes
the phase diagram of Fig. 13 by nearly doubling the pair-
ing threshold V2. This is because in a pure 2D system, the
spin-singlet fermion pair is the ground state. It is stabilized
by long-range logarithmic fluctuations that lower V2. Finite
t⊥ suppresses the fluctuations and raises V2. Specific curves
V2(t⊥) can be found in Refs. [32,65]. In contrast, a fermionic
trion is not the lowest state of the Schrödinger equation (the
lowest is forbidden by the exclusion principle) and is not
affected by t⊥ as much. V3 changes with t⊥ only linearly
[65]. As a result, the pair stability region shrinks to about
�V ∼ (0.5 − 1.0) t , depending on U and t⊥. Now, the present
paper deals with four fermions in the pure 2D case, t⊥ = 0.
The four-fermion problem in 3D has not been solved yet.
Therefore, we cannot rigorously prove that quad threshold V4

is also weakly affected by t⊥. However, this is a reasonable
conjecture given the closeness of V3 and V4 shown in Fig. 13,
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and the fact that a fermionic quad is not the lowest state of the
Schrödinger equation either.

Additionally, analysis of the pair’s effective mass
and radius showed [32] that the close-packed BEC
temperature increases monotonically with V until the system
phase-separates [65]. In the preformed pair scenario, the
close-packing of pairs is identified with optimal doping.
Thus, the region of truly high critical temperatures is limited
to a much narrower interval �V = (0.1 − 0.3) t just below V4.
This region is schematically shown in Fig. 13 as the hatched
area.

It is nontrivial to assign real-life values to the parameters of
Fig. 13, mainly because the UV model with nearest-neighbor
hopping is an effective model, while any real copper oxide is a
complex multiorbital material with a multitude of interactions
and hoppings. Only rough estimates can be made. According
to Fig. 13, the attraction must satisfy V < 3.5 t , otherwise
the system phase-separates. Then, according to Fig. 3 of Ref.
[32], the highest close-packed Tc ≈ 0.05 t is reached at t⊥ ≈
0.05 t . Taking a typical Tc ∼ 50 K, one obtains t ∼ 1000 K
= 0.1 eV. That corresponds to a bandwidth W ∼ 1 eV, which
is consistent with spectroscopic evidence [69]. The Hubbard
parameter on copper ions is UCu = 4.9 eV [73], whereas that
on oxygen ions it is expected to be less. Hence, in relative
units, U/t ∼ 20–50, as shown in Fig. 13.

To summarize this section, the region of high-temperature
superconductivity is much narrower than the region of pair
liquid stability once interlayer hopping is taken into account.
This topic will be addressed more quantitatively elsewhere.

VI. SUMMARY AND DISCUSSION

In this paper, we investigated the formation criteria of
four-particle clusters in quantum-mechanical systems with
zero-range repulsion and finite-range attraction. We directly
solved a four-body Schrödinger equation by reducing it
to a system of coupled integral equations of two vari-
ables. By comparing quad energy with the energy of two
bound pairs, we determined quad-forming thresholds and
mapped parameter space where pairs are stable against further
clustering.

One clear conclusion that follows from this study is the
critical role of quantum statistics. Bosons and fermions be-
have very differently. In the case of bosons, the quad threshold
exactly matches the pair threshold, V4(U ) = V2(U ), within
our numerical accuracy. As soon as attraction is strong enough
to form Bose pairs, a Bose quad also forms. This is true in both
1D and 2D. One can state that effective interaction between
two Bose pairs is attractive. The numerical match between
V4 and V2 is so good that it suggests a mathematical theorem.
We are unaware, however, of any analytical results relating V4

and V2 (and V3 for that matter) in Bose systems. Extrapolating
these results to many-boson systems, we conjecture that effec-
tive interactions between larger clusters—between two quads,
between two octets, and so on—is also attractive, although
we cannot prove this rigorously. This implies that the entire
system phase-separates and forms one macroscopic cluster
at V = V2. A liquid of Bose pairs is unstable and does not
exist.

The situation is different for fermions. Although two
fermions have a symmetric ground state and in that sense
are equivalent to two bosons, a four-fermion wave function
must have nodes, which elevates the quad energy. As a re-
sult, there is a finite separation between V4 and V2. When
V falls between V2 and V4, pairs are formed but quads are
not. Effective interaction between pairs is repulsive. A liquid
of Fermi pairs is stable within a finite interval of V . We
conjecture that the stability region remains finite even in a
microscopic system, at least when fermion density is small.
Indeed, at a small pair density, pair-pair collisions are un-
affected by the presence of other pairs. Since the pair-pair
interaction is repulsive in a four-fermion system, it should
remain repulsive in the presence of other pairs because they
are far away. This is not a proof but a qualitative supporting
argument.

The second conclusion concerns the role of lattice dimen-
sionality. As explained in Secs. IV B and V B, in 1D a finite U
effectively mimics the wave-function antisymmetry, whereas
in 2D it does not. In 1D, V4 is close to V2 and the difference
shrinks to zero in the U = ∞ limit. In 2D, the separation
remains of order t for all U . 2D is much more favorable for
the existence of a stable pair liquid than 1D.

We now discuss the implications of the obtained results
for real physical systems. First, we acknowledge that we have
studied here a special type of potential, the UV model, that ne-
glects long-range interaction tails. However, we consider the
UV potential to be a pseudopotential that captures the essen-
tial physics of relevant systems, namely short-range repulsion
plus finite-range attraction. The arguments given above are
qualitative in nature and expected to be applicable to other
potentials from the same class. In particular, we expect the
pair stability region to remain finite when the repulsive core
has a finite range or when the attractive part has a long tail. In
all those cases, a pair would have a symmetrical wave function
while a quad would have nodes. That creates an energy gap
between the quad and two pairs, which translates into a finite
region of stability.

The paper’s conclusions are also robust against modifica-
tions of the kinetic energy term. For instance, the addition
of nonzero next-nearest-neighbor hopping, t ′, does not af-
fect the applicability of the symmetry argument. The pair
liquid will remain stable, but the domain boundaries will
change.

