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A systematically improvable wave function is proposed for the numerical solution of strongly correlated
systems. With a stochastic optimization method, based on the auxiliary field quantum Monte Carlo technique,
an effective temperature Teff is defined, probing the distance of the ground-state properties of the model in the
thermodynamic limit from the ones of the proposed correlated mean-field ansatz. In this way, their uncertainties
from the unbiased zero temperature limit may be estimated by simple and stable extrapolations well before
the so-called sign problem gets prohibitive. At finite Teff , the convergence of the energy to the thermodynamic
limit is indeed shown to already be possible in the Hubbard model for relatively small square lattices with linear
dimension L � 10, thanks to appropriate averages over several twisted boundary conditions. Within the estimated
energy accuracy of the proposed variational ansatz, two clear phases are identified, as the energy is lowered by
spontaneously breaking some symmetries satisfied by the Hubbard Hamiltonian: (a) a stripe phase where both
spin and translation symmetries are broken and (b) a strong coupling d-wave superconducting phase when the
particle number is not conserved and global U (1) symmetry is broken. On the other hand, the symmetric phase
is stable in a wide region at large doping and small coupling.
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I. INTRODUCTION

The accurate numerical solution of the Schrödinger equa-
tion, namely, determining the ground state of a many-body
Hamiltonian H , remains the most challenging unsolved prob-
lem since Dirac’s formulation in 1931. Historically, important
progress, with optimistic promise, occurs periodically, e.g.,
with the development of the density functional theory [1],
the density matrix renormalization group (DMRG) [2,3],
and its translation within the tensor network quantum in-
formation language [4–6], quantum Monte Carlo (QMC)
methods [7–12], systematically improvable wave functions
(WFs) based on multireference expansions [13–15], and
machine-learning approaches [16,17], etc. However, apart
from particular cases—as in one dimension [18] or for very
particular couplings [19]—determining the exact ground state
of a strongly correlated Hamiltonian H in the thermodynamic
limit remains an open issue and a challenge for theoretical
physicists. Also, for this reason, the Hubbard model has been
historically used to benchmark unique techniques because its
simplicity represents an ideal playground for advanced com-
putational and experimental methods such as optical lattices
[20].

Despite great theoretical effort, many of the properties
of the 2D Hubbard model are still unclear [21,22]. Among
the results that have been established by unbiased numerical
techniques, it is well-known that an antiferromagnetic phase
emerges at the half filling of the square lattice [8,23,24]. Away
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from half filling, the situation is less clear, although there is
strong evidence that magnetic order remains [25]: the added
holes (unoccupied sites) are expelled from the antiferromag-
netic phase and essentially fill in equally spaced vertical lines
of the lattice—the stripe phases. On the other hand, the quest
for the occurrence of superconductivity in the Hubbard model
has been highly debated and controversial since the discovery
of high-temperature superconductivity [26–29].

Within this context, one of the clearest evidence of su-
perconductivity was reported in the strong coupling limit of
the Hubbard model, in the so-called t − J model. Several
years ago, this model was investigated in Ref. [30], within an
almost standard variational Monte Carlo method (VMC) [31],
whose main result was that superconductivity did not need
electron-phonon interaction, but the driving force was rather
the superexchange spin interaction J . The approach, and espe-
cially the claim, has been highly debated and is nowadays still
controversial; nevertheless, it is worth mentioning that Corboz
et al. [32] reported, by using tensor network, similar values
for the off-diagonal d-wave superconducting long range or-
der [33].

Despite this success, standard VMC based on a single
reference mean-field ansatz, corrected by a simple correla-
tion term (e.g., the Gutzwiller factor) is certainly limited
as compared to the most recent and advanced variational
methods that allow a systematically improvable ansatz. In
view of this, in this paper, a different strategy is proposed
to overcome the limitations of correcting a simple mean-field
ansatz for reaching accurate ground-state properties. The ap-
proach will be dubbed in the following variational auxiliary
field quantum Monte Carlo (VAFQMC), taking advantage
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of the enormous progress done in the last decades by two
old but well-established techniques: the variational quantum
Monte Carlo (VMC) and the auxiliary field quantum Monte
Carlo (AFQMC) [9,10,34–36]. As for the former technique,
we leverage its simplicity and clarity in interpreting the re-
sults in the thermodynamic limit, as well as its ability to
optimize a mean-field state |ψMF〉 in presence of a simple
correlated factor. On the other hand, from AFQMC, a sys-
tematically convergent and nonperturbative expression of the
correlation term is used, as AFQMC allows the application
of the projection exp(−Hτ/2) to any mean-field state, fil-
tering out exactly the ground-state component of |ψMF〉 for
large imaginary time τ . Therefore, and briefly speaking, the
proposed VAFQMC takes the formalism of the AFQMC to
yield an ansatz |ψτ 〉0 = exp(−Hτ/2)|ψMF〉, which represents
a systematically improvable—with increasing τ—correlated
mean-field ansatz, retaining all advantages of the two men-
tioned formalisms.

The simple working hypothesis of this paper is the follow-
ing. Suppose that, in the thermodynamic limit, the mean-field
WF has acquired the lowest possible energy upon breaking
some symmetry of the Hamiltonian in the presence of an ac-
curate enough correlation term. In this case, the implicit VMC
assumption is that the exact ground state should eventually
show this phase. On the other hand, with the proposed method
one can, in principle, tune the accuracy of the electron corre-
lation at the desired level and verify explicitly the systematic
evolution of the phase diagram, derived in this way, from the
simplest mean-field Hartree-Fock (HF) theory (τ = 0) to the
converged projected one.

The paper is organized as follows. In Sec. II, we present the
model and discuss the main features of the trial WF, while the
details behind the Monte Carlo sampling and minimization of
the energy are left to Sec. III. In Sec. IV, a benchmark for
VAFQMC is presented, with the results away from half filling
being discussed in Secs. V and VI. Our main conclusions are
then summarized in Sec. VII.

II. MODEL AND WAVE FUNCTION

A. The ansatz

In this paper, we investigate the repulsive Hubbard model,
whose Hamiltonian reads

H = − t
∑
〈i,j〉,σ

(c†
iσ cjσ + H.c.) − μ

∑
i,σ

ni,σ + U
∑

i

ni,↑ni,↓,

(1)

where the sums run over sites of the square lattice, with
〈i, j〉 denoting nearest-neighbor sites under twisted boundary
conditions. In Eq. (1), we use the second quantization formal-
ism, with c†

iσ (ciσ ) being creation (annihilation) operators of
electrons on a given site i, and spin σ , while niσ ≡ c†

iσ ciσ are
number operators. The first two terms on the right-hand side
of the Hamiltonian correspond to the hopping of fermions and
the chemical potential μ, respectively, with the latter deter-
mining the filling of the bands. The third term describes the
local repulsive interaction between fermions, with coupling
strength U. Hereafter, we define the lattice constant as unity,
and the hopping integral t as the energy scale.

To facilitate the following discussion, we define H = Kμ +
V , with Kμ denoting the kinetic and chemical potential terms,
while V ≡ U

∑
i ni,↑ni,↓ being the interacting one. Given this,

we introduce the following ansatz [37–39]:

|ψτ 〉 = exp
[
−τ

2
(HMF(α) + V )

]
|ψMF〉 , (2)

in which the bare kinetic energy operator in the projector
exp(−Hτ/2) is generalized [i.e., Kμ → HMF(α)], by allowing
a generic operator quadratic in the fermion ones c, c†, but
also including a set of new variational parameters α, e.g.,
as a d-wave Bardeen-Cooper-Schrieffer (BCS) pairing field.
This approach shares some similarities with those in quan-
tum computation [40,41], with the purpose to reach accurate
ground-state properties in the shortest possible projection time
τ . As discussed later, such a variational WF represents a
straightforward improvement of the standard AFQMC one,
|ψτ 〉0, mentioned in the Introduction.

The mean-field WF |ψMF〉 can be a generic quasi-free-
electron state, from a simple Slater determinant to BCS
pairing functions, including singlet and/or triplet correlations.
Here, |ψMF〉 is allowed, breaking some symmetries of the
Hamiltonian, and is defined as the ground state of a mean-field
Hamiltonian HMF(α0), i.e., HMF(α0)|ψMF〉 = E0(α0)|ψMF 〉,
with a set of variational parameters indicated by the
vector α0.

For the projection operator, we take advantage of the vari-
ational formulation, so any extension of the variational ansatz
containing |ψτ 〉0 as a particular case should necessarily im-
prove it; i.e., after energy optimization, it acquires a lower
variational energy. Therefore, as discussed above, the bare
kinetic energy operator in exp(−Hτ/2) is generalized [i.e.,
Kμ → HMF(α)], with HMF(α) being parametrized by a set
of variational parameters indicated by another independent
vector α, such that one obtains HMF(α) = Kμ when α = 0.
In other words, the key idea is that if a symmetry is broken in
the thermodynamic limit, also the projection operator (i.e., the
correlation factor), and not only the mean-field state |ψMF〉,
may break the symmetry and therefore HMF(α) is conveniently
parametrized in a way similar to ψMF.

