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Electrical conductivity of iron in Earth’s core from microscopic Ohm’s law
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Understanding the electronic transport properties of iron under high temperatures and pressures is essential
for constraining geophysical processes. The difficulty of reliably measuring these properties under conditions
prevalent in the Earth’s core calls for first-principles methods that can support diagnostics. We present results
on the electrical conductivity obtained by simulating the microscopic Ohm’s law using time-dependent density

functional theory and place them in the context of recent experimental measurements.
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I. INTRODUCTION

Iron is the most abundant element by mass on planet
Earth [1]. It makes up the majority of its liquid outer core and
solid inner core [2,3], which is exposed to temperatures of
about 6000 K and pressures of about 300 GPa. Understanding
the properties of iron under these extreme conditions is of
great geophysical importance because they determine the in-
ternal structure of Earth. Likewise, the behavior of iron under
elevated temperatures and pressures also plays a major role
in materials science. A wide range of novel steel microstruc-
tures can be produced with minor changes in composition and
proper thermal treatment of iron-based alloys [4,5].

The iron phase diagram [6-11] and its equation of
state [7,8,12—19] have been well studied in the past decades.
Beyond equation-of-state data, the transport properties of iron,
such as its electrical and thermal conductivity, are intricately
related to the geophysical dynamics that take place in the
planetary interior. Most prominently, the heat flux between the
planetary core and mantle drives the dynamo action [20,21]
which generates the magnetic field of the Earth.

However, information on electronic transport properties
under the conditions of the Earth’s core is sparse. This
is due to the difficulties of achieving accurate measure-
ments in experiments. These are commonly performed in
diamond anvil cells (DACs) [22-24], with wire-heating
techniques [25,26], as well as using static and dynamic
shock compression [27-29]. Shock compression techniques
combined with x-ray Thomson scattering (XRTS) provide
diagnostics for the dynamical and static conductivity, which
have been measured in warm dense metals [30]. Most recently,
terahertz transmission measurements of the time-resolved
electrical conductivity in warm dense gold [31] have shown
promise as a viable approach for further probing transport
properties under extreme conditions.
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The above-mentioned experiments with laser-heated dia-
mond anvil cells [23,24] have led to a notable controversy
in the measurement of electronic transport properties in iron
at the core-mantle boundary (CMB) and Earth-core condi-
tions [32]. Ohta et al. [23] infer a thermal conductivity of
226 Wm~! K~! by measuring the electrical resistance of iron
wires and converting it into a thermal conductivity using
the Wiedemann-Franz law. On the other hand, Kondpkova
et al. [24] measured the thermal diffusion rate for heat trans-
ferred between the ends of solid iron samples, inferring a
thermal conductivity of 30 Wm ™' K~! from the agreement
with a finite-element model. The discrepancy in these mea-
surements has deep implications for predicting the age of the
Earth [32]. Since the uncertainty in the electrical conductivity,
both from experiment and theory, is so high, reliable knowl-
edge about the fundamental processes generating the Earth’s
magnetic field is lacking as well. Due to the disagreement
among existing experimental data, computational modeling
of electronic transport properties under extreme conditions
is indispensable in supporting current and future efforts in
further probing these properties under conditions prevalent in
the Earth’s core [33].

The pioneering theoretical works use the Kubo-Greenwood
(KG) formula [34] and have been applied in modeling de-
generate plasma states [35-37] and liquid metals [38—40].
These evaluate the KG formula using the Kohn-Sham (KS)
orbitals, eigenvalues, and occupation numbers obtained from
density functional theory (DFT) calculations at finite elec-
tronic temperature [41—43]. Most recently, Korell et al. [44]
have investigated the effects of spin polarization on the elec-
trical conductivity obtained from the KG formula, specifically
for the paramagnetic state of liquid iron. This formulation
has also been used for evaluating the electrical and thermal
conductivity of iron and iron-silicon mixtures at Earth-core
conditions [45—47]. The direct use of KS quantities in the KG
formula, however, is based on a response function lacking an
interaction kernel that is needed to capture collective effects.
This is especially relevant under the conditions when the
electrons in iron are strongly correlated [48].
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Improvements in transport properties of iron at extreme
conditions computed using DFT are possible by means of dy-
namical mean-field theory (DMFT) [49]. This approach takes
into account the on-site Coulomb interaction, which is partic-
ularly strong for the localized 3d electrons in iron [50]. The
net conductivity consists of electron-lattice scattering usually
evaluated with the KG formula and the electron-electron scat-
tering (EES) evaluated with DMFT which takes into account
the electronic correlations and the thermal disorder. EES con-
tributions in hep iron are reported to be insignificant compared
to electron-lattice scattering at the conditions of the Earth’s
core but have important contributions to the total thermal
conductivity [48].