Many of these effects can be demonstrated in dressed
Rydberg atom (DRA) systems. DRAs provide a convenient
realization of UV models, with U tunable via Feshbach
resonances [45,46] and V tunable via laser intensity [47].
Additionally, optical lattices allow for direct control of lat-
tice geometry and hopping amplitude t via the positions of
Gaussian beams piercing the main optical pancake [70]. The
presence or absence of bound pairs can be monitored by gas
microscopy [54]. Using these DRA techniques, it should be
possible to demonstrate the existence of a stable pair phase
in the case of fermions, and its nonexistence in the case
of bosons. By changing lattice anisotropy, it should also be
possible to smoothly convert a 2D square Fermi-UV system
where the pair liquid is stable into a 1D Fermi-UV system
where it is unstable, while U and V remain constant. Finally,
by scanning U , V , and t , an entire phase diagram can be
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mapped and compared with theory. A detailed description
of DRA systems suitable for such experiments, as well as
specifics of external drivers and observation methods, are
outside the scope of the present study and will be addressed
elsewhere.

The results developed here also lend further support to the
preformed pair mechanism of high-temperature superconduc-
tivity (HTSC) [9,10,12,13]. We have rigorously shown that a
fermionic system can exist as a collection of interacting but
distinct pairs in a finite domain of model parameters. We also
expect a pair liquid to remain stable even in the presence of
nonzero interlayer hopping, although the domain of stability
will shrink significantly. That makes it possible for some real
systems, for example HTSC cuprates, to fall within that do-
main even though the real interhole potential differs from the
pure UV form. The fact that the region of high critical tem-
peratures is narrow helps explain the experimental fact that
HTSC is a rare phenomenon among crystalline solids. Addi-
tionally, being close to the quad threshold on average makes
a system prone to crossing over the threshold locally. That
may explain the proliferation of charge-density waves, ne-
matic orders, and other types of charge instabilities observed
in HTSC. We close by noting that a natural extension of the
present work would be an analysis of a four-fermion system
in 3D, including anisotropic lattices [32,65]. This problem

is computationally much more demanding and is left for the
future.
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APPENDIX A: FOUR DISTINGUISHABLE PARTICLES

In this Appendix, we derive a working set of equations for
four distinguishable particles in the UV model, Eq. (1). We
choose distinguishable particles to illustrate the method be-
cause this case admits the most transparent derivation. The
resulting equations will permit solutions of different permu-
tation symmetries, including bosonic and fermionic ones. To
be able to make reasonable physical conclusions, permutation
symmetry must be restricted from the start. How to do that is
explained in Appendixes B and C. The fully unsymmetrized
solution derived in this section will serve as a useful self-
consistency check of the entire procedure.

Coordinate wave function �(m1, m2, m3, m4), when acted
upon by the Hamiltonian, Eq. (1), satisfies the following dif-
ference equation:

−t
∑

b

[�(m1 + b, m2, m3, m4) + �(m1, m2 + b, m3, m4) + �(m1, m2, m3 + b, m4) + �(m1, m2, m3, m4 + b)]

+U
(
δm1m2 + δm1m3 + δm1m4 + δm2m3 + δm2m4 + δm3m4

)
�

(
m1, m2, m3, m4

) − V
∑

b

(
δm1,m2+b + δm1,m3+b

+ δm1,m4+b + δm2,m3+b + δm2,m4+b + δm3,m4+b
)
�(m1, m2, m3, m4) = E �(m1, m2, m3, m4), (A1)

where E is total energy. We define a momentum-space wave function via Fourier transformation

�(m1, m2, m3, m4) = 1

N2

∑
q1q2q3q4

ei (q1m1+q2m2+q3m3+q4m4 )�(q1, q2, q3, q4), (A2)

where N is the number of lattice sites (unit cells). Substitution of Eq. (A2) into Eq. (A1) yields

[E − ε(q1) − ε(q2) − ε(q3) − ε(q4)] �(q1, q2, q3, q4)

= U
1

N

∑
k

{�(k, q1 + q2 − k, q3, q4) + �(k, q2, q1 + q3 − k, q4) + �(k, q2, q3, q1 + q4 − k)

+ �(q1, k, q2 + q3 − k, q4) + �(q1, k, q3, q2 + q4 − k) + �(q1, q2, k, q3 + q4 − k)}

−V
1

N

∑
k

∑
b

{cos [(k − q1)b] �(k, q1 + q2 − k, q3, q4) + cos [(k − q1)b] �(k, q2, q1 + q3 − k, q4)

+ cos [(k − q1)b] �(k, q2, q3, q1 + q4 − k) + cos [(k − q2)b] �(q1, k, q2 + q3 − k, q4)

+ cos [(k − q2)b] �(q1, k, q3, q2 + q4 − k) + cos [(k − q3)b] �(q1, q2, k, q3 + q4 − k)}. (A3)
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Here all six pairwise interactions are written down explicitly. The Schrödinger equation, Eq. (A3), is valid for the UV model
in any dimensionality. We now perform a reduction to two-variable equations in 1D. First, summation over nearest-neighbor
vectors b = ±x yields a factor of 2. After changing to scalar notation k, q, Eq. (A3) becomes

[E − ε(q1) − ε(q2) − ε(q3) − ε(q4)] �(q1, q2, q3, q4)

= U
1

N

∑
k

{�(k, q1 + q2 − k, q3, q4) + �(k, q2, q1 + q3 − k, q4) + �(k, q2, q3, q1 + q4 − k)

+�(q1, k, q2 + q3 − k, q4) + �(q1, k, q3, q2 + q4 − k) + �(q1, q2, k, q3 + q4 − k)}
− 2V

1

N

∑
k

{cos (k − q1) �(k, q1 + q2 − k, q3, q4) + cos (k − q1) �(k, q2, q1 + q3 − k, q4)

+ cos (k − q1) �(k, q2, q3, q1 + q4 − k) + cos (k − q2) �(q1, k, q2 + q3 − k, q4)

+ cos (k − q2) �(q1, k, q3, q2 + q4 − k) + cos (k − q3) �(q1, q2, k, q3 + q4 − k)}. (A4)

Second, expand the cosines in the V term. It generates a number of integrals like

1

N

∑
k

cos (k)�(k, q1 + q2 − k, q3, q4), (A5)

with various permutations of � arguments. The V term also contains similar integrals with sin (k) instead of cos (k). The U term
contains terms with 1 instead of cos (k). Next, we notice that due to conservation of total momentum, Eq. (A5) is a function of
q3 and q4 only. Defining