This original formulation improves the quality of the ansatz
and the smooth convergence to the thermodynamic limit as
compared to the simpler ansatz |ψτ 〉0, with the optimal energy
being obtained after the simultaneous optimization of both α

and α0. At this point, we anticipate that, in this variational
formulation of VAFQMC, τ plays the role of an effective
inverse temperature that is kept fixed during the minimization
of the energy expectation value for the corresponding |ψτ 〉.

The optimization techniques known in standard VMC
[42] and machine learning [43] will be generalized here to
AFQMC. Before that, it is worth emphasizing simple but
important properties of this ansatz:

(1) It is systematically improvable. To realize this prop-
erty, it is enough to take α = 0 when the proposed ansatz
coincides with the simpler one, |ψτ 〉0 = exp(−Hτ/2)|ψMF〉.
Thus, let τ → ∞ for a mean field |ψMF〉 of the chosen form
that is not orthogonal to the ground state. In this limit, |ψτ 〉0

is obviously converging to the exact ground state. Thus, after
turning on optimization, by allowing both α 
= 0 and, inde-
pendently, α0 different from the initial guess, a lower energy
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is necessarily implied for each τ , yielding that the ansatz of
Eq. (2) is systematically improvable, as well as being even
better than |ψτ 〉0 as far as its energy is concerned.

(2) It is size extensive. As discussed in Ref. [34], the WF
is defined directly in terms of an exponential of an extensive
operator, hence the statement. In practice, this means that, at a
given τ , approximately the same accuracy for intensive quan-
tities is expected, e.g., the energy per site or bulk correlation
functions.

(3) For finite clusters, the convergence is exponential in τ

due to the finite size gap between the ground-state manifold
(which may be also degenerate) and the first excitation with
nonzero energy gap. However, in the thermodynamic limit,
this gap is probably always vanishing in this model, even for
the half-filled insulator, where gapless spin-wave excitations
are expected due to the occurrence of antiferromagnetic order
for any U > 0 [23]. This situation, as will be shown in the fol-
lowing, makes the extrapolation to the unbiased limit, 1

τ
→ 0,

much simpler than the corresponding finite size case. Indeed,
this can be obtained by simple and stable low-order polyno-
mial extrapolations in something that can be considered an
effective temperature Teff = 1/τ .

At this point, it is worth mentioning that, in the VAFQMC,
the choice of the mean-field WF, as well as the ansatz of the
projection operator–Kμ → HMF in the exp(− τ

2 H ) operator—
may affect the convergence toward the ground state. Indeed,
we have noticed that the inclusion of this new set of variational
parameters (from the ansatz of the projection operator) leads
to a faster convergence, which, in turn, does not require long
imaginary times to reach the ground state, in contrast with
the regular AFQMC methods. Although a formal analytical
demonstration of such a faster convergence is not provable
at present time, one may appreciate it a posteriori, from the
following results presented in this paper, which are in very
good agreement with the best benchmarks provided in the
literature, even to small values of imaginary times.

B. The Teff → 0 extrapolation

Therefore, the first step of this work is to converge results
to the thermodynamic limit with large enough cluster size
simulations and appropriate boundary conditions. Given this,
simple and stable extrapolations for Teff → 0 are employed,
thus achieving, with this strategy, very accurate results, or at
least an estimate of the accuracy of the lowest Teff variational
ansatz. As presented later, this is often possible because, after
the optimization, the physical properties of the ansatz [Eq. (2)]
are already in the very low temperature regime, where the
mentioned extrapolations are indeed stable and reliable within
a given broken symmetry phase.

It is well established [44–46] that, when a standard type
of order that breaks a continuous symmetry sets in, the cor-
responding gapless low energy excitations—-i.e., typically
bosons with a density of states ρ(ε) ∝ εD−1–induce � T 3

energy corrections in the limit T → 0 for 2D, or � T 2 ones
for quasi-1D systems (as finite cylinder with infinite length).
Due to these corrections, �E ∝ ∫ T

0 ερ(ε) � T D+1, it turns
out that the fit

E (Teff ) = E (0) + aT D+1
eff + bT D+2

eff (3)

is generally very appropriate for the systems studied here
because the available Teff always appear quite close to the
correct asymptotic behavior. A formal derivation of the finite
effective temperature corrections is outlined in Appendix A.

C. Boundary conditions and Trotter decomposition

Given the above arguments, particularly useful boundary
conditions are adopted such that the convergence to the ther-
modynamic limit at fixed τ is as fast as possible. To this end,
twisted averaged boundary conditions (TABCs) [47,48] are
used in both the Hubbard Hamiltonian and the mean-field ones
on rectangular Lx × Ly clusters (Lx = Ly = L is adopted for
square lattices). This is obtained by imposing opposite twists
for opposite spins:

crx+Lx,ry,↑ = crx,ry,↑ exp(i2πθx ),

crx,ry+Ly,↑ = crx,ry,↑ exp(i2πθy),

crx+Lx,ry,↓ = crx,ry,↓ exp(−i2πθx ),

crx,ry+Ly,↓ = crx,ry,↓ exp(−i2πθy), (4)

with θx = −1/2 + (i − 1/2)/NT and θy = −1/2 + ( j −
1/2)/NT for integers 1 � i, j � NT , while rx and ry here and
henceforth indicate integer Cartesian coordinates of the lattice
1 � rx � Lx, 1 � ry � Ly. All the results are then averaged
on a mesh of NT × NT twists in the Brillouin zone (BZ), with
NT large enough to have converged energies within statistical
errors. When HMF conserves the number of particles N and
has a gap in the one particle spectrum, N remains unchanged
for each twist, whereas when a BCS pairing is present, grand
canonical ensemble is adopted as discussed in Ref. [49]
and the expectation value of H − μN̂ is minimized by the
proposed variational ansatz, where N̂ =∑rx,ry,σ

c†
rx,ry,σ

crx,ry,σ

is the particle number operator.
It is worth remarking that the use of opposite twists for

opposite spin electrons is particularly important in this case
because it allows the conservation of the translation symmetry
in the BCS mean-field Hamiltonian, at least in a simple way.

Before explaining how to optimize the variational param-
eters, it is useful to appreciate in Fig. 1 the fast and smooth
convergence of the grand potential � = 〈ψτ |H−μN̂ |ψτ 〉

〈ψτ |ψτ 〉 in the
thermodynamic limit as a function of the number Ns of sites
for a value of the chemical potential corresponding to doping
δ = 1 − N/Ns ≈ 1/8.

The other important ingredient for an efficient implemen-
tation of Eq. (2) is the use of a particularly suited Trotter
decomposition for the corresponding propagator:

exp
[
−τ

2
(HMF(α) + V )

]

=
{

n∏
i=1

exp [−tiHMF(α)] exp [−hiV ]

}

× exp [−tn+1HMF(α)], (5)

where, in principle, hi and ti can be independently optimized
to minimize the Trotter error, as proposed in a recent work
[40]. Henceforth, it is assumed that the operators in Eq. (5)
are ordered from left to right according to increasing values
of the integer i. In this paper, τ is kept fixed, and therefore the
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FIG. 1. Grand potential per site �/Ns as a function of cluster
size for different values of the projection time τ for μ = 1.75t and
U/t = 8.

following constraint is imposed:

n∑
i=1

hi = τ

2
. (6)

Moreover, to minimize the number of variational parameters
and the number n, the following parametrization is adopted:

hi = �τγ i−1, (7)

ti = hi + hi−1

2
for i = 1, 2, · · · n, (8)

with h0 = 0 and γ > 1 chosen in a way to sat-
isfy the constraint in Eq. (6). This expression is
based on the conventional small �τ symmetric
Trotter decomposition exp[−�τ (HMF(α) + V )] =
exp[−�τ

2 HMF(α)] exp[−�τV ] exp[−�τ
2 HMF(α)] + O(�τ 3),

where a nonuniform time step according to Eq. (7) has
been chosen because, for high accuracy, it is important
only that the first time step is small and γ � 1. In this
way, the efficiency and the number of operators involved is
significantly optimized, without using too many variational
parameters, as in Ref. [40]. In all forthcoming calculations,
only a single parameter �τ is optimized with the convenient
choice

n = Max{[(τU/0.4 − 1)/5], 1}, (9)

leading to a Trotter time step error on the energy that, for all U
values reported, is comparable to, or less than, the statistical
errors from the Monte Carlo sampling. Here and henceforth,
the square brackets indicate the integer part of a real number.

