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Stability of many-body localization in Floquet systems
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We study many-body localization (MBL) transition in disordered Floquet systems using a polynomially fil-
tered exact diagonalization (POLFED) algorithm. We focus on disordered kicked Ising model and quantitatively
demonstrate that finite-size effects at the MBL transition are less severe than in the random field XXZ spin
chains widely studied in the context of MBL. Our conclusions extend also to other disordered Floquet models,
indicating smaller finite-size effects than those observed in the usually considered disordered autonomous spin
chains. We observe consistent signatures of the transition to MBL phase for several indicators of ergodicity
breaking in the kicked Ising model. Moreover, we show that an assumption of a power-law divergence of the
correlation length at the MBL transition yields a critical exponent ν ≈ 2, consistent with the Harris criterion for
one-dimensional disordered systems.
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I. INTRODUCTION

The eigenstate thermalization hypothesis [1–3] predicts
that an isolated quantum system will reach an equilibrium
determined only by a few macroscopic conserved quantities,
independently of the details of the initial state. An exception
to this ergodic paradigm is provided by a phenomenon of
many-body localization (MBL) [4–10] which is a generic
mechanism that inhibits the approach to equilibrium of in-
teracting quantum many-body systems in the presence of
disorder. This gives rise to a dynamical phase characterized
by the emergence of local integrals of motion [11–15] that
preserve the information about the initial state, resulting in a
suppression of transport [16,17] and a slowdown of the entan-
glement spreading [18–20]. Numerical studies demonstrated
that finite spin- 1

2 XXZ chains [21–24], as well as bosonic
models [25,26] and systems of spinful fermions [27–31] un-
dergo MBL at sufficiently strong disorder. Also, periodically
driven Floquet systems may become MBL [32–40] which
allows one to avoid heating [41] and enables exotic nonequi-
librium phases of matter, such as time crystals [42–49] or
Floquet insulators [50–54].

Recent investigations [55–60] of disordered many-body
systems have unraveled, however, notorious difficulties in
our understanding of the ergodic-to-MBL crossover. A non-
monotonic behavior of indicators of ergodicity breaking at
the crossover and a limited range of system sizes (nowa-
days typically L ∼ 20, restricted by the exponential growth
of the Hilbert space) accessible in unbiased numerical
approaches [61–64], do not allow for an unambiguous extrap-
olation of the numerical results for the typically considered
spin- 1

2 XXZ chains to the thermodynamic limit. Conse-

quently, it remains unclear [65,66] whether the numerically
observed crossover between the ergodic and MBL regimes
gives rise to a MBL phase that is stable in the thermodynamic
limit [67–73] or whether the ergodicity is restored at length
scales and timescales that increase with the disorder strength.
Notably, constrained spin chains follow the latter scenario and
become ergodic in the thermodynamic limit [74] despite host-
ing a well-pronounced MBL regime at finite system sizes [75].

This demonstrates the need of identifying quantum many-
body systems that allow for a clearer demonstration of MBL
than for the widely studied spin- 1

2 XXZ chains [76–108]. For
autonomous systems a significant step in this direction was
achieved in the zero-dimensional “quantum sun” model [109].
In this work, we achieve this goal by performing large-scale
numerical calculations for a disordered kicked Ising model
(KIM) with the state-of-the-art polynomially filtered exact
diagonalization (POLFED) algorithm [62,110]. We identify
ergodic, critical, and MBL regimes by considering system-
size-dependent disorder strengths W T

X (L) and W ∗
X (L) and

quantitatively demonstrate that finite-size effects at the er-
godic to MBL crossover in KIM are significantly weaker
than in the XXZ model. This allows us to locate the MBL
transition in KIM and investigate the scenario of a power-law
divergence of correlation length at the transition. We establish
robustness of our conclusions by numerical investigations of
other disordered Floquet systems.

II. MODELS AND METHODS

A. Kicked Ising model

We consider a disordered KIM [111,112] defined by
the Floquet operator over one driving period for a
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one-dimensional (1D) spin- 1
2 chain

UKIM = e−ig
∑L

j=1 σ x
j e−i

∑L
j=1(Jσ z

j σ
z
j+1+h jσ

z
j ), (1)

where σ
x,y,z
j are Pauli operators, h j ∈ [0, 2π ] are independent,

uniformly distributed random variables, and periodic bound-
ary conditions are assumed.

We mainly focus our attention on the case g = J = 1/W ,
in which W plays the role of the disorder strength in the sys-
tem. The KIM is maximally ergodic for W = 4/π [113–116].
Here, we consider higher values of W , up to a strong disorder
limit in which

∑
j h jσ

z
j becomes a dominant term in UKIM.

We note that this parametrization of the system is analogous
to the disordered Heisenberg spin chain [24], in which both
the tunneling amplitude and the interaction strength are much
smaller that the disorder amplitude in the strong disorder
regime. The results for this parameter choice are presented
in Secs. III and V.

However, our results do not depend on this particular
parametrization. To demonstrate that, we consider also in-
stances when

(i) the interaction strength is kept constant, J = 1 and g =
1/W ;

(ii) the interaction strength is J = 1/W while g = 1.5 is
kept constant;

(iii) g = 1/W and the interaction is itself disordered J =
1 + δJi, where δJi are independent, uniformly distributed ran-
dom variables in interval ∈ [−δJ, δJ] with δJ is kept constant.

In the three cases above, the parameter W plays the role of
the disorder strength, and the results for those Floquet systems
are shown in Sec. IV A.

B. Other models

To better understand the impact of symmetries and in-
teraction range on the ergodic-MBL crossover in Floquet
systems, we investigate also a family of many-body systems
with Floquet operators that differ from (1) by the opera-
tor off diagonal in the eigenbasis of σ z

i . We denote UZ ≡
exp[−i

∑L
j=1(Jσ z

j σ
z
j+1 + h jσ

z
j )] and consider models with the

following Floquet operators:

UF,1 = e−ig
∑L

j=1 σ x
j σ

x
j+1 UZ , (2)

which has a Z2 symmetry generated by an operator
∏L

j=1 σ z
j ;

UF,2 = e−ig
∑L

j=1(σ x
j σ

x
j+1+σ

y
j σ

y
j+1 ) UZ , (3)

which has a U(1) symmetry, i.e., the total Z component of the
spin

∑L
j=1 σ z

j is conserved by UF,2;

UF,3 = e−i g
2

∑L
j=1(σ x

j +σ x
j σ

x
j+1 ) UZ , (4)

in which the interaction range is the same as in (2), but the
model does not have the Z2 symmetry;

UF,4 = e−i g
2

∑L
j=1(σ x

j +σ x
j σ

x
j+1+ 2

3 σ x
j σ

x
j+3 ) UZ , (5)

which has bigger interaction range than (4). In all the cases
above, we set g = J = 1/W , where W is the disorder strength
which allows us to tune the models across the ergodic-MBL
crossover.

Finally, in order to study the role of the lack of energy
conservation, we compare the ergodic-MBL crossover in the
Floquet models with the results for transverse field Ising
model (TFIM) with Hamiltonian given by

HTFIM =
L∑

j=1

σ x
j +

L∑

j=1

(
Jσ z

j σ
z
j+1 + h jσ

z
j

)
. (6)

The results for the systems (2)–(6) are shown in Sec. IV B.

