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Recipe for higher order topology on the triangular lattice
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We present a recipe for an electronic two-dimensional (2D) higher order topological insulator (HOTI) on a
triangular lattice that can be realized in a large family of materials. The essential ingredient is mirror symmetry
breaking, which allows for a finite quadrupole moment and trivial Z, index. The competition between spin-orbit
coupling and the symmetry-breaking terms gives rise to four topologically distinct phases; the HOTI phase
appears when symmetry breaking dominates, including in the absence of spin-orbit coupling. We identify
triangular monolayer adsorbate systems on the (111) surface of zincblende/diamond type substrates as ideal
material platforms and predict the HOTI phase for X = (Al, B, Ga) on SiC.

DOLI: 10.1103/PhysRevB.107.115130

I. INTRODUCTION

A higher order topological insulator (HOTI) is a phase of
matter that is gapped in its bulk and on its surfaces but exhibits
gapless or midgap modes on its one-dimensional hinges or
zero-dimensional corners, respectively, where two surfaces or
edges meet [1-6]. Following the discovery of HOTTIs, bismuth
was immediately realized as a three-dimensional HOTI [6]. In
two dimensions (2D), HOTIs were originally predicted in cold
atoms [1] and have been realized in metamaterials [7-13].
However, an experimental demonstration of a 2D HOTI in an
electronic system is still lacking.

In this paper, we present a tunable recipe for an electronic
2D HOTI that can be realized in a large class of hexagonal
and trigonal material platforms. The theory is built on an
angular momentum [ = 1 (sub-)shell on the triangular lattice.
The essential ingredient is symmetry breaking: Specifically,
the absence of the horizontal reflection plane is necessary to
open a hybridization gap, while the absence of the vertical
reflection plane, in combination with the C3 symmetry, al-
lows for a well-defined and nonvanishing quadrupole moment
[14-19]. Thus, mirror and inversion symmetry breaking is
indispensable to realize the resulting HOTI phase: The phase
is forbidden on the fully symmetric triangular lattice in this
model. In addition, the HOTT does not require spin-orbit cou-
pling (SOC): When the symmetry breaking is small, SOC
opens a trivial gap, while it plays no role when the symmetry
breaking dominates. These features are in contrast to the fa-
mous Kane-Mele model [20], where infinitesimal SOC opens
a topological gap and inversion symmetry breaking ultimately
trivializes the quantum spin Hall insulator (QSHI). In fact,
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as we will show below, the HOTI phase cannot be achieved
within the Kane-Mele model.

The main innovation of our work is to present a uni-
fied and realistic theory of HOTIs on the triangular lattice.
Since 2D HOTIs are also obstructed atomic limits [1,2],
we can classify them in terms of elementary band rep-
resentations (EBRs). Our analysis of EBRs [21-24] gives
insight into the physical mechanism behind corner charge
driven by symmetry breaking. It includes earlier predictions
of HOTIs in inversion-breaking transition-metal dichalco-
genides [25-28] and is simpler than proposals requiring
multiple atoms in the unit cell [29-35]. Identifying the es-
sential ingredients allows us to make material predictions
based on symmetry criteria, which we verify by first prin-
ciples calculations; one example is aluminum deposited on
SiC.

II. TOPOLOGICAL PHASES DRIVEN
BY SYMMETRY BREAKING

We present a general model that describes p orbitals, or,
more generally, an / = 1 angular momentum subshell, on
the triangular lattice with tunable in-plane and out-of-plane
mirror symmetry-breaking terms and spin-orbit coupling. By
varying these parameters, the model realizes four phases,
as depicted in Fig. 1. Figure 1 also reveals the surprising
property that the symmetry-breaking terms are indispens-
able to realizing nontrivial topology: Specifically, when local
SOC dominates over all symmetry-breaking terms, the ground
state is topologically trivial, while in the limit of vanishing
SOC, the HOTI phase is realized. When only one symmetry-
breaking term dominates over spin-orbit coupling, the system
is in a Z, QSHI phase. The QSHI phase shown in Fig. 1(b)
was recently realized in indenene, where symmetry breaking
is provided by a SiC substrate [36—40].