III. VARIATIONAL AUXILIARY FIELD METHOD

A. The auxiliary fields

Since HMF(α) is a one-body operator and |ψMF〉 is a mean-
field state (e.g., a Slater determinant) there is no difficulty
to apply exp[−tiHMF(α)] to |ψMF〉. Moreover, taking into

account that exp[−tiHMF(α)|ψMF〉 remains a mean-field state,
this operation can be also performed iteratively.

The application of exp(−hiV ) is instead more complicated,
and can nevertheless be implemented by using the auxil-
iary fields technique. For this purpose, the following discrete
Hubbard-Stratonovich transformation [8] is used:

exp(−hiV ) = 2−Ns exp(−UhiN̂/2)
∑

σ j,i=±1

exp(λi

∑
j

σ jim j ),

(10)

with mj = n j,↑ − n j,↓, N̂ being the total number of particles
operator, cosh λi = exp(Uhi ), and σ ji = ±1 being auxiliary
fields for each site j of the lattice, and Trotter slice i. Notice
that the factor exp(−UhiN̂/2) represents only an irrelevant
change of the chemical potential in HMF(α), and will therefore
be omitted for simplicity here and henceforth.

B. Expectation values

Within this setting, the expectation value of the Hamilto-
nian H (or any relevant correlation function [50]) for the WF
in Eq. (2) is given by

En = 〈ψn|H |ψn〉
〈ψn|ψn〉

=
∑

σσ′〈ψMF|U †
n (σ′)HUn(σ)|ψMF〉∑

σσ′〈ψMF|U †
n (σ′)Un(σ)|ψMF〉,

(11)

where σ indicates the Ns × n-dimensional vector with compo-
nents σ ji, and

Un(σ) = exp[−HMF(α)t1] exp

⎡
⎣λ1

∑
j

σ j,1mj

⎤
⎦ · · ·

exp[−HMF(α)tn] exp

⎡
⎣λn

∑
j

σ j,nmj

⎤
⎦

exp[−HMF(α)tn+1]. (12)

Therefore, one may perform a sampling of the Ising auxiliary
fields σ and σ′ by standard Monte Carlo methods, according
to the weight |Wn(σ′, σ )|, where

Wn(σ′, σ ) = 〈ψMF|U †
n (σ′)Un(σ)|ψMF〉. (13)

Generally, in the complex case, Wn has a nontrivial phase
that is determined by Sn(σ′, σ ) = Wn(σ′,σ )

|Wn(σ′,σ )| , a complex num-
ber with unit modulus, that plays the role of the infamous
fermionic minus-sign problem in QMC methods.

Finally, En can be computed by

En =
∑

σσ′ |Wn(σ′, σ )|en(σ′, σ )Sn(σ′, σ )∑
σσ′ |Wn(σ′, σ )|Sn(σ′, σ )

(14)

by evaluating the ratio of the means corresponding to two real
random variables, Re[en(σ′, σ )Sn(σ′, σ )] and Re[Sn(σ′, σ )]
[51], over the configurations generated by Monte Carlo sam-
pling, according to the probability pn(σ′, σ ) = |Wn(σ′,σ )|∑

σσ′ |Wn(σ′,σ )| ,
and by using the standard technique described in Ref. [34].
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Here,

en(σ′, σ ) = 〈ψMF|U †
n (σ′)HUn(σ)|ψMF〉
Wn(σ′, σ )

(15)

is a sort of local energy, namely, an estimate of En for a
given configuration of the Ising fields σ and σ′. Indeed, both
en(σ′, σ ) and Sn(σ′, σ ), as well as Wn(σ′, σ ), can be com-
puted in ∝ N3

s n operations because they involve essentially
imaginary time propagations of mean-field states under time-
dependent one-body propagators Un(σ) and Un(σ′).

C. Energy derivatives

The basic ingredient introduced in this paper is the pos-
sibility to compute energy derivatives of En with respect to
all the parameters defining the WF, i.e., α and α′, hence-
forth assumed to be defined by the 2p variational parameters
α1, α2, · · · α2p and the minimum time step used �τ = α2p+1

at fixed τ , according to Eq. (6). Simple algebraic computa-
tions, very similar to the ones known for VMC, imply that any
energy derivative ∂En

∂α j
with respect to an arbitrary variational

parameter α j , for j = 1, 2, · · · 2p + 1, can be computed by
means of corresponding derivatives of two complex functions
∂en
∂α j

, Oj = ∂ ln(Wn )
∂α j

= ∂Wn
∂α j

/Wn of the local energy and the loga-
rithm of the weight, respectively,

∂En

∂α j
=
〈〈

Re
{
Sn
[

∂en
∂α j

+ (en − En)Oj
]}〉〉

〈〈Re(Sn)〉〉 , (16)

where here and henceforth the symbol 〈〈∗〉〉 indicates the
average of the generic random variable ∗ over the probability
distribution pn defined before, and for shorthand notations the
dependence on σ and σ′ of all the quantities involved is not
explicitly shown.

The differentiation of the complex quantities ln Wn and en,
required for the ∂En

∂α j
evaluation, at given values of σ and σ′,

may appear very cumbersome and involved especially con-
sidering that, it is often necessary, as in VMC, to optimize
several parameters. This task can be easily achieved in a
computational time equal to the one required to compute the
complex quantities ln(Wn) and en, remarkably only up to a
small prefactor regardless of how large the number of varia-
tional parameters involved. This is possible by using adjoint
algorithmic differentiation [52], a technique that is becoming
popular in the field of machine learning with another name,
i.e., back propagation, but was certainly known before in
applied mathematics [53], and only recently has been appre-
ciated in physics [54,55]. Once all energy derivatives ∂ jE
are known, the usual scheme adopted in VMC can also be
applied here. Variational parameters are changed according to
the equation

δα = −ratelearningF−1 ∂E

∂α
, (17)

where ratelearning is a suitable small constant, determining the
speed of convergence to the minimum and F is the so-called
Fisher-information matrix, given by

Fi j =
〈〈

∂ log pn

∂αi

∂ log pn

∂α j

〉〉
= 〈〈〈Re(Oi )�(Oj )〉〉〉 (18)

FIG. 2. Hole density (a) and spin density (b) for the stripe of
width W = 8 and U/t = 8 for the 4 × 16 cluster obtained by energy
optimization at τ t = 1.5. The green bracket emphasizes the length
W of the stripe, i.e., the distance between two domain walls.

where the symbol 〈〈〈AB〉〉〉 = 〈〈AB〉〉 − 〈〈A〉〉〈〈B〉〉 here in-
dicates the covariance of two random variables over the
probability pn. We adopt here ratelearning � 6 and the same
regularization with ε = 0.01 described in Ref. [34] to avoid
instabilities in the calculation of the inverse matrix. Typi-
cally, convergence is reached with a few hundreds iterations
and variational parameters are averaged after convergence for
about 50 steps.

IV. BENCHMARKING THE METHOD

In this section, the proposed method is tested against
known benchmark results on infinite systems. Unfortunately,
there are only a few results available in the thermodynamic
limit, mainly limited to ground-state energies. Nevertheless,
they are extremely relevant for a variational method because
its predictions can be supported by a good estimate of the
energy.

We start our tests of VAFQMC by fixing U/t = 8, at
doping δ = 1/8, and dealing with cylinders with finite width
Ly and periodic boundary conditions (PBCs) in the short y
direction. It allows us to compare our results with the very
accurate ones determined by DMRG with open boundary
conditions (OBCs) in the x direction, and extrapolated to the
one-dimensional Lx = ∞ thermodynamic limit. As seen in
Fig. 3, VAFQMC is in very good agreement with the known
results for Ly � 6, especially when the T 2

eff → 0 extrapolation
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FIG. 3. Energy as a function of the effective temperature Teff =
1/τ for cylinders with different widths. Values at zero horizontal
axis result from extrapolations. Here the D = 1 asymptotic form of
Eq. (3) is adopted for the fit of the data in the range 0.7 � τ t � 1.3.
This form is compatible with the expected low-energy spectrum (see
text) while the range used is found to be appropriate for U = 8t
in all cases, including the 2D ones, studied in this paper. DMRG
energies obtained with open boundary conditions are reported as a
function of the inverse cylinder length Lx for the 4 × Lx case, while
the extrapolated ones at Lx = ∞ for both the 4 × Lx and 6 × Lx

cases.

is employed in a relatively small Ly × 16 cluster with 32 twists
in the long direction [56]. This is remarkable because DMRG
obviously has the best performance in quasi-1D systems.
From Fig. 3, one may also notice the importance of using
appropriate boundary conditions to reach the thermodynamic
limit: OBCs require very large clusters for this end, which
may make very accurate extrapolations a challenging issue.
In addition to this, due to difficulties related to DMRG ex-
trapolations when one approaches the 2D case, we expect
that the small discrepancy between VAFQMC and DMRG
extrapolated values for Ly = 6 does not necessarily imply
that VAFQMC is less accurate in this case. As our partial
conclusion, it is clear that the proposed extrapolations can be
used to estimate the quality of the VAFQMC best (lowest Teff )
variational energy estimates.