C. Methods

To find the eigenvectors |ψn〉 and the corresponding eigen-
values eiφn of the Floquet operators UKIM and UF,k for k =
1, 3, 4, we use the POLFED algorithm [62] employing a
geometric sum filtering [110]. The performance of the al-
gorithm relies crucially on the efficiency of matrix vector
multiplication, with matrix being one of the respective Flo-
quet operators. The Floquet operators UKIM and UF,k with
k = 1, 3, 4, are products of operators that are diagonal in
the eigenbases of σ x

i and σ z
i operators. Hence, the matrix

vector multiplication can be performed efficiently by switch-
ing between the two bases by means of a fast Hadamard
transform [117,118], and acting with the appropriate diagonal
matrix (see Appendix A for details). This allows us to obtain
eigenstates |ψn〉 for system sizes L � 20, significantly larger
than for L � 14 considered in earlier exact diagonalization
studies of KIM [36,40]. The U(1)-symmetric Floquet operator
UF,2 (3) is diagonal in the momentum basis rather than in the
eigenbasis of σ x

i . Therefore, we investigate UF,2 by means of a
full exact diagonalization, reaching system sizes up to L = 16.
Finally, to find eigenstates in the middle of the spectrum of
TFIM (6), we directly employ the POLFED algorithm for
Hermitian matrices as described in [62].

III. RESULTS FOR KICKED ISING MODEL

In this section, we investigate a crossover between er-
godic and MBL regimes in KIM at finite system size L.
Throughout this section, we set g = J = 1/W . By introducing
system-size-dependent disorder strengths W T

X (L) and W ∗
X (L),

we show that finite-size effects at the MBL crossover in KIM
are better controlled than in the disordered XXZ spin chain.

A. Ergodic-MBL crossover in KIM

We calculate Nev = min{2L/10, 1000} eigenvectors |ψn〉
of UKIM. Due to the constant density of eigenphases φn, we
can treat each eigenvector on equal footing. For concreteness,
we choose eigenstates with eigenphases φn closest to 0 and
average results over more than 5 × 104, 5 × 103, and 5 × 102

disorder realizations, respectively, for L � 16, L = 17, 18,
and L = 20 (see Appendix B for analysis of statistical errors).

To probe the properties of eigenphases, we compute the
gap ratio

r = 〈min{gi, gi+1}/ max{gi, gi+1}〉, (7)

where gi = φi+1 − φi and 〈. . . 〉 denotes the average over
the calculated fraction of spectrum and disorder realizations.
We study also the entanglement of eigenstates |ψn〉. The

115132-2



STABILITY OF MANY-BODY LOCALIZATION IN … PHYSICAL REVIEW B 107, 115132 (2023)

FIG. 1. The ergodic-MBL crossover in KIM (1) with g = J = 1/W . Gap ratio r (a) and rescaled QMI i2 (b) as function of disorder strength
W for system size L; dashed lines correspond to predictions for ergodic and MBL systems. Disorder strength W T

r at which r departs from the
ergodic value and the crossing points W ∗

X as function of L (c) and 1/L (d) where X is either the gap ratio r, the rescaled entanglement entropy
s, or the rescaled QMI i2; the dotted lines denote WT (L) ∼ L scaling; the dashed lines correspond to fits W (L) = W∞ + a/L + b/L2 with
W∞ = 3.97 ± 0.03 for W ∗

r (L), W ∗
s (L), and W ∗

i2
(L).

entanglement entropy [119] is given by

S(A) = −
iM∑

i=1

α2
i log

(
α2

i

)
, (8)

where αi+1 > αi are Schmidt basis coefficients [120] of the
eigenstate |ψn〉 for a partition of the 1D lattice into a sub-
system A and its complement. Choosing A = [1, L/2], we
calculate the rescaled entanglement entropy s = 〈S(A)〉/SCOE

by taking the average 〈. . . 〉 over the eigenstates, disorder
realizations, and rescaling the result by numerically calculated
average entanglement entropy SCOE of eigenstates of circular
orthogonal ensemble of random matrices (COE) that mod-
els the properties of UKIM in the ergodic regime [121,122].
For A = [1, L/2] we also calculate the average Schmidt gap
	 = 〈α2

1 − α2
2〉. Furthermore, we calculate the quantum mu-

tual information (QMI) I2 = S(B) + S(C) − S(B ∪ C) for the
subsystems B = [1, �L/4�], C = (2�L/4�, 2�L/4� + 
L/4�)
(where �. . .�, 
. . .� denote the ceiling and floor functions),
and obtain the rescaled QMI as i2 = 〈I2〉/ICOE where ICOE

is the average QMI for COE eigenstates. Also, we compute
the spin stiffness C = 〈∑i || 〈ψn| σ z

i |ψn〉 ||2〉/L which is an
infinite time average of the spin-spin autocorrelation function
C(t ) = ∑

i Tr[σ z
i (t )σ z

i (0)]/(L2L ).
As the strength of the disorder W increases, the gap ratio

r, shown in Fig. 1(a), decreases from r = rCOE ≈ 0.53 char-
acteristic for the ergodic regime to r = rPS ≈ 0.386 for an
MBL system [123]. The QMI [124] measures the total amount
of correlations between the subsystems B and C and decays
exponentially with the distance between the subsystems in the
MBL regime [125]. In the ergodic regime, the volume-law
terms proportional to the lengths of subsystems B, C, B ∪ C
cancel out and the QMI is equal to a system-size-independent
value ICOE. Consequently, in Fig. 1(b), we observe a crossover
in the rescaled QMI i2 as a function of W between the
limiting values i2 = 1 and i2 = 0. The correlations between
the subsystems are enhanced at the crossover, hence, the
rescaled QMI admits a maximum between the ergodic and
MBL regimes. We observe the ergodic-MBL crossover also in
the behavior of the rescaled entanglement entropy s, Schmidt
gap 	, and spin stiffness C (see Appendix C).

B. Finite-size effects at the MBL crossover

To investigate the ergodic-MBL crossover we consider two
system-size-dependent disorder strengths:

(1) W T
X (L): the disorder strength for which, at a given

system size L, the quantity X is deviates by a small parameter
pX from its ergodic value.

(2) W ∗
X (L): the disorder strength for which the curves

X (W ) cross for the system sizes L − 	L and L + 	L (where
	L � L).

The disorder strengths W T
X (L) and W ∗

X (L) allow us to
analyze the ergodic-MBL crossover in a quantitative fash-
ion without resorting to any model of the transition. This
is particularly advantageous in view of the recent controver-
sies around the MBL transition [55–60,69–73]. The disorder
strength W T

X (L) may be considered as a boundary of the
ergodic regime, whereas W ∗

X (L) provides an estimate of
the critical disorder strength at given L. A regime between
W T

X (L) and W ∗
X (L) is a critical region, vanishing for L →

∞ if a transition between ergodic and MBL phases indeed
occurs.