P = q1 + q2 + q3 + q4, (A6)

Eq. (A5) can be rewritten as

C12(q3, q4) ≡ 1

N

∑
k

cos (k)�(k, P − q3 − q4 − k, q3, q4), (A7)

which defines a new function C12(q3, q4). The subscript {12} indicates that this function describes interaction between the first
and second particles, as determined by the order of � arguments. q3 and q4 are the actual arguments of C12 for this particular
instance. In total, the right-hand side of Eq. (A4) generates 18 auxiliary functions,

A12(q1, q2), C12(q1, q2), S12(q1, q2) = 1

N

∑
k

f (k)�(k, P − q1 − q2 − k, q1, q2), (A8)

A13(q1, q2), C13(q1, q2), S13(q1, q2) = 1

N

∑
k

f (k)�(k, q1, P − q1 − q2 − k, q2), (A9)

A14(q1, q2), C14(q1, q2), S14(q1, q2) = 1

N

∑
k

f (k)�(k, q1, q2, P − q1 − q2 − k), (A10)

A23(q1, q2), C23(q1, q2), S23(q1, q2) = 1

N

∑
k

f (k)�(q1, k, P − q1 − q2 − k, q2), (A11)

A24(q1, q2), C24(q1, q2), S24(q1, q2) = 1

N

∑
k

f (k)�(q1, k, q2, P − q1 − q2 − k), (A12)

A34(q1, q2), C34(q1, q2), S34(q1, q2) = 1

N

∑
k

f (k)�(q1, q2, k, P − q1 − q2 − k). (A13)

In each line above, Aij (q1, q2) corresponds to f (k) = 1, Cij (q1, q2) to f (k) = cos (k), and Sij (q1, q2) to f (k) = sin (k). Note that
since we did not assume any permutation symmetries of � (the particles are distinguishable), all 18 functions are unique. With
the definitions, Eqs. (A8)–(A13), at hand, the full wave function is expressed from Eq. (A4) as follows:

�(q1, q2, q3, q4) = U
A12(q3, q4) + A13(q2, q4) + A14(q2, q3) + A23(q1, q4) + A24(q1, q3) + A34(q1, q2)

E − ε(q1) − ε(q2) − ε(q3) − ε(q4)

− 2V
cos q1 C12(q3, q4) + sin q1 S12(q3, q4) + cos q1 C13(q2, q4) + sin q1 S13(q2, q4)

E − ε(q1) − ε(q2) − ε(q3) − ε(q4)

− 2V
cos q1 C14(q2, q3) + sin q1 S14(q2, q3) + cos q2 C23(q1, q4) + sin q2 S23(q1, q4)

E − ε(q1) − ε(q2) − ε(q3) − ε(q4)

− 2V
cos q2 C24(q1, q3) + sin q2 S24(q1, q3) + cos q3 C34(q1, q2) + sin q3 S34(q1, q2)

E − ε(q1) − ε(q2) − ε(q3) − ε(q4)
. (A14)
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Finally, a substitution of � into the definitions, Eqs. (A8)–(A13), leads to 18 coupled integral equations. In full form, they can
be found in the Supplemental Material [71], Sec. VII A. Here we present the equation for S23(q1, q2) as an example:

S23(q1, q2) = U

N

∑
k

sin k A12(P − q1 − q2 − k, q2) + sin k A13(k, q2) + sin k A14(k, P − q1 − q2 − k)

E − ε(q1) − ε(k) − ε(P − q1 − q2 − k) − ε(q2)

+ U

N

∑
k

sin k A23(q1, q2) + sin k A24(q1, P − q1 − q2 − k) + sin k A34(q1, k)

E − ε(q1) − ε(k) − ε(P − q1 − q2 − k) − ε(q2)

− 2V

N

∑
k

sin k cos q1 C12(P − q1 − q2 − k, q2) + sin k sin q1 S12(P − q1 − q2 − k, q2)

E − ε(q1) − ε(k) − ε(P − q1 − q2 − k) − ε(q2)

− 2V

N

∑
k

sin k cos q1 C13(k, q2) + sin k sin q1 S13(k, q2)

E − ε(q1) − ε(k) − ε(P − q1 − q2 − k) − ε(q2)

− 2V

N

∑
k

sin k cos q1 C14(k, P − q1 − q2 − k) + sin k sin q1 S14(k, P − q1 − q2 − k)

E − ε(q1) − ε(k) − ε(P − q1 − q2 − k) − ε(q2)

− 2V

N

∑
k

sin k cos k C23(q1, q2) + sin k sin k S23(q1, q2)

E − ε(q1) − ε(k) − ε(P − q1 − q2 − k) − ε(q2)

− 2V

N

∑
k

sin k cos k C24(q1, P − q1 − q2 − k) + sin k sin k S24(q1, P − q1 − q2 − k)

E − ε(q1) − ε(k) − ε(P − q1 − q2 − k) − ε(q2)

− 2V

N

∑
k

sin k cos (P − q1 − q2 − k)C34(q1, k) + sin k sin (P − q1 − q2 − k) S34(q1, k)

E − ε(q1) − ε(k) − ε(P − q1 − q2 − k) − ε(q2)
. (A15)

The equations are solved by discretizing integrals into finite sums, converting the system into a single matrix, and then finding
E for fixed U , V , and P via an eigenvalue search. Eighteen equations sounds like a lot but it is a constant number that does not
change with the size of the lattice studied. For example, for a linear chain of 50 sites, the Brillouin zone is approximated by 50
points. Each function A, C, S consists of 502 = 2500 components, and the entire matrix has a linear size of M = 45 000. Such
matrices can still be handled by desktop workstations and do not require supercomputers. At the same time, N = 50 is a long
enough chain to enable a meaningful finite-size scaling analysis.