A viable alternative to the KG formula is linear response
time-dependent density functional theory (LR-TDDFT) [51].
While KS orbitals are used to calculate a noninteracting re-
sponse function, the Hartree and exchange-correlation (XC)
kernels are used to obtain an interacting response func-
tion that includes electron-electron correlations. Furthermore,
LR-TDDFT yields full wave-number and frequency-resolved
transport properties. This method has recently been assessed
in detail for solid and liquid aluminum [52,53]. However, the
calculations using LR-TDDFT [54] rely on matrix diagonal-
ization, which might become restrictive for large systems or
high temperatures.

In this paper, we compute the electrical conductivity
directly from the microscopic formulation of Ohm’s law.
This is achieved using the real-time formalism of TDDFT
(RT-TDDFT) [55-57]. By applying a weak external field,
the electronic response, which determines optical properties
and electronic transport properties, is extracted [58—61]. For
certain regimes of electronic excitation and large systems,
RT-TDDFT can be computationally more efficient than LR-
TDDFT. As in LR-TDDFT, the response function computed
using RT-TDDFT captures collective effects that are not cap-
tured in the standard approach using the KG formula.

II. METHODS

The microscopic formulation of Ohm’s law describes how
an external electric field E (w) gives rise to an induced electric
current

J(w) = o(w)E(w), ey

where the constant of proportionality can be identified as
the electrical conductivity o(w). Note that Ohm’s law is for-
mulated in the frequency domain and that both the current
and the electric field are vectors, while the conductivity is
a tensor. Also note that we adopt Hartree atomic units, i.e.,
h=e=m,=ap =1, so energies are expressed in hartrees
and lengths in Bohr radii.

We compute the induced current on the atomistic
level by using RT-TDDFT. By applying an electric field
E(t)=—(/c)(0A/0t), where A is the impressed vec-
tor potential and ¢ is the speed of light, we ob-
tain the induced time-dependent current density j(r,t) =
Im[ZfAV G, VP, (r, )] + n(r,1)As(r, t)/c. When inte-
grated over the spatial coordinates, it yields a time-dependent
electric current J(¢). By taking the Fourier transform, we ob-
tain Ohm’s law in the frequency domain as denoted in Eq. (1).

The time-dependent current density is obtained by solving the
time-dependent KS equations

a .0
Hgp i (r, 1) = l@%,k(", 1) 2
for the KS orbitals ¢, «(r, t). The effective Hamiltonian is
N 1 2
HSZE —lV+;AS(r7t) +Vs(r7t)7 (3)

where Vg(r,t) = Vex(r, t) + Vg (r,t) + Vxc(r, t) is the KS
potential which is a sum of the external, the Hartree, and
XC potentials, while the effective vector potential Ag(r,t) =
A(r,t) + Axc(r, t) comprises the sum of the external vector
potential and the XC contribution. The following RT-TDDFT
results are obtained from an all-electron full-potential lin-
earized augmented plane-wave (FP-LAPW) method [64] as
implemented in the ELK [65] and EXCITING [66,67] codes.
For the sake of clarity and reproducibility, we provide a
comprehensive description of all computational details and
simulation parameters in the Supplemental Material [68].

We begin with computing the frequency-dependent re-
sponse of the electrons in iron at a pressure of 322 GPa and a
temperature of 6350 K as found in the Earth’s core. To that
end, we first prepare an appropriate initial electronic state.
We follow the common procedure of generating uncorrelated
atomic snapshots from Born-Oppenheimer molecular dynam-
ics simulations based on static DFT at the given temperature
and pressure. Here, our simulation cells contain 16 iron atoms.
Subsequently, we apply a steplike vector potential and solve
Eq. (2) for a duration of up to r = 1000 a.u. As commonly
assumed in TDDFT, we invoke the adiabatic approximation
which means that we neglect the temporal nonlocality of the
time-dependent KS potential and evaluate a ground-state XC
functional on the density at time 7. We follow this common
procedure and employ the so-called adiabatic local density
approximation [51]. Based on the solutions ¢, x(r, t), we cal-
culate the time-dependent current density j(r,t) which we
integrate over the spatial coordinates to obtain the electric cur-
rent J (). The frequency-dependent, i.e., dynamical electrical
conductivity is then extracted from the electric current based
on Ohm’s law as given in Eq. (1). Care has to be taken in
the choice of parameters for the external vector potential and
for the Fourier transform of the macroscopic current from the
time to the frequency domain. These details along with the
choice of computational and methodological parameters are
also included in the Supplemental Material [68].