©2023 American Physical Society
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FIG. 1. Band structures indicating the Z, topological invariant v
and quadrupole moment Q;, of the topologically distinct phases on
the triangular lattice. The color code denotes the (J) character and
the arrows indicate the relevant band inversion between neighboring
phases. The labels in panel (a) denote the dominant orbital character
of the valence bands.

The model is described by the Hamiltonian
H=H" + AsocHC + 1z H" + 14 A", 1)

where each term is written explicitly in Appendix A. The first
term, H', describes the symmetry-allowed nearest neighbor
hoppings in the inversion symmetric triangular lattice layer
group (LG) p6/mmm, generated by a sixfold rotation, three
vertical reflection planes o, three diagonal reflection planes
o4, and one horizontal reflection plane o;,. The second term,
HSOC is the local SOC interaction, which preserves the layer
group symmetry and gaps the nodal line inside the BZ as well
as the Dirac cones at the valley momenta; the gaps opened
by SOC can be seen along I' — M and I' — K and at K/K'.
Each of the two remaining terms breaks inversion symmetry in
addition to a reflection symmetry. We use a strikeout notation
to indicate the broken reflection symmetry. The third term,
H?:, breaks z —> —z, which reduces the LG down to pomm.
It allows for hybridization between the states with magnetic
quantum numbers m = 0 and m = +1; i.e., it gaps the nodal
line described above, which is formed when the py bands
cross the p, bands. Finally, the last term, H?%  breaks vertical
reflection (o,) and (C,) rotation. The sixfold rotation (Cg)
reduces to Cj3, resulting in the LG p6m2 (if A4, = 0). The
absence of o, lowers the little group at the valley momenta
from C3, to Cj, splitting the two-dimensional representation
describing p and p_ orbitals into two one-dimensional chiral
representations (—m, +m) (for a more detailed discussion,
see Appendix E). This term can be regarded as a nonlocal
Semenoff mass term.

The competition between the inversion symmetry-breaking
terms and the atomic SOC determines the topological phase of
the model. The four insulating phases are separated from each
other by gap-closing phase transitions that exchange bands,
as indicated by the arrows in Fig. 1. Each gap reopening
is accompanied by a band inversion that exchanges bands
of predominately J = 1/2 character with those of J = 3/2
character, shown by the colors in Fig. 1. Simultaneously,
the band inversion changes the Z, invariant, v, computed by
tracking the Wilson loop eigenvalues [41,42]. The results can
be summarized as follows: When SOC dominates [Fig. 1(a)],
the valence (conduction) bands have the same value of (J)
across the BZ. This indicates a v = 0 topologically trivial
insulator, where the valence (conduction) bands transform as
an atomic limit with J = 1/2(J = 3/2). We dub this phase a
“SOC insulator”. By breaking either reflection symmetry, oy,
or o,, av = 1 QSHI phase can be reached: in the former case,
the hybridization between the p, and the in-plane orbitals
dominates over the SOC term along the nodal line, stabilizing
an indenene-like QSHI phase [Fig. 1(b)] [39]. The other QSHI
phase is characterized by a strong local orbital angular mo-
mentum polarization at the valley momenta, which gaps the
in-plane Dirac bands [“¢, QSHL” Fig. 1(c)]. Finally, if both
symmetry-breaking terms dominate over SOC, or if SOC is
absent, the Z,-index vanishes [Fig. 1(d)] again. However, the
resulting insulator phase is not trivial: As we will show mo-
mentarily, it has a nontrivial polarization and filling anomaly,
indicating that it is a HOTI and exhibits corner charge on a
finite-sized lattice.

1. SYMMETRY INDICATORS AND POLARIZATION

The symmetry and topology of each phase is summarized
in Table I. The strong topological invariants of the two v = 1
phases are not symmetry indicated due to the lack of inversion
symmetry. However, the electric polarization and quadrupole
moments of the HOTI and SOC insulating phases with v = 0
can be diagnosed by symmetry indicators [16—19] constructed
from the EBRs [21,23,24].