The situation is more difficult in 2D. The base Eq. (A3) is the same but there are four vectors b. A two-dimensional
version of Eq. (A4) contains factors cos (kx − qx ) and cos (ky − qy). Analogs of Eqs. (A8)–(A13) comprise five functions each,
corresponding to f (k) = 1, cos (kx ), sin (kx ), cos (ky), and sin (ky). The total number of auxiliary functions increases to 30. More
importantly, q1 and q2 are now two-dimensional variables. For a square lattice of linear size Nx, the matrix size is M = 30 × N4

x .
A matrix with M = 45 000 now corresponds to a lattice of only Nx = 6. In 3D, the reduction procedure generates 42 unique
functions, and the matrix size scales as M = 42 × N6

x .
Permutation and rotation symmetries of � reduce the number of equations in a final system and increase the lattice size

accessible with this method.

APPENDIX B: PERMUTATION SYMMETRIES: FOUR s = 0 BOSONS

The derivation presented in Appendix A does not take into account permutation symmetries of the four-body wave function
�. The resulting system composed of equations like Eq. (A15) produces solutions of all possible symmetries including bosonic
and fermionic states. To obtain physically meaningful results, the symmetry needs to be restricted in the base Schrödinger
equation, Eq. (A1). As an added benefit, the number of integral equations in the final system is reduced. In this section, we
derive equations for s = 0 bosons, i.e., for a fully symmetrical �.

A full permutation symmetry can be imposed explicitly by redefining the Fourier transformation:

�s(m1, m2, m3, m4) = 1

N2

∑
q1q2q3q4

{ei (q1m1+q2m2+q3m3+q4m4 ) + ei (q1m1+q2m2+q3m4+q4m3 )

+ 22 more permutations of [m1, m2, m3, m4]}�s(q1, q2, q3, q4). (B1)

The subscript s indicates that �s is fully symmetrical with respect to permutations of all its arguments in both representations,
m and q. Substitution of Eq. (B1) into Eq. (A1) yields, after transformations,

[E − ε(q1) − ε(q2) − ε(q3) − ε(q4)] �s(q1, q2, q3, q4)

= U
1

N

∑
k

{�s(k, q3, q4, q1 + q2 − k) + �s(k, q2, q4, q1 + q3 − k) + �s(k, q2, q3, q1 + q4 − k)
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+�s(k, q1, q4, q2 + q3 − k) + �s(k, q1, q3, q2 + q4 − k) + �s(k, q1, q2, q3 + q4 − k)}

−V
1

2N

∑
k

∑
b

{(cos [(k − q1)b] + cos [(k − q2)b])�s(k, q3, q4, q1 + q2 − k)

+ (cos [(k − q1)b] + cos [(k − q3)b])�s(k, q2, q4, q1 + q3 − k)

+ (cos [(k − q1)b] + cos [(k − q4)b])�s(k, q2, q3, q1 + q4 − k)

+ (cos [(k − q2)b] + cos [(k − q3)b])�s(k, q1, q4, q2 + q3 − k)

+ (cos [(k − q2)b] + cos [(k − q4)b])�s(k, q1, q3, q2 + q4 − k)

+ (cos [(k − q3)b] + cos [(k − q4)b])�s(k, q1, q2, q3 + q4 − k)}. (B2)

Equation (B2) differs from its unsymmetrized counterpart, Eq. (A3), in two aspects. First, all �s’s have been brought to the same
argument order, �s(k, q, q, P − q − q − k). This is allowed due to the permutation symmetry. Second, the interaction form
factor in the V term is symmetric with respect to the two particles interacting in each channel. For example, in the third V term,
particles 1 and 4 interact, and the potential is symmetric with respect to permuting q1 and q4. Note that a global factor of 1

2 in
front of the V term ensures proper normalization.

The form of Eq. (B2) explains why only a few auxiliary functions are needed in the fully symmetrized case. In the
distinguishable case, many functions had to be introduced because of various argument arrangements in �; see Eqs. (A8)–(A13).
Here, all argument orders are equivalent, which reduces the number of needed functions by a factor of 6. At the same time, the
complexity of each equation increases because the interaction form factor now consists of many more parts resulting from
symmetrization.

1. Attractive Bose-Hubbard model

Before proceeding further, we digress to derive a four-body cluster equation in the attractive (not extended) Bose-Hubbard
model. Although not the main object of the present work, this model is popular in the science of cold atoms, and such an
equation can be derived here with little extra effort. To this end, we explicitly set U = −|U |, V = 0 in Eq. (B2), and we define
one auxiliary function

A(q1, q2) = 1

N

∑
k

�(k, q1, q2, P − q1 − q2 − k). (B3)

Note that A(q1, q2) = A(q2, q1). The wave function follows from Eq. (B2),

�s(q1, q2, q3, q4) = −|U | A(q3, q4) + A(q2, q4) + A(q2, q3) + A(q1, q4) + A(q1, q3) + A(q1, q2)

E − ε(q1) − ε(q2) − ε(q3) − ε(q4)
. (B4)

Substituting Eq. (B4) in Eq. (B3), one obtains

A(q1, q2) = −|U |
N

∑
k

{
A(q2, P − q1 − q2 − k) + A(q1, P − q1 − q2 − k) + A(q1, q2)

E − ε(k) − ε(q1) − ε(q2) − ε(P − q1 − q2 − k)

+ A(k, P − q1 − q2 − k) + A(k, q2) + A(k, q1)

E − ε(k) − ε(q1) − ε(q2) − ε(P − q1 − q2 − k)

}
. (B5)

This equation is valid in all lattice dimensions, and for all Bravais lattices for that matter. Equation (B5) is the natural extension
of Mattis’ equation [66] to four identical bosons.

2. Bose-UV model in 1D: Linear chain

We now return to the full Bose-UV model, Eq. (B2). In 1D, summation over b yields a global factor of 2. After expansion of
the cosines, only three kinds of auxiliary integrals emerge:

A(q1, q2) = 1

N

∑
k

�(k, q1, q2, P − q1 − q2 − k), (B6)

C(q1, q2) = 1

N

∑
k

cos (k)�(k, q1, q2, P − q1 − q2 − k), (B7)

S(q1, q2) = 1

N

∑
k

sin (k)�(k, q1, q2, P − q1 − q2 − k). (B8)

All three functions are symmetrical with respect to permutation q1 ↔ q2. Next, we express � via A, C, and S from Eq. (B2) and
substitute back in the definitions, Eqs. (B6)–(B8). This results in three coupled integral equations. In full form, they are given in
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the Supplemental Material [71], Sec. VII B. The equation for A reads