In all these VAFQMC calculations at doping δ = 1/8, it
has been found that the W = 8 stripe is the most favorable
mean field, as shown in Fig. 2 for the Ly = 4 case. Here this
state is parametrized by the most general mean-field Hamil-
tonian with local and nearest neighbor couplings independent
of ry (see also the Supplemental Material) [57]:

HMF(α0) =
∑

rx,ry,σ

[−tx(rx )c†
rx+1,ry,σ

crx,ry,σ

− ty(rx )c†
rx,ry+1,σ crx,ry,σ + H.c.

]
+
∑
rx,ry

�AF(rx )(−1)rx+ry
(
n↑,rx,ry − n↓,rx,ry

)
− μ(rx )nrx,ry , (19)

where n↑,rx,ry = c†
↑,rx,ry

c↑,rx,ry , n↓,rx,ry = c†
↓,rx,ry

c↓,rx,ry , nrx,ry =
n↑,rx,ry + n↓,rx,ry . Thus, the local magnetic antiferromagnetic
field satisfies �AF(rx ) = −�AF(rx + W ) and the correspond-
ing local chemical potential μ(rx ) = μ(rx + W ). Moreover,
nearest-neighbor hoppings tx(rx ) = tx(rx + W ) and ty(rx ) =
ty(rx + W ) are also included, amounting to a total of 4W
variational parameters defining HMF(α0). All their values are
assumed independent of the twists [49]. The few parameter
choice adopted in Ref. [58] is used only to initialize the
present more general 8W + 1 (by including also the optimiza-
tion of HMF(α) and �τ ) parameter ansatz |ψτ 〉.

For the uniform solution (see Sec. VI) antiferromagnetic
order is allowed only at half filling while at finite doping a
four (three) parameter ansatz is adopted in HMF(α) (HMF(α0),
and t = 1 can be left unchanged, as it sets the scale of the
mean-field energy, which is irrelevant for |ψMF〉) including
nearest- and next-nearest-neighbor hoppings and has a uni-
form chemical potential μ0 and dx2−y2 pairing. In all the
following calculations, when the particle number is not de-
fined, neither in the mean-field WF nor in the projection, the
energy per site e(δ) at fixed doping δ is accurately estimated
by an appropriate choice of the chemical potential μ. This is
obtained by simple and stable interpolations with a few cal-
culations in the grand canonical ensemble or, in other words,
by inverting the Legendre transform from chemical potential
dependence to the conjugate density one 1 − δ.

With this method, it is therefore possible to compute the
energy in the thermodynamic limit of true 2D clusters without
particular effort as the average (complex) sign 〈〈Sn〉〉 is always
larger than � 0.3 for all the simulations reported in this paper.
It is important to remark that, when the 2D-thermodynamic
limit is approached, a small but systematic increase of the
energy can be appreciated, confirming that to determine the
correct two-dimensional thermodynamic limit, true 2D clus-
ters have to be used.

For Ly small, the stripe solution is clearly favored as com-
pared with the uniform solution, as found by DMRG. In Fig. 3,
the uniform solution is optimized with a nonzero dx2−y2 BCS
pairing but remains clearly above the stripe solution even after
extrapolation to Teff = 0.

However, the situation is quite different when the 2D ther-
modynamic limit is required. In this case, to compare the
stripe with periodicity W = 8 and W = 7 and the uniform d-
wave solution, calculations on a 16 × 16 and 14 × 16 clusters
are carried out with 16 × 16 different twists in the BZ. For
the d-wave ansatz, several calculations at different chemical
potentials μ � 1.8t are attempted to fulfill a doping δ = 1/8
for each effective temperature Teff .

Figure 4 shows that in 2D the uniform solution turns out
to have an energy competitive with the stripe ones, though
the W = 7 stripe appears to also be the most stable solu-
tion because it always provides the lowest variational energy
for each Teff . Nevertheless the stripe-uniform phase energy
difference, reached at the lowest Teff shown, is very small
� 0.001t , though the two variational states remain with qual-
itatively different types of correlation functions, i.e., a sizable
magnetic moment in the former and non-negligible d-wave
pairing correlations in the latter (see inset in Fig. 4). In
Table I, the various extrapolated and best variational en-
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FIG. 4. Energy per site at doping δ = 1/8 and U/t = 8 for the
stripe solution of different lengths and the uniform d-wave super-
conducting one, corresponding to the same doping. Values at zero
horizontal axis result from extrapolations. Here the D = 2 fitting
form of Eq. (3) is adopted, which is compatible with the expected
low energy spectrum (see text). A 16 × 16 square lattice was used
for the W = 8 stripe and the uniform d-wave states while a 14 × 16
rectangular lattice for the W = 7 stripe. The inset shows the pairing
correlations at maximum horizontal distance Lx/2.

ergies are compared with the available benchmark results
[24,25,58] obtained with other variational methods. Remark-
ably, VAFQMC always provides the best-known variational
energies in the thermodynamic limit. Here, for the VAFQMC,
the results related to 4 × ∞, 16 × ∞, and ∞ × ∞ lattices
correspond to 4 × 16, 6 × 16, and 16 × 16, respectively, with
TABCs in the coordinates denoted by ∞ symbols. In 2D, the
VAFQMC performances are manifestly excellent if compared
with other variational methods because DMRG becomes
rapidly inaccurate with increasing Ly and the best variational
energy obtained by iPEPS is significantly higher than the
VAFQMC one. This may explain why the iPEPS extrapo-
lated energy has a large uncertainty and is much below the

TABLE I. Best variational energies and extrapolated energies
(methods marked by ∗) for various methods as compared with
VAFQMC (last rows) for the U/t = 8 Hubbard model at δ = 1/8.
The numbers in parenthesis represent error bars or uncertainties in
the extrapolations in the last digit. Other quantum chemistry meth-
ods, also using multireference (MR) expansion, have shown “the
need for a much larger MR expansion than that afforded” [24].

Method 4 × ∞ 6 × ∞ ∞ × ∞
VMC+backflow [58] −0.7483(1) −0.74884(1)
DMRG∗ [25] −0.76598(3) −0.7627(5)
DMRG∗ [60] −0.7655(1)
DMRG [60] −0.761826
iPEPS [61] −0.75333
iPEPS∗ [25] −0.767(2)
This paper −0.76276(5) −0.75867(3) −0.75842(5)
This paper∗ −0.7654(1) −0.7618(1) −0.7605(1)

FIG. 5. Energy per site (a) and spin-spin correlation function at
maximum distance (b) converging to the square antiferromagnetic
order parameter m2 in the thermodynamic limit. All calculations refer
to half filling and are shown as a function of the effective temperature
Teff = 1/τ . Values at zero horizontal axis result from extrapolations.
The estimated exact reference values in the thermodynamic limit are
taken from Ref. [24] for the energy and Ref. [23] for m.

VAFQMC and DMRG 6 × ∞ ones. It is also possible that the
extrapolation in the bond dimension is quite inaccurate and
can be substantially improved [59].

Finally, the energy and magnetic order parameter are com-
pared at half filling. In this case, there is no sign problem
and, in principle, large imaginary times can be employed
without particular difficulties. However, τ t � 1.3 has also
been chosen in this case to show the strength of this approach
even when short time projections are employed. For the order
parameter, finite effective temperature scaling analysis im-
plies convergence linear in Teff much slower than the energy
(see Appendix A). Nevertheless, remarkably accurate results
can be obtained in both cases, as shown in Fig. 5. At finite
effective temperature Teff , very weak finite-size effects are
seen, showing once more the great advantage of using TABCs
with this approach. The error in the Teff → 0 extrapolated
energy is then compatible with the reference one within the
error bars [this paper, extrapolation Eh = −0.52443(14), ref-
erence −0.5247(2)] whereas the extrapolated order parameter
(0.2894(16)) is in very good agreement with the benchmark
one [0.2991(2)].