For the disordered XXZ model, both disorder strengths
increase monotonously with system size: W T

X (L) ∼ L and
W ∗

X (L) ∼ WC − const/L for X = r, s [62]. The latter scaling
suggests a finite critical disorder strength WC ≈ 5.4 (larger
than WC ≈ 3.7 [24], but consistent with [82,88]). However,
the scalings of W T

X (L) and W ∗
X (L) are incompatible in the large

system size limit, as W T
X (L) exceeds W ∗

X (L) at L � LXXZ
0 ≈ 50

whereas W T
X (L) < W ∗

X (L) by construction at any L. Therefore,
when approaching the length scale LXXZ

0 (which appeared also
in [71,100]) one of the scalings must break down indicating ei-
ther a presence of the MBL phase in the thermodynamic limit
at W > WC (where WC � W T,∗

X (L)) or showing the absence
of the MBL phase [for example, when the linear increase of
W T

X (L) prevails]. However, the length scale LXXZ
0 is far beyond

the reach of present day exact numerical calculations for the
XXZ spin chain, which prevents one from unambiguously
deciding which of the scenarios is realized in that model.
Interestingly, numerical calculations for considerably larger
system sizes of constrained spin chains suggest the second
scenario: W T

X (L) ∼ L, W ∗
X (L) ∼ L in which the extent of the
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ergodic regime increases indefinitely in the thermodynamic
limit [74].

For the investigated KIM, we start by considering the gap
ratio X = r and we set from now on pr = 0.01 (unless other-
wise noted), which yields W T

r (L) shown in Figs. 1(c) and 1(d).
We observe a linear scaling W T

r (L) ∼ L with system size L for
8 � L � 14. Importantly, in contrast to the persistent linear
drift of W T

r (L) ∼ L for XXZ spin chains, we see a clear devi-
ation from the linear scaling for L � 15 for KIM. Therefore,
the growth of W T

r (L) with L is sublinear at sufficiently large
system sizes, which is a first premise suggesting the stability
of MBL in KIM in the L → ∞ limit. Accessing system sizes
15 � L � 20 with POLFED was necessary to uncover this
premise for the MBL phase in KIM. The scaling of W T

r (L)
remains quantitatively the same for 0.002 < pr < 0.03 and
W T

s (L) behaves analogously (see Appendix D). The disorder
strength W T

r (L) at which the gap ratio deviates from its er-
godic value rCOE coincides, to a good approximation, with
the maximum W m

i2
(L) of the rescaled QMI i2 which becomes

pronounced at L � 12 [cf. Fig. 1(b)]. The point W m
i2

of the
maximal correlations between subsystems B and C follows
the linear scaling of W T

r (L) for L = 12, 14 and deviates from
it at L � 16.

Now, we turn to examination of the crossing point W ∗
X (L)

in KIM. We use |L1−L2| � 2 for X = r, |L1−L2| = 2 for
X = s, and |L1−L2| = 4 for X = i2 and obtain W ∗

r (L),
W ∗

s (L), W ∗
i2

(L) shown in Figs. 1(c) and 1(d). The crossing
points W ∗

r (L) and W ∗
s (L) differ at L � 12, but approach

each other as the size of the system increases. Both W ∗
r (L)

and W ∗
s (L) are well fitted by a second-order polynomial in

1/L whose extrapolation crosses with the extrapolation of
the linear scaling of W ∗

r (L) at LKIM
0 ≈ 28. The length scale

LKIM
0 ≈ 28 is significantly smaller than the analogous length

scale LXXZ
0 ≈ 50 for XXZ spin chain. Therefore, the maximal

system size investigated for KIM relative to this length scale
L/LKIM

0 ≈ 0.71 is considerably larger than for the XXZ model
L/LXXZ

0 ≈ 0.44 [126]. This is the basis of a second premise
that the ergodic-MBL crossover observed in KIM is stable in
the large-L limit. The crossing points W ∗

i2
(L) of the rescaled

QMI i2 lie considerably above W ∗
r (L), W ∗

s (L). However, as
shown in Fig. 1(d), W ∗

i2
(L) is well fitted by a first-order poly-

nomial in 1/L. An extrapolation of this polynomial to L → ∞
limit gives a result consistent with extrapolations for W ∗

r (L)
and W ∗

s (L), suggesting that the rescaled QMI i2 is subject to
weaker finite-size effects than r or s (cf. [127,128]). The ex-
trapolations yield an estimate of the critical disorder strength
W∞ = 3.97 ± 0.03 [129].

In conclusion, our results for KIM indicate that finite-size
effects at the MBL crossover are significantly weaker than
in the disordered XXZ model. The first premise suggest-
ing the occurrence of MBL transition in the model is the
deviation from the linear scaling W T

X (L) ∼ L to a weaker
system-size dependence. The length scale LKIM

0 characterizing
the ergodic-MBL is significantly smaller in KIM than the
corresponding length scale in the XXZ model. This, together
with the fact that the extrapolations of the crossing points
W ∗

r (L), W ∗
s (L), and W ∗

i2
(L) yield consistent values of W∞ is

the second premise for the occurrence of MBL transition in
KIM.

FIG. 2. The ergodic-MBL crossover in KIM (1) with J =1,
g =1/W (denoted by blue) or g =1.5 and J =1/W (denoted by red).
Disorder strength W T

r at which r departs from the ergodic value and
the crossing points W ∗

r as function of L (a) and 1/L (b); the dashed
lines denote WT (L) ∼ L scaling; the dashed-dotted lines correspond
to fits W (L) = W∞ + a/L. The crosses denote the length scales LJ

0

and Lg
0, whereas LKIM

0 is denoted by the vertical dotted line.

IV. ROBUSTNESS OF THE RESULTS

In this section we demonstrate that the conclusions of the
preceding section apply also for other parameter choices in
KIM as well as in different disordered Floquet systems. Con-
sidering various systems, we exhibit the role of symmetries
and interaction range on finite-size effects at the ergodic-MBL
crossover.

A. KIM: Different parameter choices

In Sec. III, we set g = J = 1/W . This means that both the
interaction term

∑
j Jσ z

j σ
z
j+1 as well as the off-diagonal term

g
∑

j σ
x
j vanish in the strong disorder limit W → ∞.

One possible choice of the parameters is to fix the inter-
action strength as J =1 and vary g =1/W , where W is the
amplitude of the disorder in the system. Another option is to
fix the value of g, for instance, choosing g = 1.5, and vary
J = 1/W . Performing numerical calculations for both cases,
we find a crossover between ergodic and MBL regimes as
a function of W , qualitatively similar to the one shown in
Figs. 1(a) and 1(b). We reach system sizes up to L = 17 and
average the results over no less than 104 disorder realizations.

Focusing, for simplicity, on the average gap ratio r, we
extract the disorder strengths W T

r and W ∗
r , shown in Fig. 2.

The results are quantitatively similar to the ones reported in
Sec. III. We find a deviation from the linear scaling W T

r ∼ L to
a weaker system-size dependence at the largest available sys-
tem sizes. Moreover, the crossing point W ∗

r is well described
by a first-order polynomial in 1/L. The extrapolation of this
behavior crosses with the extrapolation of the linear scaling
W T

r ∼ L in both models at LJ
0 ≈ Lg

0 ≈ 28, analogously to the
results for KIM with g = J = 1/W .