III. RESULTS

Figure 1 illustrates the result of our RI-TDDFT calcula-
tions (red curve) with an energy resolution of 0.17 eV which
is proportional to the inverse of the total propagation time.
The calculations converge quickly given a sufficient set of KS
orbitals, even for a modest size of the supercell. We compare
our calculations with prior results obtained from using the KG
formula based on static DFT [62,63]. In this particular case, all
methods yield similar results except for a discrepancy in the
® — 0 limit which corresponds to the dc conductivity. Note
that the KG results are generally more susceptible to finite-
size effects and are very sensitive to the location and density
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FIG. 1. Dynamical electrical conductivity under Earth-core con-
ditions (T = 6350 K, P = 322 GPa) from Ohm’s law based on our
RT-TDDFT calculations (red). This is compared with previous works
using the KG formula based on static DFT calculations at a slightly
higher pressure of 328 GPa [62] (blue) and at a lower temperature
of T = 5802 K and a slightly lower pressure of P = 310 GPa [63]
(violet).

of the KS eigenvalues. Next, we come to the central result pre-
sented in Fig. 2 where we compare the predictions of our RT-
TDDFT calculations with the discordant experimental mea-
surements reported by Ohta et al. [23], Zhang et al. [69], and
Konopkova et al. [24]. In order to compare our calculations
with the reported experiments, we use the dc conductivity.
Shown in Fig. 2 is the behavior of the electrical resistiv-
ity p (the inverse of the conductivity) as a function of the
temperature at fixed, high pressures. The experimental DAC
measurements reported by Ohta et al. [23] (lower solid black

| Ohta et al. (2016), 140 GPa [Expt.] ~@— RT-TDDFT, 212 GPa [Theo.]
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FIG. 2. Electrical resistivity and its temperature dependence at
136(£5) GPa and 212(46) GPa. Results of diamond anvil cell
measurements were reported by Ohta ez al. [23] (lower solid black
and gray squares), Zhang et al. [69] (right solid black squares), and
by Kondpkova et al. [24] (upper solid black squares). The electrical
resistivity predicted by Ohm’s law based on our RT-TDDFT calcula-
tions (red circles) are compared with first-principles calculations by
Xu et al. [70] (green circles), interpolated results of Stacey et al. [71]
(blue curve), a modified Bloch-Griineisen model of Koker et al. [39]
(violet curve), and a Bloch-Griineisen model including resistivity
saturation by Gomi et al. [22] (purple curve).

and gray squares) and Zhang et al. [69] (right solid black
squares) are contrasted with those by Kondpkova et al. [24]
(upper solid black squares). Note that the data by Konopkova
et al. are based on their thermal conductivity measurements
which we have converted into an electrical resistivity us-
ing the Wiedemann-Franz law [72] with a Lorenz number
2.44 x 1078 W QK2 In addition, their fit (gray dashed)
to the experimental data is also shown. The proportionality
p « T (quasilinear) at these conditions is observed in other
results too, particularly in the Bloch-Griineisen model (purple
curve) based on the Debye temperature [73] lying between
the experimental results of Ohta et al. and Zhang et al. The
net effect of increasing pressure is to decrease the resistiv-
ity as is also reported in experiments [22,69,74] and other
theoretical work [61] because the smaller amplitude of ionic
vibrations is responsible for an increase in the mean free path
of the electrons. The striking feature of this plot is that the
electrical resistivity predicted by Ohm’s law based on our
RT-TDDFT calculations agrees well with the measurements
of Ohta et al., particularly with the data points at a pressure
of 140 GPa and a temperature of 2500 K (red circles) which
are considerably lower than the measurements by Zhang et al.
This suggests our calculations would reasonably be in the
range of both the measurements by Ohta and Zhang et al.
at lower temperatures (<2000 K). Reasonable agreement be-
tween the two aforementioned measurements but at room
temperature (300 K) is demonstrated in a recent theoretical
effort by Ramakrishna et al. [61]. Other prior works including
the interpolated results of Stacey et al. [71] (blue curve), the
Bloch-Griineisen model of Koker et al. [39] (violet curve), and
the first-principles calculations by Xu et al. [70] including the
electron-phonon contribution (green circles) seem also to be
in reasonable agreement with the results by Zhang et al. Note
that the contribution of EES in hcp iron to the resistivity under
Earth-core conditions is well assessed by Pourovskii et al. [48]
in terms of DMFT leading to a behavior pggs o T2. However,
the effects of EES are negligible for the data points in the
range of 2500-3000 K.