V. THE HARTREE-FOCK STRIPE PHASE

Also within the HF method, namely, by considering a sim-
ple Slater determinant or also uncorrelated BCS mean-field
WFs, very few established results are known, if we allow also
nonuniform solutions [62,63], i.e., non-translation-invariant
solutions with large unit cells. At half filling, it is clear that
the simple antiferromagnetic solution, with two sites per unit
cell, is stable for any U > 0 as has been shown analytically
by Hirsch [8]. On the other hand, it is well-known that no
superconducting solution is possible for U > 0. Restricting
the solution to a small unit cell containing only two sites leads
to a phase separation instability [64], namely, the energy per
hole,

eh(δ) = (e(δ) − e(0))

δ
, (20)

acquires a minimum at a finite doping δc and for any doping
δ � δc it is more convenient to expel the holes from a pure
antiferromagnet with energy per site e(0) in a region with
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FIG. 6. Hartree-Fock bands for the W = 8 stripe at U/t = 8 and
doping δ = 1/8. There are 32 different bands and only the lowest
energy 14 bands are completely occupied at this filling, implying
insulating behavior, as the Fermi energy (blue line) clearly sepa-
rates the lowest occupied bands from the empty ones. Here � =
(0, 0), X = (π/16, 0) and M = (π/16, π/2).

appropriate size containing an hole rich phase at doping δc.
After this construction (see, e.g., Appendix B) eh(δ) will be
constant in the thermodynamic limit and equal to eh(δc) for
all dopings δ � δc. This represents a fingerprint of phase
separation and the study of the energy per hole can also be
considered an implicit way to build a nonuniform solution
(when a minimum is found) within not only HF but any vari-
ational approach based on a translationally invariant ansatz.

However, a better way to expel holes from an antiferromag-
net is found by means of the stripe solution already reported in
Fig. 2. In particular, when the doping δ = 1/W the HF bands
show a clear insulating behavior because the unit cell 2 × 2W
contains 4W doubly-degenerate bands [65] and 2W − 2 are
fully occupied, as is the case for δ = 1/8 shown in Fig. 6. The
insulating nature of this stripe solution was also pointed out in
the weak coupling HF theory by Schulz [62] who discovered
the stability of incommensurate magnetic states with finite
wave vector Q = (π ± πδ, π ) close to the antiferromagnetic
one Q = (π, π ), and the opening of a full gap away from
half filling within HF. The occurrence of a finite gap in this
case is easily understood not only because the mean-field HF
Hamiltonian turns out to have a gap but also for the following
simple general argument holding also in the correlated case.
This incommensurate state is adiabatically connected to the
insulator having equally spaced empty (i.e., with no electrons)
vertical lines of sites separating half-filled antiferromagnetic
insulating regions.

In this way, the HF solution can avoid phase separation
but the corresponding energy per hole is almost flat at small
doping [see Fig. 7(a)] that is almost equivalent to phase sepa-
ration. Indeed, at small doping the stripes are very far apart
W = 1

δ
and do not interact at all, as can be appreciated in

Fig. 7(b), where the interaction between two vertical stripes
at distance W is given by I (W ) = eh(δ = 1/W ) − eh(δ =
1/∞). I (W ) here defined represents the energy cost per hole

FIG. 7. Hole energy (a) for the stripe of width W commensu-
rate with the doping δ within Hartree-Fock. The blue triangles for
U/t = 8 correspond to intermediate dopings obtained by applying
the composition rule described at the end of Sec. V. (b) Effective re-
pulsion energy between equally spaced vertical stripes as a function
of their distance W .

for two stripes being at finite distance W rather than at infinite
distance, where they do not interact.

At noncommensurate doping, for instance, 1/8 < δ < 1/7,
it is possible to verify that such kinds of insulating solutions
at δ = 1/7 and δ = 1/8 can be joined together by forming
a smooth doping-dependent insulating stripe phase at any
intermediate doping [see, for instance, Fig. 7(a) for U/t = 8].
Many stripes at positions rxi of the lattice can be thought
to interact by means of a pairwise repulsive interaction ∝∑

i< j I (rxi − rx j ), with interaction I (W ) as the one computed
in Fig. 7(b). Thus, the rule for obtaining the minimum HF
energy is as follows: To get the appropriate stripe for a given
hole density δ, one may alternate/combine energetically more
expensive stripes of length W smaller than [1/δ + 1] (W = 7
in this case) by placing them as far as possible.

VI. RESULTS FOR THE CORRELATED PHASE DIAGRAM

The rule determined in the previous section to identify
the minimum energy insulating stripe solution has also been
verified in the correlated case up to the maximum τ possible
with essentially no sign problem, namely, τ t = 1.3, 1.73, 2.6
for U/t = 8, 6, 4, respectively. Therefore, first the stripe WF
(breaking translation and spin symmetry) is computed at com-
mensurate doping δ = 1/W , where W , being the distance
between equally spaced stripes, is an integer. Then, to ac-
count for intermediate dopings, the corresponding energies
are interpolated. Moreover, to estimate the error to the exact
Teff = 0 limit, the results are extrapolated to this limit. Hence,
the lowest energy of the uniform solution is estimated that is
parametrized by the following mean-field Hamiltonian:

HMF(α0) = K̄ − μ0N̂ +
[
�AF

∑
R

(−1)rx+ry c†
R,↑cR,↓

+ 2�x2−y2

∑
k

(cos kx − cos ky)c†
k,↑c†

−k,↓ + H.c.

]

(21)

where K̄ =∑i, j,σ tR,R′c†
R,σ cR′,σ is the translation-invariant

kinetic energy defined here by the nearest- and next-nearest-
neighbor hoppings t and t ′, namely, tR,R′ = −t (tR,R′ = −t ′) if
R and R′ are (next) nearest neighbor sites, �x2−y2 determines
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FIG. 8. Determination of the critical doping where the transition between the uniform phase and the stripe phase occurs with lower energy
at small doping. The empty big dots (tilted squares) represent the transition points corresponding to the best variational estimates (extrapolated
to zero temperature ones) at the lowest effective temperatures Teff . Here, the chosen stripes are the W = 1/δ ones–notice that, in panel (c), the
W = 1/δ stripe is not the one with lowest energy at low doping. See, e.g., Fig. 9.

the gap function for a dx2−y2 BCS superconductor, �AF is
the mean-field gap due to a commensurate antiferromagnetic
state, and μ0 is the mean-field chemical potential value.

By the proposed energy optimization method, as the dop-
ing is decreased, clear evidence of an instability toward dx2−y2

BCS pairing is found, because as soon as �x2−y2 turns out to
be nonzero in the thermodynamic limit, the variational WF
|ψτ 〉, breaks the U (1) symmetry cR,σ → exp(iθ )cR,σ of the
Hamiltonian, acquiring the best possible energy for a uniform
superconducting phase. In this approach, �AF turns out to be
nonzero only at half filling but it is important to emphasize
that, despite the uncorrelated HF case, a nonzero dx2−y2 BCS
pairing is possible at finite doping for Teff lower than a critical
effective temperature, and this represents one of the most
important effect of electron correlation, as it is not present in
the infinite Teff HF theory.

In this way, we can determine the transition between the
translationally invariant phase and the stripe phase as reported
in Fig. 8 for the three representative values of U/t . Notice also
that the location of the transition points does not depend much
on the extrapolation, clearly supporting that the phase diagram
converges quite fast by lowering Teff.

As in HF theory, away from the commensurate dopings
1/W , an insulating phase covering a continuum of different
dopings can be constructed by appropriately joining such
commensurate solutions, i.e., a doping 2/13 with insulating
properties can be easily obtained by alternating a W = 7 stripe
with a W = 6 one. This is actually the case in a 26 × 12 clus-
ter, within VAFQMC, namely, the 6 + 7 + 6 + 7 alternating
stripe length solution has an energy slightly lower than the
corresponding one 6 + 6 + 7 + 7, thus satisfying the HF rule
stated at the end of the previous section. This phase, compet-
ing with the uniform dx2−y2 BCS one, has a full charge gap
in HMF(α0), a property that cannot be changed by a small τ

projection. Moreover, no coexistence of stripe and BCS order
was found within VAFQMC.

In summary, according to Fig. 8, it is possible to con-
clude that an insulating stripe phase acquires an energy lower
than the corresponding uniform phase already at quite large
doping, around δ � 20%. Nevertheless, it is important to
remark that the uniform phase has a very good energy, com-

peting with the lowest possible ones. Indeed, in Fig. 4 the
uniform d-wave phase loses only a tiny energy (less than
0.001t per site at the lowest Teff ) versus the nonuniform stripe
phases. Interestingly, just around the doping δ = 1/8 equally
spaced stripes with length W < 1/δ appear lowest in energy,
as can be seen in Fig. 9, where the energy of such metallic
[at least within the mean-field Hamiltonian HMF(α0)] stripes
are compared with the commensurate insulating ones (black
lines). For instance the W = 9 stripe at doping around 1/13
(i.e., a metallic stripe with W < 1/δ) has a hole energy more
than 0.01t below the corresponding insulating stripe with
W = 13, a huge gain that can be hardly explained by artifacts
of the approximations (finite Teff and/or finite clusters). In

FIG. 9. Hole energy at U/t = 8 for equally spaced stripes of
different lengths W as a function of the doping δ, by considering
clusters of dimension larger than 12 × 2W , namely, enough to have
negligible finite size effects. For doping around δ � 1

8 , stripes with
length W < 1

δ
become energetically stable and acquire metallic char-

acter as the mean-field bands defining the variational wave function
used in this paper are only partially filled. The commensurate stripe
results with δ = 1/W are connected by black lines.