Now, we consider a situation in which g = 1/W and the
interaction term is disordered, J = 1 + δJi. In that case W
plays the role of the disorder strength which allows us to
tune the system across the ergodic-MBL crossover. At the
same time, the amplitude δJi of the disorder in the interaction
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FIG. 3. The ergodic-MBL crossover in KIM (1) with g =1/W
and disordered interaction term J = 1 + δJi; the data for δJi =
0.1, 0.4, 0.8 are, respectively, denoted by blue, red, and green. Dis-
order strength W T

r at which r departs from the GOE value and the
crossing points W ∗

r as function of L (a) and 1/L (b); the dashed lines
denote WT (L) ∼ L scaling; the dashed-dotted lines correspond to fits
W (L) = W∞ + a/L. The crosses denote the length scale LδJ

0 , whereas
LKIM

0 is denoted by the vertical dotted line.

term is kept fixed. The results for δJ = 0.1, 0.4, shown in
Fig. 3, are, again, fully analogous to that obtained for KIM.
In particular, the system size LδJ

0 , at which the extrapolation
of the linear behavior W T

r ∼ L crosses the extrapolation of
W ∗

r , is very close to LKIM
0 both for δJ = 0.1 and 0.4. In

turn, for a sufficiently large value of δJ (e.g., δJ = 0.8),
the COE value is not reached by the average gap ratio r at
small values of W (although we observe that r increases with
system size L). Therefore, for δJ = 0.8, we extract only the
position of the crossing point W ∗

r which is well approximated
by a first-order polynomial in 1/L, similarly to all the other
cases discussed. We note that the presence of Ising-even dis-
order δJ > 0 is necessary for a stabilization of Floquet time
crystals [130].

The results of this section illustrate that the finite-size
trends at the ergodic-MBL crossover reported in Sec. III are
robust to changes in the model such as fixing g or J or intro-
ducing a certain amount of disorder into the interaction term.
In the following section we study the impact of symmetries
or of the increase of the interaction range on the finite-size
effects at the MBL crossover.

B. Other disordered models

There are significant differences in finite-size effects, re-
flected by the length scale L0 between the KIM studied in
Sec. III and the disordered XXZ spin chain widely considered
as a paradigmatic model of MBL. There are two major dif-
ferences between these two models that may be responsible
for this disparity. The first difference is the fact that KIM, in
contrast to the XXZ spin chain, is a Floquet model that does
not conserve the energy. The second difference is the fact that
the XXZ spin chain possesses the U(1) symmetry associated
with conservation of

∑
i σ

z
i , whereas KIM does not.

In order to investigate the role of the Abelian symmetries
on ergodic-MBL crossover, we consider modifications of KIM
that possess the Z2 symmetry (2) and the U(1) symmetry (3).

FIG. 4. The ergodic-MBL crossover in Floquet models with
Z2 and U(1) symmetry. Disorder strength W T

r at which r departs
from the ergodic value and the crossing points W ∗

r as function of
L (a) and 1/L (b); the dashed lines denote WT (L) ∼ L scaling;
the dashed-dotted lines correspond to fits W (L) = W∞ + a/L. The
crosses denote the length scales LZ2

0 and LU (1)
0 , for comparison, the

vertical dotted line corresponds to LKIM
0 .

We extract the disorder strengths W T
r (L) and W ∗

r (L). The re-
sults, shown in Fig. 4, show that the system-size dependencies
in W T

r (L) and W ∗
r (L) are analogous to KIM. We find the

length scale LZ2
0 ≈ LU (1)

0 ≈ 34.5 which is considerably larger
than LKIM

0 .
At the first sight, those results could suggest that the ab-

sence of the Z2 and U(1) symmetries enhances the MBL
regime in the KIM. This is, however, not the case. To demon-
strate this, we consider the Floquet model (4), which is not
Z2 symmetric due to the presence of the

∑
j σ

x
j term. Ad-

ditionally, the off-diagonal part of UF,3 in eigenbasis of σ z
i

contains terms coupling at most the neighboring sites of the
lattice. In that sense, the interaction range of UF,3 is the same
as of the Z2-symmetric Floquet operator UF,1. The behavior
of W T

r (L) and W ∗
r (L) for the UF,3 model is shown in Fig. 5.

The resulting length scale LUF,3

0 ≈ 34 is nearly the same as LZ2
0 .

This shows that it is the interaction range, rather than presence
of the Z2 symmetry that influences the length scale L0 and has
significant impact on finite-size effects at the MBL crossover.
To confirm this hypothesis, we consider UF,4, given by (5),
which has an additional term

∑
j σ

x
j σ

x
j+3 that couples spins

separated by two sites. The presence of this term increases
the characteristic length scale to LUF,4

0 ≈ 38.5, showing, in
agreement with intuitive expectations, that an increase of the
interaction range makes the finite-size effects at the MBL
crossover more severe.

The results so far indicate that the presence of Abelian
symmetries such as Z2 or U(1) does not have a significant
effect on the finite-size effects at the MBL crossover. From
the perspective of the above results, part of the difference
between KIM and the disordered XXZ model may stem from
the bigger range of the hopping term in the latter model. The
small dissimilarity between LKIM

0 and LUF,3

0 suggests, however,
that the latter factor plays a minor role. This, in turn, suggests
that the energy conservation, which is the remaining disparity
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FIG. 5. The ergodic-MBL crossover in Floquet models (4) (data
in blue, denoted by UF,3), (5) (data in red, denoted by UF,4), and in
the TFIM (6) (data in green, shifted vertically downwards by 5.5 for
clarity). Disorder strength W T

r at which r departs from the ergodic
value and the crossing points W ∗

r as function of L (a) and 1/L (b);
the dashed lines denote WT (L) ∼ L scaling; the dashed-dotted lines
correspond to fits W (L) = W∞ + a/L. The crosses denote the length
scales L

UF,3
0 , L

UF,4
0 , and LTFIM

0 ; for comparison, the vertical dotted line
corresponds to LKIM

0 .

between the two models, has a major impact on the finite-size
effects at the MBL crossover.

To show that this is indeed the case, we calculate the
average gap ratio r for TFIM (6), averaging results over N ′

ev =
min{2L/20, 1000} eigenvalues in the middle of the spectrum
and over no less than 5 × 104 (5 × 103) disorder realizations
for L �16 (L =17). Extracting W T

r (L) and W ∗
r (L), we find

the characteristic length scale LTFIM
0 ≈ 44 (see Fig. 5). This

length scale is significantly larger than LKIM
0 , even though

the terms used to construct the Hamiltonian of TFIM and the
Floquet operator of KIM are the same (and thus have the same
range). Thus, we conclude that the difference between KIM
and disordered XXZ model that plays the major role in the
finite-size effects at the MBL crossover is the lack of energy
conservation of the former model.