A(q1, q2) = U

N

∑
k

f (k) A(q2, P − q1 − q2 − k) + f (k) A(q1, P − q1 − q2 − k) + f (k) A(q1, q2)

E − ε(k) − ε(q1) − ε(q2) − ε(P − q1 − q2 − k)

+ U

N

∑
k

f (k) A(k, P − q1 − q2 − k) + f (k) A(k, q2) + f (k) A(k, q1)

E − ε(k) − ε(q1) − ε(q2) − ε(P − q1 − q2 − k)

− V

N

∑
k

f (k)[cos k + cos q1]C(q2, P − q1 − q2 − k) + f (k)[sin k + sin q1] S(q2, P − q1 − q2 − k)

E − ε(k) − ε(q1) − ε(q2) − ε(P − q1 − q2 − k)

− V

N

∑
k

f (k)[cos k + cos q2]C(q1, P − q1 − q2 − k) + f (k)[sin k + sin q2] S(q1, P − q1 − q2 − k)

E − ε(k) − ε(q1) − ε(q2) − ε(P − q1 − q2 − k)

− V

N

∑
k

f (k)[cos k + cos (P − q1 − q2 − k)]C(q1, q2) + f (k)[sin k + sin (P − q1 − q2 − k)] S(q1, q2)

E − ε(k) − ε(q1) − ε(q2) − ε(P − q1 − q2 − k)

− V

N

∑
k

f (k)[cos q1 + cos q2]C(k, P − q1 − q2 − k) + f (k)[sin q1 + sin q2] S(k, P − q1 − q2 − k)

E − ε(k) − ε(q1) − ε(q2) − ε(P − q1 − q2 − k)

− V

N

∑
k

f (k)[cos q1 + cos (P − q1 − q2 − k)]C(k, q2) + f (k)[sin q1 + sin (P − q1 − q2 − k)] S(k, q2)

E − ε(k) − ε(q1) − ε(q2) − ε(P − q1 − q2 − k)

− V

N

∑
k

f (k)[cos q2 + cos (P − q1 − q2 − k)]C(k, q1) + f (k)[sin q2 + sin (P − q1 − q2 − k)] S(k, q1)

E − ε(k) − ε(q1) − ε(q2) − ε(P − q1 − q2 − k)
, (B9)

with f (k) ≡ 1. The equations for C and S are also described by Eq. (B9) but with f (k) = cos (k) and f (k) = sin (k),
respectively.

3. Bose-UV model in a 2D square lattice

To derive a working system of equations for the square
lattice, we come back to Eq. (B2) and sum over b = ±x,±y.
Expansion of the cosines leads to five auxiliary functions: A,
Cx, Sx, Cy, and Sy. A(q1, q2) is defined similarly to Eq. (B6),
except all the variables are two-dimensional vectors, and
the integration is over a two-dimensional Brillouin zone.
Cx(q1, q2) and Cy(q1, q2) are defined according to Eq. (B7)
but with cos (kx ) and cos (ky) in place of cos(k), respectively.
Likewise, Sx(q1, q2) and Sy(q1, q2) are defined according to
Eq. (B8), but with sin (kx ) and sin (ky) in place of sin(k). Then
the wave function is expressed via A, Cx,y, Sx,y and substituted
back into the definitions. The resulting system consists of five
coupled integral equations, which are given in the Supplemen-
tal Material [71], Sec. VII C.

A 3D cubic Bose-UV model could be analyzed similarly.
Seven auxiliary functions would be required, and the resulting
system would consist of seven coupled equations. However,
3D four-body systems exceed the computational capabilities
of desktop workstations and are not studied here.

APPENDIX C: PERMUTATION SYMMETRIES:
FOUR s = 1

2 FERMIONS

The fermionic case is more complicated because four spin-
1
2 fermions can form states with total spin values S = 0, 1,
and 2. Separation of fermionic states by S and separation
between bosons and fermions requires symmetrization of
� in accordance with Young’s tables. Unfortunately, proper
symmetrization leads to auxiliary functions losing some easy-

to-check permutation properties that are useful for validating
numerical results. Therefore, we adopt here partial implemen-
tation of Young’s tables, which produces verifiable solutions
but still enables separation of states by S.

The process begins with S = 2. The coordinate wave func-
tion is fully antisymmetric with respect to all four arguments,
which leads to unambiguous results. Technically, treatment
is similar to the bosonic case but with alternating signs in
the Fourier transformation. Next, one moves to S = 1. In this
case, we antisymmetrize � with respect to three arguments
but leave the symmetries involving the fourth argument unre-
stricted. As a result, states with S = 1 and 2 are produced.
However, since the S = 2 states have already been deter-
mined, they can be separated out. Finally, to access states
with S = 0, we antisymmetrize � with respect to two pairs
of arguments, for example q1 ↔ q2 and q3 ↔ q4. The sym-
metries involving permutations of arguments from different
pairs, such as q2 ↔ q4, remain unrestricted. The process finds
solutions with all three S = 0, 1, and 2. However, since the
S = 2 and 1 sectors have been mapped in the previous steps,
the S = 0 states can be identified.

In what follows, we provide further details of the proce-
dure. The overall flow parallels that of the indistinguishable
and bosonic cases. Once the symmetry of � is defined via
an appropriate Fourier transformation, the Schrödinger equa-
tion is converted in momentum space and a certain number
of auxiliary functions is introduced. Then the wave function
is expressed via the auxiliary functions and substituted back
into their definitions, producing a final set of equations. Com-
plete derivations can be found in the Supplemental Material
[71].
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1. Four s = 1
2 fermions: S = 2

Full antisymmetry of � is imposed by utilizing a fully antisymmetric basis in Fourier transformation

�2(m1, m2, m3, m4) = 1

N2

∑
q1q2q3q4

⎧⎨
⎩

∑
[m1,m2,m3,m4]

(−1)C[m]ei (q1m1+q2m2+q3m3+q4m4 )

⎫⎬
⎭�2(q1, q2, q3, q4). (C1)

Here the inner sum is over 24 permutations of site indices mi, and (−1)C[m] = +1 if the permutation is even and −1 otherwise.
The subscript 2 indicates that we are dealing with the fermionic sector S = 2. Substituting Eq. (C1) in the base Schrödinger
equation, Eq. (A1), one obtains