115133-9



SANDRO SORELLA PHYSICAL REVIEW B 107, 115133 (2023)

FIG. 10. �x2−y2 BCS pairing variational parameter in the mean-
field Hamiltonian HMF(α0) [see Eq. (21)] defining the spatially
uniform variational ansatz of Eq. (2) as a function of the doping δ

for the lowest Teff and largest clusters considered. Inset: Value of
the corresponding BCS order parameter evaluated with the Teff → 0
linear extrapolation of the pairing-paring correlations at distance
L/2. The error bars include also uncertainty in this extrapolation.

this plot, we also see that phase separation (a minimum of
the hole energy) cannot be excluded for doping δ � 5% but
the results strongly depend on the extrapolation and therefore
this would have to be settled by performing calculations at
higher accuracy. By judging from the extrapolated values, it
is plausible to expect a similar flat behavior of the energy per
hole at low doping as in the corresponding HF plot [Fig. 7(a).
However, within HF, a metallic solution with W < 1/δ was
never found to have the lowest energy at low doping, again in
agreement with Ref. [62].

In the remaining part of this section, we wish to extensively
discuss the main result of this work, namely, that at large dop-
ing the stripe melts and a small but sizable superconducting
d-wave order clearly remains within the present approach, in
the sense that the energy is lowered in the thermodynamic
limit by breaking the U (1) global symmetry related to number
of particle conservation. This is because both the mean-field
Hamiltonians HMF(α0) and HMF(α) clearly support a broken
symmetry solution of this type when �x2−y2 > 0 in Eq. (21).
Indeed, in Fig. 10 the superconducting gap �x2−y2 parame-
ter, corresponding to HMF(α0), is displayed for U/t = 8 as
a function of the doping. When the �x2−y2 is large, there
are negligible size effects. However when it approaches zero,
a long slowly decaying tail shows evident size effects. In-
deed, with the largest affordable sizes it is possible that the
calculated critical doping δc above which a symmetric phase
is stable indicates only a sharp crossover region separating
a phase with sizable strong coupling superconductivity from
another phase with a very small order parameter, compatible
with an exponentially small pairing of the Kohn-Luttinger
type [28,66]. Indeed, within weak and intermediate couplings,
the d-wave superconducting phase should remain stable up to
�40% doping, a doping much larger than the one detected in
the present paper.

As shown in Fig. 11, within this approach, the critical dop-
ing characterizing a strong coupling superconductivity (i.e., a
non-negligible pairing) can be identified because for μ � μc

the energy clearly improves by increasing the value of �x2−y2

even when starting from a negligible value, representing the
symmetric Fermi liquid ground state. Nevertheless, there may
be non-negligible size effects as shown for U/t = 8, espe-
cially considering the difficulty to locate the end of a long tiny
tail of the order parameter, as discussed before. Moreover, for
smaller U these size effects are expected to be even larger, but
much larger cluster simulations are prohibitive at present. For
this reason, for U/t = 2 (U/t = 4) a much larger mesh for
the TABC was used with 64 × 64 (32 × 32) different twists in
the BZ, instead of the smaller 16 × 16 grid used for U/t = 8
and U/t = 6. In a mean-field calculation, a 64 × 64 TABC
grid in a 16 × 16 square lattice corresponds to a 1024 × 1024
cluster with PBC, large enough to probe even a very tiny but
non-negligible gap parameter �x2−y2 . Remarkably, at U/t = 2
no evidence of such a tiny value of the order parameter is
found in all relevant doping region, as can be clearly seen in
Fig. 11.

This small but relevant strong coupling region where d-
wave superconductivity appears to be stable in the Hubbard
model is in agreement with many different mean-field ap-
proaches [27,67–71], although its optimal doping is a matter
of debate. Moreover, it is worth mentioning recent VMC cal-
culations [72,73] and density matrix embedding theory [74]
also supporting the stability of a d−wave superconductivity in
a small doping region. On the other hand, the proposed phase
diagram is also in agreement with the claim [29] of absence of
d−wave superconductivity in the 2D Hubbard model, because
in this paper the authors refer mainly to doping 1/8, where
no BCS pairing was found also in this work. The final phase
diagram is therefore reported in Fig. 12 [75].

VII. CONCLUSIONS

In this paper, the VAFQMC method, able to exploit the
power of the auxiliary field technique combined with the
simplicity and generality of the standard variational quantum
Monte Carlo method, has been introduced. By combining
these two successful approaches to strongly correlated sys-
tems, it is possible to estimate the evolution of the phase
diagram of a lattice model by improving systematically the
accuracy of the correlation term, starting from the HF approx-
imation. This is achieved by lowering an effective temperature
Teff up to a value that turns out to be low enough to provide
very accurate variational energies of the Hubbard model in the
thermodynamic limit, while remaining far from any sign prob-
lem instability, so far affecting most fermion quantum Monte
Carlo techniques. Within the assumption that the tiny energy
gain between different broken-symmetry phases of the model
can be sorted out by a careful optimization of a mean-field
ansatz in the presence of an accurate enough correlation term,
the phase diagrams obtained in this way should be considered
reliable, at least for the phases studied.

It is clear that the above assumption is very important
as, for instance, in the Hubbard model, we have estimated
an energy per site error of about 2 × 10−3t (4 × 10−4t) at
U/t = 8 (U/t = 4), while energy differences of the various
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FIG. 11. �x2−y2 BCS pairing variational parameter in the mean-field Hamiltonian HMF(α0 ) defining the spatially uniform variational
ansatz of Eq. (2) as a function of the energy optimization iterations at the lowest Teff (i.e., largest τ t = 4, 2.6, 1.73, 1.3 for U/t = 2, 4, 6, 8,
respectively) and 16 × 16 cluster. For all cases, the initial wave function was prepared with �x2−y2 = 0 defining the Fermi liquid state. Then this
parameter was set to a small value and the iterative stochastic optimization was started. In these calculations, to reduce at most the stochastic
bias, at each iteration a quite large number (>3 × 105) of samples for evaluating energy derivatives was used, in a way that they are sensitive
to very small energy differences <10−5t . Optimization of the grand potential � at fixed chemical potential μ was employed in all cases shown.
The corresponding doping was estimated by ∂�

∂μ
= −(1 − δ)Ns using the data for � reported in the Supplemental Material extrapolated to

the Teff → 0 limit. These estimates are consistent with the direct evaluation of the doping δ = 1 − 〈ψτ |N̂ |ψτ 〉
Ns〈ψτ |ψτ 〉 at the lowest Teff within half the

confidence doping interval reported for each U/t 
= 2.

phases at the lowest Teff considered can be even more than
an order of magnitude smaller. This is not a difficulty of the
present method, providing state-of-the-art variational energies
(see Supplemental Material for detailed benchmark results),
but clarifies once more the enormous challenge of the electron
correlation problem in numerical calculations. For instance,
on such clusters it is basically impossible to distinguish an
unbroken symmetric metallic phase from a d-wave supercon-
ducting one with a small �x2−y2 gap parameter, by judging
merely on correlation functions (e.g., pairing correlations),
and the above assumption provides a much more sensitive
criterium for occurrence of broken symmetry phenomena. Re-
lying on the above assumption dramatically helps numerical
techniques, such as VAFQMC, able to work with boundary
conditions fulfilling the symmetries of H , that may be possi-
bly broken in the thermodynamic limit.

In any case, the present paper provides rigorous and accu-
rate upper bounds of the ground-state energies of the Hubbard
model for several U/t and doping values well converged in
the thermodynamic limit (see Supplemental Material) that can
be useful in future works on this important subject and/or
for benchmarking computational, theoretical or experimental
techniques. The fact that extrapolated energies do not depend
much on the ansatz adopted (all extrapolated energies agree
within 0.001t per site) implies that energetic properties are
settled within a reasonable accuracy. However, to get the right
order without assuming it in the initial mean-field ansatz,
much larger projection times are required (see, for instance,
Fig. 4 where two completely different phases differ in energy
by less than 0.001t per site), that are at present not possible.

In this paper, many different mean-field solutions have
been attempted with several different initializations of
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FIG. 12. Phase diagram of the Hubbard model by VAFQMC.
Blue and green continuous lines are simple interpolations of
the transition points (open circles, δ = 19% − 25.2%, 17% −
23.9%, 12.7% − 18.6% for U/t = 8, 6, 4, respectively). The blue
line is also determined by the condition that for U/t = 2 no BCS
pairing has been detected, while the green line by the one that the
incommensurate spin order cannot show up at nonzero doping for
U → 0 [62]. In the stripe phase, there may be a transition between
an insulating stripe and a small doping metallic stripe, as suggested
by Fig. 9 for U/t = 8. In this transition, the mean-field VAFQMC
Hamiltonian HMF(α0) has a finite gap (bands are completely filled)
or a vanishing one, respectively.

parameters, also including broken time-reversal solutions [76]
and different modulations of stripes and pairing. In all cases,
the smooth convergence of the energy as a function of Teff has
been verified. This is not only important for achieving reason-
able extrapolations but especially for excluding being trapped
in spurious local minima, which is a limitation of any nonlin-
ear optimization technique. The phase diagram presented here
in Fig. 12 shows the phases so far determined with the lowest
possible variational energies among the chosen ansatzs.