V. FINITE-SIZE SCALING ANALYSIS FOR MBL IN
KICKED ISING MODEL

We now turn to finite-size scaling (FSS) analysis of
the ergodic-MBL crossover in KIM, assuming that g = J =
1/W , similarly as in Sec. III. The MBL transition in XXZ
spin chains was analyzed in the framework of power-law
divergence of the correlation length [24,131,132] and of
Kostelitz-Thouless–type scaling [100,101,133,134] suggested
by an avalanche mechanism of thermalization [135,136].
Both scenarios were considered within the phenomenological
renormalization group approaches [137–141]. Restricting the
FSS to the vicinity of the critical disorder strength, which
seems to be necessary, as exemplified by investigations of
the three-dimensional (3D) Anderson model [142], we cannot
determine which of the scenarios of the MBL transition is
realized in KIM. In the following, we assume the power-law
divergence of the correlation length. Investigations of Ander-

son transition [143–147] suggest then the FSS ansatz

X (W, L) = ψ0(wL1/ν ) + L−yψ1(wL1/ν ), (9)

where X is the quantity analyzed, w = (W − WC )/WC is the
dimensionless distance from the critical point WC , ν is the
exponent describing the divergence of correlation length, and
the exponent y takes into account the corrections to the scal-
ing due to irrelevant variables. We use the parametrization
ψ1(wL1/ν ) = a0 + a1wL1/ν , and consider the variable Xm ≡
X − L−yψ1(wL1/ν ) for which (9) implies the scaling form
Xm(W, L) = ψ0(wL1/ν ) where ψ0 is an unknown function.
To achieve finite-size collapses of the data, we minimize the
following cost function:

FX =
∑

j |Xj+1 − Xj |
max{Xj} − min{Xj} − 1, (10)

[with Xj ≡ Xm(Wj, Lj ) sorted according to the value of
wL1/ν [100]] by performing an optimization with respect to
y, a0, a1 and keeping ν ∈ [0.3, 3], WC ∈ [2.5, 5] fixed.

The collapses for the gap ratio X = r yield Fr shown in
Fig. 6(a). A wide minimum of Fr in the direction ν ∼ WC

shows that the FSS analysis alone is insufficient to determine
the values of the critical parameters ν and WC . Assuming addi-
tionally that WC ≈ W∞ = 3.97 ± 0.03, we find ν = 1.9 ± 0.1.
We would like to note here that the error bar of W∞ is as-
sociated with uncertainties of the coefficients in the assumed
fitting of W ∗

r (L) by a second-order polynomial in 1/L. The
obtained value of ν suggests that W∞ is a reasonable candi-
date for the critical disorder strength WC of MBL transition.
However, we cannot prove that the assumption about the scal-
ing form of W ∗

r (L) is valid. Thus, our numerical results are
insufficient to estimate with what accuracy W∞ approximates
the critical disorder strength WC for MBL transition in KIM.

The contours Fr = 4
3Fmin

r , which encompass the broad
minimum of the cost function, shift and elongate when the
system sizes considered in the collapse increase from L =
10–14 to 14–18. This highlights the importance of finite-size
effects and demonstrates qualitative changes in the behavior
of r when the system size is increased beyond L = 14. Anal-
ogous FSS analysis performed for the Schmidt gap 	 finds a
much better stability of the results with respect to the system
size L, as exhibited by F	 presented in Fig. 6(b). A similar
conclusion was obtained for the XXZ spin chain [88]. Despite
the apparent correlation between ν and WC , the minimum
of F	 is narrower, consistent with ν = 2 ± 0.5 and WC =
4.1 ± 0.5. Assuming WC ≈ W∞, one gets ν = 1.95 ± 0.1. We
perform similar collapses for the rescaled QMI i2 and the spin
stiffness C. The results, summarized in Fig. 6(c), display the
correlation ν ∼ WC for all quantities considered. The intersec-
tion of all of the contours for WC ≈ W∞ yields ν = 2 ± 0.1 for
which we obtain data collapses shown in Figs. 6(d) and 6(e).
Notably, we find that rm ≈ rPS at the MBL transition. See
Appendix E for further details on the FSS analysis.

VI. DISCUSSION

The premises suggesting that the ergodic-MBL crossover
observed in numerical data for KIM gives rise to an MBL
transition in the thermodynamic limit may be compared with
features of the crossover between delocalized and local-
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FIG. 6. Finite-size scaling analysis of ergodic-MBL crossover in KIM (1) for g = J = 1/W . Cost functions Fr (a) and F	 (b) are color
coded for fixed ν, WC , respectively, for r (system sizes considered in the collapse L = 14–18) and 	 (for L = 12–18). The contours encompass
ν, WC for which FX is smaller than 4

3 of its minimum Fmin
X . (c) The contours FX = μXFmin

X for collapses of gap ratio r (L = 14–18, for
r � 0.43), the Schmidt gap 	 (L = 12–18, for 	 � 0.44), the rescaled QMI i2 (L = 14–20, for i2 � 0.3), the spin stiffness C (L = 12–18, for
C � 0.3), μX = 4

3 for X = r, 	,C and μi2
= 2. Collapses for rm, 	m shown in (d) and (e).

ized regimes of Anderson model on random regular graphs
(RRG) [148–150]. The crossover in the latter model shares
similarities with the ergodic-MBL crossover [151], but the
critical disorder strength for the Anderson transition on RRG
can be accurately determined. Investigation of Anderson
model on RRG of size N = 2L and varying connectivity [152]
shows that (i) the boundary of the delocalized regime W T

r (L)
follows a linear scaling with L that is replaced by a weaker,
sub-linear, growth at L ≈ 13; (ii) the length scale at which the
linear growth of W T

r (L) crosses with the extrapolated scaling
of the crossing point W ∗

r (L) is LRRG
0 ≈ 25; (iii) extrapolation

of the crossing point W ∗
r (L) to L → ∞ reproduces the exactly

known critical disorder strength [153,154] with accuracy to
a few percent. All these observations are in line with the
findings presented in this work for KIM and support the
interpretation of the results as indicating the presence of a
transition to an MBL phase at the critical disorder strength
WC ≈ W∞.

Examination of results for various parametrizations of the
KIM, as well as for other Floquet models, shows the ro-
bustness of the observed scalings of W T

X (L) and W ∗
X (L). The

influence of the symmetry of the system on the ergodicity
breaking is an important aspect of our results. The phe-
nomenon of MBL does not occur in disordered spin chains
with non-Abelian SU(2) symmetry. Instead, one observes a
broad nonergodic regime in which the ergodicity is restored
only beyond certain system size [155]. One could then intu-
itively expect that the absence of U(1) and time translation
symmetries will additionally stabilize the MBL regime in
KIM in comparison to the disordered XXZ spin chain. Our
results indeed confirm this intuition as LKIM

0 is significantly
smaller than LXXZ

0 . However, the contributions of the two
symmetries to this effect are much different. Our comparison
of KIM with the Floquet models UF,1, UF,2, UF,3 shows that
the presence of the Abelian symmetries such as Z2 or U(1)
has a minor impact on the finite-size effects at the MBL
crossover. The major difference between LKIM

0 and LXXZ
0 (or

LTFIM
0 ) can be attributed to the presence or absence of the time

translation symmetry in those models. Finally, according to
intuitive expectations, the comparison of KIM with the Flo-

quet models UF,3 and UF,4 shows that the characteristic length
scale L0 is quickly increasing with the range of operators used
to construct the model.