[E − ε(q1) − ε(q2) − ε(q3) − ε(q4)] �2(q1, q2, q3, q4)

= −V
1

2N

∑
k

∑
b

{(cos [(k − q1)b] − cos [(k − q2)b])�2(k, q1 + q2 − k, q3, q4)

+ (cos [(k − q1)b] − cos [(k − q3)b])�2(k, q2, q1 + q3 − k, q4)

+ (cos [(k − q1)b] − cos [(k − q4)b])�2(k, q2, q3, q1 + q4 − k)

+ (cos [(k − q2)b] − cos [(k − q3)b])�2(q1, k, q2 + q3 − k, q4)

+ (cos [(k − q2)b] − cos [(k − q4)b])�2(q1, k, q3, q2 + q4 − k)

+ (cos [(k − q3)b] − cos [(k − q4)b])�2(q1, q2, k, q3 + q4 − k)}. (C2)

It is instructive to compare Eq. (C2) with its fully symmetric counterpart, Eq. (B2). First, the U term has disappeared. This is
expected since fully antisymmetric wave functions should not feel a contact interaction. Second, the form factors in Eq. (C2) are
now antisymmetrized with respect to permutations of interacting particles. Note that for now we have left the argument order in
�2 unchanged to keep the connection between the potential and particle order clearer. By utilizing full antisymmetry, all �2 can
be brought to a standard form �(k, q, q, P − q − q − k), which generates additional factors of (−1).

The rest of the derivation is relegated to the Supplemental Material [71]. Suffice it to say here that two auxiliary functions are
needed in 1D (Sec. VII D), and four functions are needed in 2D (Sec. VII E). In both dimensionalities, the number of functions
is one less than the respective bosonic numbers because the U term is absent.

2. Four s = 1
2 fermions: S = 1

To access S = 1 fermionic states, we construct a wave function �1 that is antisymmetric with respect to permutations of three
particles 1, 2, and 3:

�1(m1, m2, m3; m4) = 1

N2

∑
q1q2q3q4

{ei (q1m1+q2m2+q3m3 ) − ei (q1m1+q2m3+q3m2 ) + ei (q1m3+q2m1+q3m2 )

− ei (q1m2+q2m1+q3m3 ) + ei (q1m2+q2m3+q3m1 ) − ei (q1m3+q2m2+q3m1 )}ei (q4m4 )�1(q1, q2, q3; q4). (C3)

The semicolon notation indicates that the arguments are now split into two groups. �1 is antisymmetric with respect to
permutations of the first group m1, m2, m3. At the same time, no symmetry is imposed for permuting m4 and any argument
from the first group. Substitution of Eq. (C3) in Eq. (A1) yields a corresponding Schrödinger equation,

[E − ε(q1) − ε(q2) − ε(q3) − ε(q4)] �1(q1, q2, q3; q4)

= U
1

N

∑
k

{�1(k, q2, q3; q1 + q4 − k) + �1(q1, k, q3; q2 + q4 − k) + �1(q1, q2, k; q3 + q4 − k)}

−V
1

2N

∑
k

∑
b

{(cos [(k − q1)b] − cos [(k − q2)b])�1(k, q1 + q2 − k, q3; q4) + (cos [(k − q1)b]

− cos [(k − q3)b])�1(k, q2, q1 + q3 − k; q4) + (cos [(k − q2)b] − cos [(k − q3)b])�1(q1, k, q2 + q3 − k; q4)}.
−V

1

N

∑
k

∑
b

{cos [(k − q1)b]�1(k, q2, q3; q1 + q4 − k) + cos [(k − q2)b]�1(q1, k, q3; q2 + q4 − k)

+ cos [(k − q3)b]�1(q1, q2, k; q3 + q4 − k)}. (C4)

One observes that in the U term only interactions between q4 and the first group remain. Interactions within the first group have
been eliminated by antisymmetry. The V interactions are also split into two groups. The first three terms describe interactions
within the first group and are analogous to Eq. (C2). The last three V terms in Eq. (C4) describe unsymmetrized interactions
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between q4 and the first group, and they are analogous to Eq. (A3). It is possible to show that the additional assumption of full
antisymmetry between the last and the first three arguments of � reduces Eq. (C4) back to the S = 2 version, Eq. (C2).

The rest of the derivation can be found in the Supplemental Material [71]. The 1D case requires five auxiliary functions
(Sec. VII F) and the 2D case nine auxiliary functions (Sec. VII G).

3. Four s = 1
2 fermions: S = 0

We finally discuss the S = 0 fermionic sector, which often contains the system’s ground state. To access S = 0, we construct
a wave function that is antisymmetric with respect to permutations within two groups of coordinates {12} and {34},

�0(m1, m2; m3, m4) = 1

N2

∑
q1q2q3q4

{ei (q1m1+q2m2 ) − ei (q1m2+q2m1 )}{ei (q3m3+q4m4 ) − ei (q3m4+q4m3 )}�0(q1, q2; q3, q4). (C5)

As a consequence, �0(q2, q1; q3, q4) = −�0(q1, q2; q3, q4) and �0(q1, q2; q4, q3) = −�0(q1, q2; q3, q4), but no definite sym-
metries are associated with permutations between the two groups. Substitution of Eq. (C5) in Eq. (A1) leads to

[E − ε(q1) − ε(q2) − ε(q3) − ε(q4)] �0(q1, q2; q3, q4)

= U
1

N

∑
k

{�0(k, q2; q1 + q3 − k, q4) − �0(k, q2; q1 + q4 − k, q3) − �0(k, q1; q2 + q3 − k, q4)

+�0(k, q1; q2 + q4 − k, q3)} − V
1

N

∑
k

∑
b

{
1

2
[cos (k − q1)b − cos (k − q2)b]�0(k, q1 + q2 − k; q3, q4)

+ cos [(k − q1)b] �0(k, q2; q1 + q3 − k, q4) − cos [(k − q1)b] �0(k, q2; q1 + q4 − k, q3)

− cos [(k − q2)b] �0(k, q1; q2 + q3 − k, q4) + cos [(k − q2)b] �0(k, q1; q2 + q4 − k, q3)

+ 1

2
[cos (k − q3)b − cos (k − q4)b]�0(q1, q2; k, q3 + q4 − k)

}
. (C6)

Reduction of this Schrödinger equation to two-variable integral equations is completed in the Supplemental Material [71]. The
1D case requires seven auxiliary functions (Sec. VII H) and the 2D case 13 auxiliary functions (Sec. VII I).