Hereupon, a remark is needed: a systematic analysis of
the convergence toward the ground state for different choices
of the trial WFs and projector operator’s ansatz (e.g., using
dxy instead of dx2−y2 symmetries) is still required. However,
it is beyond the scope of this paper, since it may require
a precise analysis of different models, being one of our
outlooks.

An important progress in this paper is the control of finite-
size effects within VAFQMC. The conventional approach is to
attempt exact calculations (usually very hard if not impossi-
ble) at finite number of sites Ns and try to extrapolate to 1

Ns
→

0. Within VAFQMC, it is much simpler and indeed possible
to extrapolate only in the effective temperature Teff → 0 limit
the finite Teff � t/2 results. To this purpose, it is enough to
perform Ns � 100 calculations because they are already very
close to the 1

Ns
→ 0 limit, thanks to the very effective twisted

average boundary condition method.
The results shown in this paper are weakly affected by

the sign problem. In general, the average sign, appearing,
for instance, in the denominator of Eq. (16), should decay
exponentially to zero both with 1/Teff and Ns, yielding pro-

hibitive statistical errors. However, for Teff large enough (i.e.,
the ones used here), the exponential decay in Ns of the average
sign is very weak due to a stability property of the adopted
auxiliary field technique that was discovered several years ago
[77]. Hence, much larger clusters could be safely simulated,
a very promising possibility if one considers that the ones
reported here are not far from state-of-the-art simulations not
vexed by the sign problem.

In this paper, a large stripe phase in the Hubbard model
exists as an effective way to expel the holes from a clean an-
tiferromagnet. In this way, genuine phase separation does not
occur in the Hubbard model as a result of a very weak repul-
sive coupling between stripes at large distances. In practice, at
small doping, the energy per hole is almost constant, namely,
the inverse charge compressibility is vanishingly small, in
agreement with the phase separation scenario [64] and some
previous numerical calculations [78–80].

An important outcome of the present paper is that a siz-
able superconducting phase is present in the Hubbard model
with a non-negligible order parameter only in the strong cou-
pling regime. For instance, for U/t = 2 no evidence of dx2−y2

BCS order was probed and the maximum �x2−y2 � 0.02t
was obtained with the largest U/t = 8 considered at about
20% doping. The critical doping δc separating the metal from
the d-wave superconductor turns out to be much smaller
than the one obtained for weak and intermediate coupling
analysis [28,66], and the question is how to reconcile the
weak and the strong coupling limits. In principle, as sug-
gested by the results in Fig. 10, a small tail with very weak
BCS pairing could distinguish a strong coupling phase with
sizable pairing and a weak coupling phase with a sharp
crossover (and not a transition) clearly separating the two
regimes.

The main features of cuprate superconductivity can be
explained with the Hubbard model, but quantitatively there re-
main several unsolved issues. First, the stripes are completely
filled by holes and do not match the half filled ones detected
experimentally [81]. Second, the d-wave superconductivity
is sizable but still far from explaining Tc � 100 K because
the gap function that is growing when approaching the Mott
insulating phase at zero doping (see Fig. 10) is limited by the
phase transition to the stripe phase.

VAFQMC has been developed to study properties of
strongly correlated systems in the thermodynamic limit. Obvi-
ously, this method applies also to finite systems for obtaining
the best ground-state estimates with the largest possible pro-
jection time τ . However, for finite systems, the symmetry is
never broken, and a more accurate WF should be used by
restoring the symmetry with appropriate projection operators
[82,83], an improvement that can be done and should be
worth doing for this particular purpose. Moreover, several
applications and extensions are possible within VAFQMC.
The WF |ψτ 〉 can be further generalized to more realistic
Hamiltonians, including, for instance, long-range Coulomb
interaction or electron-phonon coupling. The finite effective
temperature Teff here defined for a variational WF is the key to
obtaining very accurate results well converged in the thermo-
dynamic limit, a feature that could be possibly generalized to
several other computational techniques, from tensor networks
to machine-learning variational WFs.
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APPENDIX A: FINITE EFFECTIVE TEMPERATURE Teff

CORRECTIONS FOR THE INFINITE VOLUME
GROUND STATE PROJECTION

Given a τ/2-projected trial function |ψτ 〉 =
exp(−Hτ/2)|ψMF〉, the pseudopartition function,

Z (τ ) = 〈ψτ |ψτ 〉 = 〈ψMF| exp(−τH )|ψMF〉, (A1)

is considered in the following, namely, with an effective
temperature Teff = 1

τ
fixed when the infinite volume thermo-

dynamic limit is employed. Here the particular case of the
Heisenberg model H = J

∑
<i j>

�Si · �S j and |ψMF〉 = |Néel〉 is
studied, but, due to universality, the results should apply to
any model, where a classical symmetry, parametrized by an
M−dimensional real vector is broken. In particular, it holds
for the WF of Eq. (1) in the main text for collinear mag-
netic order M = 3 (applies also for the stripe phase) and the
superconducting M = 2 one. In the Heisenberg model, in D
dimensions, the low-energy limit can be studied by introduc-
ing coherent states �n with |�n|2 = 1 and, by integrating over
one of the two sublattices [84], it follows that

Z =
∫

d[�n]0,τ exp

×
{

−1

2

∫ τ

0
dt
∫

drD

[
χ |∂t �n|2 + ϒ

D∑
ν=1

|∂ν �n|2
]}

(A2)

with the notations given in Ref. [44], where ϒ is the spin-
wave stiffness and χ is the transverse susceptibility. In the
case of the pseudopartition function of Eq. (A2), the following
boundary conditions for the M− component field �n(�r, t ) hold:

�n(�r, 0) = �n(�r, τ ) = (1, 0, · · · , 0), (A3)

because the field at the boundary of the time interval is con-
strained to have the value of the trial function |ψMF〉, a Néel
state with the antiferromagnetic order along the x axis.

Due to the above boundary conditions, the M − 1 com-
ponent vector ��, describing the field fluctuations, and

defined by

�n(�r, t ) = (1 − | ��(�r, t )|2
2

, ��(�r, t )) + o(�2) (A4)

acquires the following Fourier decomposition:

��(�r, t ) =
√

2

τV

∑
n>0,�q

��n,�q sin(ωnt ) exp(i �q · �r), (A5)

where �q = 2π
L (nx, ny, · · · ) are the momenta allowed by the

PBCs, whereas ωn = πn
τ

for integers n > 0 to satisfy that the
field vanishes at t = 0 and t = τ . Notice that, in the usual
partition function at finite temperature T = 1

τ
, the quantiza-

tion of the frequencies ωn = 2πn
τ

(also nonpositive integers
allowed) is slightly different and the calculations can be easily
generalized, but they have already been reported in previous
works [44–46]. Therefore, we just mention in the following
the standard finite temperature case to check the results de-
rived in this section.

With the above definition, the pseudopartition function ac-
quires a Gaussian form at leading order, valid in the ordered
phase:

Z =
∫

[d ��] exp

⎧⎨
⎩−1

2

∑
n,�q

(
χω2

n + ϒ | �q|2)| ��n,�q|2
⎫⎬
⎭

∝ exp

{
− M − 1

2

∑
n,�q

ln
(
χω2

n + ϒ | �q|2)}. (A6)

On the other hand, the average propagator over these Gaussian
fluctuations can be readily evaluated,

〈
�ν

n,�q�
ν
n,−�q
〉 = 1

χω2
n + ϒ | �q|2 , (A7)

where ν = 1, 2, · · · M − 1 labels the components of the
vector ��.