For a direct comparison with experiments, we convert
our calculated resistivities shown in Fig. 2 into a thermal
conductivity (electronic component) using the Wiedemann-
Franz law. At the temperatures and pressures relevant to the
CMB (P ~ 136 GPa, T ~ 4000 K), we hence report a ther-
mal conductivity of 179.8-219.4 Wm~! K~!. The spread in
our prediction is due to using a Lorenz number that ranges
from the ideal to a deviation of ~20% based on reported
values of the Lorenz number in previous ab initio simu-
lations [39,45,48] and measurements [69]. Ohta et al. [23]
report a similar value of 226 W m~! K~! which has been re-
cently reported to be an overestimate. The corrected value by
Lobanov et al. [75] is reported as 185 W m~' K~! which is in
better agreement with our prediction. This is also in the range
of recent calculations using a novel nonequilibrium molecular
dynamics framework by Yue et al. [76] who reported a value
of 184 Wm~! K~ at similar temperature-pressure conditions
(P ~ 137 GPa, T ~ 3900 K). Finally, in Fig. 3, we consider
the electrical dc conductivity as a function of the pressure at
various fixed temperatures up to the Earth-core conditions.
While not as striking as in Fig. 2, our RT-TDDFT predictions
(solid red, orange, light orange, and yellow circles) are closer
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3 le6 discussed here. We point out that calculations using the KG
formula do not include an interaction kernel and thus do not
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FIG. 3. Electrical conductivity and its pressure dependence at
fixed temperature. Results of the experimental diamond anvil cell
measurements reported by Ohta et al. [23] (lower solid black and
gray squares) and Zhang et al. [69] (right solid black squares) are
contrasted with those by Kondpkova et al. [24] (upper solid black and
gray squares). Our predictions of the electrical conductivity (solid
circles) are compared with previously reported calculations, such
as the Bloch-Griineisen model of Koker ef al. [39] (red curve), the
KG formula by Pozzo et al. [45,46] (red and light orange circles),
first-principles calculations including electron-phonon contributions
by Xu et al. [70] (orange diamond), and first-principles calcula-
tions including electron-electron and electron-lattice scattering by
Pourovskii e al. [63] (orange squares) and He et al. [77] (orange
triangle).

to the experimental results by Ohta et al. (lower solid black
and gray squares) and Zhang et al. (right solid black squares)
than to those by Kondpkova er al. (upper solid black and
gray squares). Note that the Zhang er al. data at 4000 K
are based on their extrapolation to higher temperatures and
pressures using the Bloch-Griineisen model. Again, we used
the Wiedemann-Franz law [72] to extract the dc conduc-
tivity from the experimental data by Kondpkova et al. We
also compare with results obtained from the Bloch-Griineisen
model of Koker ef al. [39] (red curve), the KG formula by
Pozzo et al. [45,46,62] (red and light orange circles), density
functional perturbation theory combined with the Korringa-
Kohn-Rostoker method [78,79] that includes electron-phonon
contributions by Xu et al. [70] (orange diamond), and dynam-
ical mean-field calculations which also capture EES in the
bee and hep phases of iron by Pourovskii er al. [63] (orange
squares) and similarly for the hcp phase by He er al. [77]
(orange triangle). Overall, the change in the conductivity with
pressure is predicted to be relatively small by all models and
theories.

We conclude this investigation of electronic transport prop-
erties by providing a concise assessment of the methods

take into account collective effects such as plasmons. LR-
TDDFT is an extension of the KG formula in terms of an
interaction kernel. Both the KG formula and LR-TDDFT are
often limited to the head of the density response matrix and
therefore neglect so-called local field effects originating from
the off diagonals. In RT-TDDFT, however, we make no such
assumption. Both the complete electronic response and the
interaction kernel in terms of Hartree and XC contributions
are considered [80].

IV. CONCLUSIONS

In this paper, we have reported results on the electrical con-
ductivity of iron under the conditions of the Earth’s core from
the microscopic formulation of Ohm’s law. We demonstrate
the utility of our method, which is based on the real-time
formalism of time-dependent DFT, for computing transport
properties in materials under extreme conditions. It provides
a viable alternative to current state-of-the-art methods, such
as the evaluation of the KG formula on DFT data. We expect
our method to become a widely used device for the interpre-
tation of upcoming free-electron laser scattering experiments
at facilities such as LCLS [81], the European X-FEL [82],
and FLASH [83]. While in this work the perturbing vector
potential was chosen in the linear regime, our method is also
valid in the nonlinear regime. This will enable studying the
response of materials under extreme conditions accessible
through recent advances in free-electron lasers [84,85].
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