VII. CONCLUSIONS

We examined the ergodic-MBL crossover in disordered
Floquet models by investigating the boundary of the ergodic
regime W T

X (L) and the crossing point W ∗
X (L) that estimates

the position of a putative transition to MBL phase. Focusing
on disordered KIM, we have shown that the dependence of
W T

X (L) and W ∗
X (L) on the system size L allows one to estimate

a length scale LKIM
0 which quantifies the strength of finite-size

effects at the MBL crossover. We found that LKIM
0 ≈ 28 for

KIM is considerably smaller than the corresponding length
scale for disordered XXZ model LXXZ

0 ≈ 50 [62,71,100]. This
indicates that finite-size effects at ergodic-MBL crossover
in the former model are less severe than in the latter and
allows us to observe premises of a transition to MBL phase
along the whole ergodic-MBL crossover in KIM. A linear
with L increase of W T

X (L) is replaced by a sub-linear growth
at L � 15, consistent with a transition to MBL phase at a
sufficiently strong disorder. The crossing points W ∗

X (L) of
gap ratio (X = r), rescaled entanglement entropy (X = s),
rescaled QMI (X = i2) are well approximated by polynomials
in 1/L which, upon extrapolation to L → ∞ limit, consis-
tently predict an ergodic-MBL transition in KIM at WC ≈ 4.
We note that finite-system-size effects of similar type [152]
are found for the Anderson localization transition on random
regular graphs, a phenomenon that occurs at an exactly known
critical disorder strength [153,154]. Assuming a power-law
divergence of the correlation length at the transition in KIM,
we have shown that the estimated value of WC ≈ 4 is consis-
tent with the correlation length exponent ν ≈ 2 fulfilling the
Harris criterion [156–158]. Considering various parametriza-
tions of KIM as well as other disordered Floquet systems,
we demonstrated the robustness of our conclusion that the
finite-size effects at the MBL crossover in Floquet systems
are less severe than in the disordered spin chains typically
considered in the context of MBL.
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Our results provide numerical arguments in favor of the
presence of an MBL transition in a disordered 1D quantum
many-body system system. This is of particular importance in
view of the recent controversies around the MBL transition in
the disordered XXZ spin chain. The latter model, in contrast to
KIM, possesses the time translation symmetry, which we have
identified as the main factor enhancing the finite-size effects
at the MBL crossover in the disordered XXZ spin chain. In
that sense, our findings support the intuition that the higher
the symmetry of the model, the weaker the signatures of MBL.
Additionally, due to the lack of U(1) symmetry, the arguments
of [56,59] against the stability of MBL do not apply to KIM.
The investigated ergodicity breaking in KIM is an example of
MBL in Floquet systems that underlies the stability of Floquet
time crystals [46,47,49,130] and Floquet insulators [54] by
providing a mechanism to completely eliminate the heating
due to periodic driving of the system.
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APPENDIX A: DETAILS OF THE POLFED ALGORITHM
WITH THE GEOMETRIC SUM FILTERING

To find eigenvectors |ψn〉 and the corresponding eigen-
phases eiφn of the unitary operator UKIM, we employ the
POLFED algorithm [62]. The algorithm is based on a block
Lanczos iteration [159–161] performed for a polynomial
gK (UKIM) of order K of the matrix UKIM (see [162–165] for
similar techniques). The matrix gK (UKIM) has the same eigen-
vectors |ψn〉 as UKIM, but its eigenvalues are equal to gK (eiφn ).
The idea of the approach is to use the polynomial gK as a
spectral filter so that its absolute value has a possibly sharp
maximum for an argument eiφtg (where φtg is a target eigen-
phase) at the unit circle on the complex plane. In that way, the
eigenvectors |ψn〉 with φn close to φtg become eigenvectors
of gK (UKIM) to eigenvalues with dominant absolute values.
The Lanczos iteration converges to the eigenvectors with the
largest absolute eigenvalues, which allows us to compute the
eigenvectors |ψn〉 with φn close to φtg.

A polynomial which can be effectively used as the spec-
tral filter for unitary operators was proposed in [110], and is
simply a geometric sum:

gK (UKIM) =
K∑

m=0

e−imφtgU m
KIM. (A1)

The order of the polynomial K is fixed by the number of
requested eigenvectors Nev and the Hilbert space dimension
N = 2L as

K = f
N
Nev

, (A2)

where the factor f = 1.46 was obtained from an optimization
of the performance of the algorithm. For that choice, the
algorithm converges to approximately Nev eigenvectors after
αNev steps of the Lanczos iteration, where α ≈ 2.1. Each step
of the Lanczos iteration involves a single multiplication of
a vector by the polynomial gK (UKIM) which reduces to K
multiplications of the vector by UKIM and basic linear algebra
operations. Thus, the total computation cost is proportional to
αNevKV + R where R is the cost of the reorthogonalization of
the vectors during the Lanczos iteration and V is the cost of
the single matrix vector multiplication. We employ the full re-
orthogonalization scheme, hence, it costs scales as R ∼ N2

evN .
Since V ∼ LN for UKIM (as we argue below), the contri-
bution αNevKV = α f LN 2 dominates the total computation
time. Notably, this contribution is independent of the number
of requested eigenvalues Nev. Hence, we can increase Nev

without a significant increase in the total computation time up
to a point at which the reorthogonalization cost R starts to be
comparable with α f LN 2. This, together with considerations
about memory usage (which is proportional to NevN ) lead us
to consider Nev = min{2L/10, 1000}.

Once the Lanczos iteration for gK (UKIM) converges to vec-
tors |ui〉, we calculate the residual norms εi = ||UKIM |ui〉 −
〈ui|UKIM |ui〉 ui||. Even though the order K of the polyno-
mial (A1) may reach few thousands for the largest considered
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FIG. 7. Extraction of W ∗
r (L) for KIM with g = J = 1/W for L =

16, 18 (a) and L = 18, 20 (b). The shaded regions correspond to the
estimated statistical uncertainties of r [see (B1)]. The r(W ) curves
are locally fitted with a polynomials of order 2 or 3 (denoted by the
red dashed lines) and the value of W ∗

r (L) is extracted as the crossing
point of the respective polynomials.

system sizes, we find consistently that the algorithm calculates
the eigenvectors of UKIM with a high numerical accuracy
and the residual error norm εi < 10−14. Also, the algorithm
calculates eigenvectors to all consecutive eigenphases in the
vicinity of the target eigenphase φtg = 0 so that the gap ratios
rn (which are determined by three consecutive eigenphases)
can be calculated without problems.