APPENDIX D: ROTATIONAL SYMMETRIES:
GROUND STATE AT P = 0

In 2D, the ground state possesses rotational symmetries
that link the x and y auxiliary functions. Those relations en-
able a further reduction of the number of resulting integral
equations.

For s = 0 bosons in 2D, the auxiliary functions are defined
in the Supplemental Material [71] [Sec. VII C, Eqs. (24)–
(27)]. In the ground state at P = (0, 0), they obey the
following relations:

Cb
x (q1x, q1y; q2x, q2y) = +Cb

y (q1y, q1x; q2y, q2x ), (D1)

Sb
x (q1x, q1y; q2x, q2y) = +Sb

y (q1y, q1x; q2y, q2x ), (D2)

Cb
y (q1x, q1y; q2x, q2y) = +Cb

x (q1y, q1x; q2y, q2x ), (D3)

Sb
y (q1x, q1y; q2x, q2y) = +Sb

x (q1y, q1x; q2y, q2x ). (D4)

In the equations themselves, for instance in Eq. (29), the Cx

and Cy terms can therefore be combined, but with a proper
permutation of arguments. The Sx and Sy terms are also com-
bined. After that, the Cx and Cy equations become equivalent,
and the Sx and Sy equations become equivalent, too. Thus, the
total number of equations in the full system is reduced from 5
to 3.

In the case of s = 1
2 fermions, similar relations between the

x and y auxiliary functions hold true, but the sign is negative.

For example, in the S = 2 sector, see the Supplemental Mate-
rial [71], Sec. VII E, we have

C f
x (q1x, q1y; q2x, q2y) = −C f

y (q1y, q1x; q2y, q2x ), (D5)

S f
x (q1x, q1y; q2x, q2y) = −S f

y (q1y, q1x; q2y, q2x ), (D6)

C f
y (q1x, q1y; q2x, q2y) = −C f

x (q1y, q1x; q2y, q2x ), (D7)

S f
y (q1x, q1y; q2x, q2y) = −S f

x (q1y, q1x; q2y, q2x ). (D8)

The number of equations to solve is reduced from four to two.
A similar reasoning applies to fermionic sectors S = 1

and 0. Relations like Eqs. (D5)–(D8) are valid within each
group of functions: {12}, {13}, {14}, and {34}. In all cases, the
number of C functions and S functions is cut in half.

TABLE I. The number of coupled integral equations, Keq, and the
linear size of the final matrix, M = Keq N2, for different symmetry
sectors and different chain lengths, N , in the 1D UV model.

1D UV model Linear matrix size, M

Symmetry Keq N = 16 N = 32 N = 48 N = 64

Bosons 3 768 3072 6912 12288
Fermions, S = 2 2 512 2048 4608 8192
Fermions, S = 1 5 1280 5120 11520 20480
Fermions, S = 0 7 1792 7168 16128 28672
Distinguishable 18 4608 18432 41472 73728
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TABLE II. The number of coupled integral equations, Keq, and
the linear size of the final matrix, M = Keq N4

x , for different symme-
try sectors and different square sizes, Nx = Ny, in the 2D square UV
model.

2D UV model Linear matrix size, M

P Symmetry Keq Nx = 6 Nx = 8 Nx = 10

Any Bosons 5 6480 20480 50000
Fermions, S = 2 4 5184 16384 40000
Fermions, S = 1 9 11664 36864 90000
Fermions, S = 0 13 16848 53248 130000

(0,0) Bosons 3 3888 12288 30000
Fermions, S = 2 2 2592 8192 20000
Fermions, S = 1 5 6480 20480 50000
Fermions, S = 0 7 9072 28672 70000

The number of integral equations that constitute the final
system in various cases is summarized in Tables I and II.

APPENDIX E: PRACTICAL IMPLEMENTATION

We now describe practical ways of solving integral equa-
tions like Eq. (A15) and converting them to useful physical
information. The first step is to approximate auxiliary func-
tions by their values at a finite set of q points spanning the
entire Brillouin zone. For a regular q mesh, there is a 1-to-1
correspondence between the mesh size and the lattice size N .
It is also possible to employ a nonuniform mesh. For example,
one can argue that due to the polelike structure of energy
denominators, it is advantageous to have a denser mesh near
q1 = q2 = 0 to better resolve fast varying kernels, especially
at small binding energies. However, nonuniform meshes are
incompatible with the circular coordinate P − q1 − q2 − k
because a momentum difference is not guaranteed to land on
a mesh point. For that reason, we employed only regular q
meshes in both 1D and 2D.

Once the functions are discretized, k integrals on the right-
hand sides of the equations need to be approximated by finite
sums. The trapezoidal sum rule is most natural here. Again,
it seems possible to improve the accuracy of integration by
employing the Simpson sum rule or other integration methods.
We experimented with the Simpson rule but with no obvious
benefit. All results presented in the following were obtained
with the trapezoidal rule.

The next step is to arrange variables {q1, q2} into a one-
dimensional array. This task is straightforward in 1D but is
more challenging in 2D. Indeed, two 2D variables are in fact
four variables, {q1, q2} = {q1x, q1y, q2x, q2y}, and arranging
them within a one-dimensional array is tricky. In particular,
extreme care must be taken in calculating the index of mo-
mentum difference P − q1 − q2 − k.

After the {q1, q2} sequence is defined, all auxiliary arrays
are concatenated vertically to form a single array Ô. Thus, the
full system of integral equations is approximated by a matrix
equation

Ô = M̂ · Ô, (E1)

where M̂ is a square matrix whose elements explicitly depend
on model parameters U and V , total momentum P, and total
energy E . Note that despite being a linear eigenvalue in the
original Schrödinger equation, here E appears in denomi-
nators, i.e., nonlinearly. A practical way of finding E for
given {U,V, P} consists of rewriting Eq. (E1) as an eigenvalue
problem:

λ Ô = M̂(U,V, P, E ) · Ô. (E2)

Then E is varied by a root-finding algorithm until λ = 1. A
side benefit of this method is automatic determination of level
degeneracy. For example, if an E corresponds to a triple-
degenerate energy level, then three λ = 1 eigenvalues will
appear all at once. By counting how many eigenvalues cross
the λ = 1 threshold simultaneously, the degeneracy of E is
easily determined. Note also that M̂ is a dense matrix, and no
sparse algorithms are applicable here.