1. Energy and order parameter

The expectation value of the energy E (τ ) over the state
|ψτ 〉 = exp(−Hτ/2)|ψMF〉 can be written as

E (τ ) = −∂τ ln Z. (A8)

Since E (τ ) in the expression Eq. (A6) depends on τ only by
means of ωn, it follows that

E (τ ) = − (M − 1)

τ

∑
n>0,�q

χω2
n

χω2
n + ϒ | �q|2 . (A9)

On the other hand, the local magnetization,

m(τ ) = 〈ψτ | 1
V

∫
d�rD

(
1 − �(�r,τ/2)2

2

)|ψτ 〉
〈ψτ |ψτ 〉 , (A10)

can be easily evaluated by the knowledge of the propagator in
Eq. (A7) and the definition of the component in the ordered x
direction in Eq. (A4):

m(τ ) = 1 − (M − 1)

V τ

∑
n>0,�q

sin( ωnτ
2 )2

χω2
n + ϒ | �q|2 . (A11)
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2. Evaluation

As in any field theory, the above expressions diverge with-
out introducing infinite counter terms. In the expression of the
energy, one can subtract and add one in the integrand, whereas
in the correction of the magnetic moment it is enough to deal
with particular care the q = 0 mode (this mode may also be
avoided by using twisted boundary conditions):

E/V = M − 1

τV

∑
n>0,�q

ϒ | �q|2
χω2

n + ϒ | �q|2 − M − 1

τV

∑
n>0,�q

1,

m(τ ) = 1 − (M − 1)

V τ

∑
n>0,�q

sin
(

ωnτ
2

)2
χω2

n + ϒ | �q|2 . (A12)

The infinite right-hand side term in the energy corresponds to
an infinite shift of the ground-state energy, a typical feature of
quantum field theories, as this shift becomes finite by intro-
ducing a cutoff, implicitly present in any physical model.

To evaluate the above expressions, it is useful to consider
the following sum:

∑
n

1

z + n
= π cot(πz), (A13)

which is valid for any complex number z. In particular, for
z = 1

2 + iy we obtain

∑
n

1
1
2 + iy + n

= −iπ tanh(πy), (A14)

whereas for z = iy we get

∑
n

1

iy + n
= −iπ coth(πy). (A15)

Defining the velocity of the Goldstone’s modes c =
√

ϒ
χ

, the

sum over n is extended to −∞ � n � ∞, using the even
dependence on n and taking into account the extra n = 0
contribution in the definition of ε0. In this way, by using
Eq. (A15) for evaluating the infinite sums, the universal finite
size corrections are given by

E/V = M − 1

2τV

∞∑
n=−∞

∑
�q

i
√

ϒ |q|
2

[
1

√
χωn + i

√
ϒ |q|

− 1
√

χωn − i
√

ϒ |q|

]
− M − 1

2τV

∞∑
n=−∞

∑
�q

1

= ε0 + (M − 1)c

2V

∑
�q

|q|(coth(c|q|τ ) − 1), (A16)

where ε0 is the “infinite” ground-state energy corrected
for the zero-point harmonic energy ε0 = M−1

2V

∑
�q c|q| −

M−1
τ2V

∑∞
n=−∞

∑
�q 1, a divergent expression depending on the

cutoff but not on the boundary conditions (i.e., it is the same
divergent term appearing in Ref. [44] by using the trace). In
the thermodynamic limit and fixed τ , the convergent contribu-
tion can be worked out by replacing sums over momenta with
integrals (i.e., 1

V

∑
q → ∫

( dq
2π

)D), and changing the momen-

tum scale �q → cτ �q, so that

E/V = ε0 + (M − 1)

2cD
feT D+1

eff , (A17)

where fe is a dimensional dependent constant defined by

fe =
∫ (

dq

2π

)D

|q|(coth(|q|) − 1), (A18)

which is clearly a convergent integral for any dimension
D � 1 because coth(|q|) converges to one exponentially for
large |q|. The values of fe are therefore π

12 , ζ (3)
4π

(ζ (3) =
1.20205690316) and π2

240 in D = 1, D = 2 and D = 3, re-
spectively. In D = 1, the coefficient fe is not to be taken
for granted, since no true long-range order is possible (see
later), but the qualitative behavior of the correction � T 2

eff
should hold as it is consistent with the corresponding finite
temperature correction derived in D = 1 for the 1D-Hubbard
model by means of the Bethe ansatz [85].

Thus, in the thermodynamic limit, the finite τ corrections
to the energy depend only on the universal constant fe, the
number of components M of the order parameter, and the
velocity c of the gapless Goldstone modes. In D = 2, the
finite temperature corrections to the internal energy at infinite
volume have been determined in Ref. [45]. For this purpose,
we have repeated the same type of calculation and get that,
taking into account the different boundary conditions for the
field (PBC in time for the trace τ = β = 1/T ),

E (T )/V − ε0 = (M − 1)c

2

∫ (
dq

2π

)D

|q|

×
(

coth

(
c|q|β

2

)
− 1

)

= (M − 1)c

2
(

c
2T

)D+1 fe, (A19)

which is consistent with the previous calculation reported in
D = 2, i.e., [45]:

E (T )/V − ε0 = (M − 1)
ζ (3)

c2π
T 3. (A20)

On the other hand, for the magnetic order parameter, by
noticing that sin( ωnτ

2 )2 = 1 for n = 2ν + 1 and zero other-
wise, the sum has to be evaluated for odd integer frequencies
ων = π (2ν+1)

τ
. For this purpose, the sum

∑∞
ν=0

1
χω2

ν+ϒ | �q|2 is

extended to 1
2

∑∞
ν=−∞

1
χω2

ν+ϒ | �q|2 because ων = −ω−(ν+1) for
ν < 0. Therefore, by applying Eq. (A14) for evaluating the
following infinite sums, one obtains

�m(τ ) = −M − 1

2V τ

∑
ν,�q

i

2
√

ϒ |q|

[
1

√
χπ

τ
(2ν + 1) + i

√
ϒ |q|

− 1
√

χπ

τ
(2ν + 1) − i

√
ϒ |q|

]

= − M − 1

4V
√

χϒ

∑
�q 
=0

(tanh(c|q|τ/2) − 1)

|q| − �m0

= −�m0 − M − 1

4
√

χϒcD−1
fmT D−1

eff , (A21)
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where �m0 = (M−1)τ
8V χ

+ M−1
4
√

χϒV

∑
�q 
=0

1
|q| [the first term in

�m0 is the q = 0 contribution in Eq. (A12) that is convergent
for finite τ ] and the dimensional dependent constant fm is
defined by

fm =
∫ (

dq

2π

)D(
tanh

( |q|
2

)
− 1

)/
|q|, (A22)

which converges in D > 1. The values of fm are therefore
− ln(2)

π
and − 1

12 for D = 2 and D = 3, respectively.
Thus, in the thermodynamic limit the finite Teff corrections

to the antiferromagnetic order parameter depend on the uni-
versal constant fm, the number of components M of the order
parameter, the velocity c, and the stiffness ϒ of the gapless
Goldstone modes.

Notice that the expression above for fm converges in D =
2. Instead, if PBCs in τ are assumed for the field ��(x, t ),
corresponding to the standard finite temperature calculation at
β = τ , by repeating the same steps, it follows that �m(τ ) =
− M−1

2V
√

χϒ

∑
q 
=0

coth(c|q|τ/2)
|q| , which blows up for D � 2, thus

recovering the Mermin-Wagner theorem [86]: no finite m
is possible at finite temperature for D � 2. The advantage
of using the projection technique is therefore evident espe-
cially in D = 2 for the study of broken symmetry phases
that are possible, for continuous symmetries, only at zero
temperature.

When using finite cylinders with even Ly, all the above
results obtained for D = 1 apply because the y momentum
qy = 2πny

Ly
is quantized with ny = 0, 1, · · · , Ly − 1 and only

the qy = 0 momentum value provides power law corrections

in 1/τ to energy and correlation functions (if converging).
This is because all the other contributions acquire a finite ∼ 1

Ly

gap and converge much faster.

APPENDIX B: CONVEXITY OF THE ENERGY AS A
FUNCTION DENSITY

One can divide a large system A + B in two regions A
and B containing a macroscopic number of sites LA and LB

and electrons NA and NB, respectively. Then, by defining
EA+B the energy of the total system, EA and EB the ones
of the corresponding parts, ρ = NA+NB

LA+LB
= pρ1 + (1 − p)ρ2,

ρ1 = NA
LA

, ρ2 = NB
LB

, p = LA
LA+LB

, e(ρ1) = EA/LA, and e(ρ2) =
EB/LB converged in the thermodynamic limit because the
two parts are macroscopic, then e(ρ) = EA+B

LA+LB
� EA+EB

LA+LB
=

pe(ρ1) + (1 − p)e(ρ2) follows because one can neglect in
the thermodynamic limit the surface term contribution to the
energy separating region A from region B. This is because,
by assumption, the model is short range as the hopping term
connects only nearest-neighbor sites and the interaction U is
on site. The final inequality,

e(ρ) � pe(ρ1) + (1 − p)e(ρ2), (B1)

therefore holds for arbitrary densities ρ1 � ρ � ρ2 and im-
plies the convexity property of the function e(ρ) in the
thermodynamic limit. Whenever phase separation occurs be-
tween two densities ρ1 and ρ2, the inequality (B1) turns to a
strict equality, namely, e(ρ) is a linear function of the density
because p = ρ−ρ2

ρ1−ρ2
, so, in particular, the energy per hole in

Eq. (20) is constant for δ � δc.
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