The computation time of the POLFED algorithm is domi-
nated by the multiple multiplications of vectors by the matrix
UKIM. To perform a single matrix vector multiplication we
note that

UKIM = e−ig
∑L

j=1 σ x
j e−i

∑L
j=1(Jσ z

j σ
z
j+1+h jσ

z
j ) (A3)

is composed of two operators, the first diagonal in the eigen-
basis of σ z

i (the Z basis) and the second diagonal in the
eigenbasis of σ x

i (the X basis). Thus, in order to calculate
UKIM |ψ〉, we start by expressing |ψ〉 in the Z basis, and

multiply it by e−i
∑L

j=1(Jσ z
j σ

z
j+1+h jσ

z
j ) which requires only O(N )

operations. Subsequently, we transform the vector to the X

basis, multiply it by the operator e−ig
∑L

j=1 σ x
j diagonal in X

basis, and finally we transform the vector back to the Z basis.
To transform the vector between the bases, we employ a fast
Hadamard transform [117,118] which requires O(N logN )
operations. The described procedure of multiplication by
UKIM is central for the efficiency of the POLFED approach
described here, and also simplifies investigations of quantum
dynamics in Floquet models [166,167].

APPENDIX B: ANALYSIS OF STATISTICAL
UNCERTAINTIES OF RESULTS

In our analysis of the ergodic-MBL crossover we fix the
disorder strength W and consider quantities averaged over
Nev eigenstates and eigenvalues of the Floquet operator (or
Hamiltonian in the case of TFIM) and over Ndis disorder real-
izations. It has been observed that fluctuations of the rescaled
entanglement entropy [84] or of the average gap ratio [93]
between different disorder realizations are enhanced in the
vicinity of the ergodic-MBL crossover when the system size L

increases. Hence, when Nev is fixed, both r and s are not self-
averaging [99,168] (other quantities considered by us share
the same problem). Assume that we fix Nev and calculate
rS , the average value of the gap ratio for a single disorder
realization. The lack of self-averaging implies that a variance
〈(rS − r)2〉, where 〈. . .〉 denotes average over disorder sam-
ples at given W , is not decreasing (and can be even increasing)
with system size L. At the same time, the exponential increase
of the Hilbert space dimension with system size forces us
to consider smaller number of disorder realizations Ndis with
increasing L.

We employ the following procedure in order to estimate
the statistical uncertainties of the obtained results. For each
disorder sample, we compute the average value of quantity XS

(which may be the gap ratio, rescaled entanglement entropy,
Schmidt gap, or spin stiffness). Then, the resulting statistical
uncertainty is

σX = (〈(XS − X )2〉)1/2

N1/2
dis

, (B1)

where X = 〈XS〉. This procedure assumes that the values of
XS for different disorder samples are uncorrelated, as reflected
by N1/2

dis in the denominator of (B1). To test this procedure,
we assumed a hypothesis that r as a function of W at a
fixed finite system size L can be described, in a certain
interval of W , by a polynomial of a small order in W . Per-
forming fitting with polynomials of degree 5 to 16 points
in the vicinity of the crossing points for KIM data at L =
12, 14, 16, 18, 20, we have obtained values of χ2 per degree
of freedom between 0.8 and 1.7 suggesting that our analy-
sis well estimates the statistical uncertainty of the calculated
quantities.

Importantly, the decrease of Ndis at the largest system sizes
available to us yields larger statistical uncertainties of the
obtained values of W T

X (L) and W ∗
X (L). This is illustrated in

Fig. 7, where the vicinity of the crossing points for L = 16, 18
and 18,20 is shown. While the shaded areas corresponding
to the uncertainty of r are wider for larger L, the obtained
numbers of disorder realization allow us to relatively accu-
rately extract the value of W ∗

r (L). Similar applies to X = s, i2.
Finally, we note that the sample-to-sample fluctuations of XS

close to the ergodic region are significantly weaker than those
close to the crossing point. This leads to a smaller uncertainty
of the extracted values of W T

r (L) as compared to W ∗
r (L).

APPENDIX C: ERGODIC-MBL CROSSOVER IN KIM

A complete set of data for the average gap ratio r, used in
the determination of disorder strengths W T

r (L) and W ∗
r (L), is

shown in Fig. 8(a). For KIM defined on chain of length L �
6, we observe a crossover between the ergodic regime r ≈
rCOE ≈ 0.53 and MBL regime with r = rPS ≈ 0.386, which
is a value for Poissonian level statistics that emerges due to
the presence of local integrals of motion in the system.

The ergodic-MBL crossover looks qualitatively similar
from the perspective of the rescaled entanglement entropy
s = S/SCOE which changes from 1 to 0 between the ergodic
and MBL regimes [see Fig. 8(b)]. In the ergodic regime
the average entanglement entropy S is well approximated
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FIG. 8. The average gap ratio r (a) and the rescaled entanglement entropy s (b) as functions of disorder strength W for kicked Ising model
(KIM) of system size L. The inset in (b) shows the average entanglement entropy SCOE of eigenstates of COE as function of L.

by the entanglement entropy SCOE of eigenstates of COE,
shown in the inset in Fig. 8(b). The entanglement entropy
SCOE increases according to a volume law, i.e., proportion-
ally to system size L. Linear fits yield SCOE = aL + b with

FIG. 9. The average quantum mutual information (QMI) I2 as
function of disorder strength W for KIM of system size L: (a) linear
vertical scale, (b) logarithmic vertical scale. The inset in (a) shows
I

max
2 , the maximum of I2, as a function of system size L. The inset in

(b) shows the average QMI ICOE of eigenstates of COE as function
of L.

a =0.350 (a =0.347) and b =−0.551 (b =−0.509) for even
system sizes L =6,8,10,12 (L =14,16,18,20) and a =0.349
(a =0.347) and b =−0.634 (b =−0.603) for system sizes
L =7,9,11,13 (L =15,17,19) showing that the coefficient a
approaches the expected value ln(2)/2 ≈ 0.346 57 with in-
creasing system size [122].

The average QMI I2, shown as a function of disorder
strength W in Fig. 9, admits a maximum at disorder strength
W m

i2
(L) for system size L. The value I

max
2 of the average QMI

at the maximum is shown in the inset in Fig. 9(a) as a function
of L. We observe that I

max
2 scales approximately linearly with

the system size L. The inset in Fig. 9(b) shows that the average
QMI of COE eigenstates, ICOE, saturates with the increase of
L to a system-size-independent value ICOE ≈ 0.5. As Fig. 9(b)
shows, the average QMI I2 decreases approximately exponen-
tially with disorder W as well as with the system size L in the
MBL regime.

The behavior of the Schmidt gap 	 and spin stiffness C
across the ergodic-MBL crossover is shown in Fig. 10. In
contrast to r, s, and i2, the Schmidt gap and spin stiffness
decrease monotonically with increasing system size [conse-
quently, there are no crossing points that could be used to
perform an analysis with disorder strength W ∗

X (L) for those
quantities]. The rate of the decrease is, however, markedly
different in the ergodic and MBL regimes. In the former,
	 and C decrease approximately exponentially with sys-
tem size L (as demonstrated by the insets in Fig. 10). In
the latter regime, the decrease of the Schmidt gap and spin
stiffness with L is much slower and at W � 4, L � 10 the
value of 	 and C appears to be independent, within the
estimated error bars, of the system size L, consistently with
the prediction that at W � W∞ ≈ 4 the KIM is in the MBL
phase.

APPENDIX D: ROBUSTNESS OF SCALING OF W T
X (L)

WITH SYSTEM SIZE

In this section we analyze the robustness of the system-size
dependence of the disorder strength W T

X (L) at which the quan-
tity X deviates from its ergodic value by a small parameter pX .
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FIG. 10. The average Schmidt gap 	 (a) and spin stiffness C (b) as functions of disorder strength W for KIM of system size L. The insets
show the same, but using a logarithmic vertical axis.