Lastly, one should mention that it is not necessary to
compute all eigenvalues of Eq. (E2). The linear size of
M̂ can reach tens of thousands, see Tables I and II, so
computation of all λ’s quickly becomes prohibitively ex-
pensive. Fortunately, only the largest eigenvalues correspond
to real physical states. Limiting the search to fewer than
100 eigenvalues near λ = 1 is sufficient for most physi-
cally interesting questions. Typically, such a subset search
reduces the computation time between one and two orders of
magnitude.

APPENDIX F: VALIDATION AND FINITE-SIZE SCALING

The complexity of a four-body quantum-mechanical
problem calls for thorough validation of the integral equa-
tion method developed here. In this work, we use two types of
self-consistency checks inherent in the method itself to make
sure final energy values and other results are error-free.

The first check is based on verification of auxiliary
functions’ permutation symmetries. An advantage of the
eigenvalue formulation of Eq. (E2) is that all eigenvectors are
produced simultaneously with eigenvalues “for free.” Know-
ing the arrangement of {q1, q2}, an eigenvector Ô can be
split and reshaped into individual functions of two argu-
ments to verify their permutation symmetries. For example,
in the case of 1D bosons, all three auxiliary functions de-
fined in Eqs. (B6)–(B8) must be symmetrical: C(q2, q1) =
+C(q1, q2), and so on. Any symmetry violation indicates an
analytical or coding error.

The second check is inherent in the partial implementation
of Young’s tables. Essentially, each energy level is computed
more than once, but by different matrix equations. When
solving the S = 0 fermionic system, S = 1 and 2 states are
produced in addition to S = 0 states. Any mismatch with the
S = 1 or 2 system indicates a coding error. To cross-check
bosonic states, we implemented the distinguishable set of
equations described in Appendix A, as well as one more
system antisymmetric with respect to only one pair of coor-
dinates, {12}. An example of such a cross-check is shown in
Table III. Because of the higher computational cost of solving
the distinguishable equations, such a cross-check was con-
ducted for smaller lattice sizes. Once the code was validated,
fermionic and bosonic systems were analyzed for larger N .
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TABLE III. The lowest 28 four-particle energy levels computed to 10−7 accuracy in the 1D UV model for V = 20 t , U = 100 t , and
P = 0. The lattice chain length is N = 16. All energies are in units of t . Only levels below the combined energy of two bound pairs are shown.
A singlet pair’s energy at these parameters is −20.265 856 24. [30] Thus, only six fully symmetric bosonic states exist below the two-pair
threshold of −40.531 712 47. Cells are colored according to states’ permutation symmetry. Notice how the S = 0 system (the fourth column)
produces S = 1 states (green) and S = 2 states (yellow). A match between S = 2 energies produced by the S = 2, S = 1, and S = 0 systems
validates the method.

State No. Bosons Fermions, S = 2 Fermions, S = 1 Fermions, S = 0 q1 ↔ q2 asymm. Distinguish.

28 −41.31527524 −41.99878977 −42.15329156
27 −41.31731132 −42.03439805 −42.15329156
26 −41.49968626 −42.03439805 −42.15329156
25 −40.58697476 −41.49968626 −42.06670947 −42.17973884
24 −40.58697476 −41.55120278 −42.07546896 −60.10050280
23 −40.85302446 −41.55420017 −42.08827011 −60.11042100
22 −40.85477063 −41.69263456 −42.09099284 −60.11042100
21 −41.10899062 −41.69483277 −42.09458246 −60.11042100
20 −41.11142629 −41.84474082 −42.09458246 −60.12180786
19 −41.31527607 −41.84581751 −42.10708511 −60.12180786
18 −41.31731120 −41.86051552 −42.10708511 −60.13484457
17 −41.49968614 −41.86443225 −42.12383830 −60.13484457
16 −41.49968614 −41.96573057 −42.14551244 −60.13484457
15 −41.69263447 −41.96916283 −42.14840587 −60.14477421
14 −41.69483267 −42.03439890 −42.15329153 −60.14477421
13 −41.86051545 −42.03439890 −42.15329153 −60.14477421
12 −41.86443218 −42.08827100 −60.10050279 −60.15836978
11 −41.96573050 −42.09099277 −60.11042098 −60.15836978
10 −41.96916276 −42.09458239 −60.11042098 −60.15836978
9 −42.03439884 −42.10708505 −60.12180784 −60.16831659
8 −42.03439884 −42.12383823 −60.13484456 −60.16831659
7 −40.58697485 −42.09458235 −42.15329149 −60.13484456 −60.16831659
6 −41.14295746 −40.58697485 −42.10708500 −60.10050274 −60.14477420 −60.18135998
5 −41.14710593 −41.49968598 −42.15329147 −60.11042094 −60.15836977 −60.18135998
4 −41.89815782 −41.49968598 −60.10050272 −60.12180780 −60.15836977 −60.19279643
3 −41.90180085 −42.03439876 −60.11042092 −60.13484452 −60.16831658 −60.19279643
2 −42.17973872 −42.03439876 −60.13484450 −60.15836974 −60.18135997 −60.19279643
1 −60.20276422 −60.10050268 −60.15836973 −60.18135995 −60.19279642 −60.20276422

We now discuss finite-size scaling. The computer work-
station used in this work could handle eigenvalue problems,
Eq. (E2), with linear sizes of about M = 80 000. In 1D,
M grows quadratically with the lattice size as M = Keq N2,
where Keq is the number of integral equations. Thus, we
were able to analyze linear chains as large as N = 64;
see Table I. That enabled accurate extrapolation of phase

boundaries to N = ∞, as detailed in Sec. IV of the main
text. In 2D, M grows as the fourth power of the lat-
tice linear size, M = Keq N4

x . (In this work, we study only
square lattice segments, Nx = Ny.) That effectively limits
the investigation to 8 × 8 or smaller lattices at arbitrary
P, and to 10 × 10 or smaller lattices at P = (0, 0); see
Table II.
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