Figure 11 shows W T
X (L) for various choices of pX for the gap

ratio X = r and for the rescaled entanglement entropy X = s.
In Fig. 11(a) we observe a regime of linear increase of

W T
r (L) for 7 � L � 14 and a deviation from this linear scaling

at L � 15 for the considered values of pr ∈ [0.002, 0.03].
This confirms that the conclusions about system-size scaling
of W T

r (L) reported in the main text are robust with respect to
changes of pr . The length scale LKIM

0 is mildly dependent on
pr , and it does not exceed 30 lattice sites for the considered
interval of pr .

Analysis of the rescaled entanglement entropy yields
W T

s (L) shown in Fig. 11(b). The conclusions are the same as
for W T

r (L). There is a regime of a linear increase of W T
s (L)

with L for 6 � L � 14 which is replaced by a sublinear
growth of W T

s (L) for L � 15 (consistently with the presence
of MBL transition at sufficiently large W ). For 0.07 � ps �
0.2, we observe that an extrapolation of W T

s (L) yields L̃KIM
0 ≈

32 which is close to the length scale LKIM
0 obtained from the

extrapolation of the linear scaling of W T
r (L).

APPENDIX E: ADDITIONAL DATA FOR FINITE-SIZE
SCALING ANALYSIS

In this Appendix we provide additional data for the finite-
size scaling analysis at the ergodic-MBL crossover in KIM.
Figure 12(a) shows the cost function Fs for the collapse of
rescaled entanglement entropy s. The conclusions are similar
as for the gap ratio collapses reported in the main text. At
sufficiently large system sizes (L = 14–18), there appears a
wide minimum of the cost function. This minimum is con-
sistent with a broad interval of critical disorder strength WC

and exponent ν. Assuming, additionally, that WC ≈ W∞ ≈ 4,
one obtains the power-law exponent ν ≈ 2 that is consistent
with the Harris criterion for 1D disordered systems. The cor-
responding collapse of the data for the rescaled entanglement
entropy is shown in Fig. 12(b). Collapses for ν ≈ 2 and WC ≈
4 for the rescaled QMI i2 and for the spin stiffness C are
shown in Figs. 12(c) and 12(d). Interestingly, the collapse
of the gap ratio r shown in the main text predicts that rm

is equal to rPS ≈ 0.386 characteristic for a localized system

FIG. 11. The disorder strength W T
X (L) for various choices of the

threshold pX compared with the crossing point W ∗
X (L). (a) Shows

results for the average gap ratio X = r, (b) presents results for
the rescaled entanglement entropy X = s. The dashed lines show
an extrapolation of W ∗

X (L) with a second-order polynomial in 1/L,
whereas the dotted lines denote first-order polynomial in L fits in the
regime of linear growth of W T

X (L).

115132-11



PIOTR SIERANT et al. PHYSICAL REVIEW B 107, 115132 (2023)

FIG. 12. Supplementary data for finite-size scaling analysis of ergodic-MBL crossover in KIM. Cost function Fs for the collapse of the
rescaled entanglement entropy s is color coded for fixed ν, WC in (a) (system sizes considered in the collapse L = 14–18). The contours
highlight the change in the cost function system size by encompassing region of ν and WC for which Fs < 2Fmin

s where F min
s is the minimum

of Fs. Collapses for the rescaled entanglement entropy sm, rescaled QMI i2,m and spin stiffness Cm are respectively shown in (b), (c), (d);
w = (W − WC )/WC is the dimensionless distance from the critical point and the plots show the quantities with subtracted subleading correction
to the scaling Xm ≡ X − L−yψ1(wL1/ν ).

at the critical point W = WC . At the same time, the values
of sm and i2,m seem to be not vanishing at W = WC de-

spite being significantly smaller than their respective ergodic
values.
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Žnidarič, Can we study the many-body localisation transition?,
Europhys. Lett. 128, 67003 (2020).

[72] P. J. D. Crowley and A. Chandran, A constructive theory of
the numerically accessible many-body localized to thermal
crossover, SciPost Phys. 12, 201 (2022).

[73] R. Ghosh and M. Žnidarič, Resonance-induced growth of
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[86] M. Serbyn, Z. Papić, and D. A. Abanin, Thouless energy and
multifractality across the many-body localization transition,
Phys. Rev. B 96, 104201 (2017).

[87] S. Bera, G. De Tomasi, F. Weiner, and F. Evers, Density
Propagator for Many-Body Localization: Finite-Size Effects,
Transient Subdiffusion, and Exponential Decay, Phys. Rev.
Lett. 118, 196801 (2017).

[88] J. Gray, S. Bose, and A. Bayat, Many-body localization tran-
sition: Schmidt gap, entanglement length, and scaling, Phys.
Rev. B 97, 201105(R) (2018).

[89] J. A. Kjäll, Many-body localization and level repulsion, Phys.
Rev. B 97, 035163 (2018).

[90] E. V. H. Doggen, F. Schindler, K. S. Tikhonov, A. D. Mirlin,
T. Neupert, D. G. Polyakov, and I. V. Gornyi, Many-body
localization and delocalization in large quantum chains, Phys.
Rev. B 98, 174202 (2018).

[91] N. Macé, F. Alet, and N. Laflorencie, Multifractal Scalings
Across the Many-Body Localization Transition, Phys. Rev.
Lett. 123, 180601 (2019).

[92] L. Herviou, S. Bera, and J. H. Bardarson, Multiscale entangle-
ment clusters at the many-body localization phase transition,
Phys. Rev. B 99, 134205 (2019).

[93] P. Sierant and J. Zakrzewski, Level statistics across the many-
body localization transition, Phys. Rev. B 99, 104205 (2019).

[94] M. Schiulaz, E. J. Torres-Herrera, and L. F. Santos, Thouless
and relaxation time scales in many-body quantum systems,
Phys. Rev. B 99, 174313 (2019).

[95] L. A. Colmenarez, P. A. McClarty, M. Haque, and D. J. Luitz,
Statistics of correlation functions in the random heisenberg
chain, SciPost Phys. 7, 064 2019).

[96] P. Huembeli, A. Dauphin, P. Wittek, and C. Gogolin,
Automated discovery of characteristic features of phase tran-
sitions in many-body localization, Phys. Rev. B 99, 104106
(2019).

[97] T. Chanda, P. Sierant, and J. Zakrzewski, Many-body local-
ization transition in large quantum spin chains: The mobility
edge, Phys. Rev. Res. 2, 032045(R) (2020).

[98] P. Sierant and J. Zakrzewski, Model of level statistics for dis-
ordered interacting quantum many-body systems, Phys. Rev.
B 101, 104201 (2020).

[99] E. J. Torres-Herrera, G. De Tomasi, M. Schiulaz, F. Pérez-
Bernal, and L. F. Santos, Self-averaging in many-body
quantum systems out of equilibrium: Approach to the local-
ized phase, Phys. Rev. B 102, 094310 (2020).
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