To compute the symmetry indicators, we define lattice
vectors a; = (1,0), a, = (1/2, \/5/2) and reciprocal lattice
vectors by = 27 (1, —1/+/3), by = (0, 47 /+/3). The polar-
ization vector with components in the directions of the
two primitive lattice vectors is defined by P = (P, P,) =
—{((r1, r2)), where ry » are the relative coordinates of the point
r = rja; + ra;. The quadrupole moment is given by O, =
—(rir, + 17 +r3)) in the presence of threefold rotation
symmetry [16]. The symmetry indicators for polarization and
quadrupole moment are [16-19]

P =Py =—3([#"]1— [#7]) mod2, (2

On = —3(#™ 1+ [#e ™) mod 1, (3)

where [#£] is the number of valence bands with C; eigenvalue
£ =e5J at T =0 subtracted from the number of valence
bands with C; eigenvalue £ at K = %bl + %bz.

In all four phases, the valence bands at I" are always p, type
with total magnetic quantum numbers j, = {—1/2,41/2}
[see Fig. 1(a)]. Consequently, only the rotation eigenvalues at
K can change the electric polarization or quadrupole moment:
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TABLE I. C; rotation eigenvalues and dipole/quadrupole moments of the insulating phases of Eq. (1). For each phase, the layer group
indicated is the highest symmetry group that satisfies the inequalities in columns four and five. The electric multipoles in the v = 1 phases are
ill defined. The little groups, irreps, and corresponding character tables of momenta I" and K are shown in Appendix F.

Phase Layer group v SOC vs ¢, SOC vs &, E(CG3)atK P=(,P) O
SOC insulator p6/mmm 0 )‘SOC > )“ljh )LSOC > )L% {€+iﬂ/3, e*in/S} (O, 0) mod 2 0 mod 1
Indenene-like ¢, QSHI pomm 1 Asoc K Ag, ksoc > Ay (et /3 e=in/3} - -
QLU QSHI p6m2 1 )‘-SOC > )"ﬁh )‘-SOC < )\.% {ei’”/3, —1} - -
Triangular HOTI p3ml 0 Asoc < Ag, Asoc K Ay {e*7/3 1} (F3, F3) mod 2 2 mod 1

The competition between HS°C vs A% acting on the p.

subspace results in predominantly j, = {—1/2, 4+1/2} char-
acter in the valence bands when HS5°C dominates and j, =
{#1/2, £3/2} character when H% dominates, where + is
determined by sign(A4, ). Applying Egs. (2) and (3), we find
the following dipole and quadrupole moments for the two
v = 0 phases: The SOC insulator has P = 0, Q;» = 0, while
the triangular HOTT has P = (2/3,2/3) mod 2, 01, = 2/3
mod 1. These results are shown in Table I. The nonzero
quadrupole moment for the triangular HOTI phase implies the
existence of corner localized states, which we study in the next
section.

A 2D HOTI with a gapped bulk and edges, but midgap
states localized at corners, is also an obstructed atomic limit.
Thus, our results can be phrased in terms of EBRs [21,23,24]:
The valence bands of the SOC insulator transform as an EBR
induced from the irreducible representation (irrep) £, of the
site-symmetry group at the la = (0, 0) position, while the
HOTI with sign(Ly ) = +1 transforms as an EBR induced
from the irrep E; of the site-symmetry group of the 1b =
(1/3, 1/3) position. (The irrep notation follows Ref. [43]. The
irreps corresponding to the valence bands in each phase are
listed in Appendix F.)

This change in EBRs indicates the transition to an ob-
structed atomic limit as the Wannier center shifts from la
to 1b, corresponding to the electronic charge center detach-
ing from the lattice sites in the HOTI phase to create the
nonzero polarization and quadrupole moment. Similarly, for
sign(A4 ) = —1 the Wannier center shifts from la to lc =
(2/3,2/3), creating a nonzero polarization of the opposite
sign, and the quadrupole moment remains invariant. Break-
ing the vertical mirror planes o, is imperative to realize this
phase: Since o, maps 1b = (1/3,1/3) onto 1c = (2/3, 2/3),
its presence forbids a Wannier center on 15 without a partner
on lc and vice versa (see Appendix E for a more detailed
discussion).

Note that such a HOTT phase cannot exist in the Kane-Mele
model: A v = 0 insulating ground state can only be reached
by breaking inversion symmetry to gap the Dirac fermions
[20]. In this phase, the Wannier functions are localized on one
of the two atomic sublattices; consequently, the system lacks
a finite dipole and quadrupole moment.

IV. HOTI EDGE AND CORNER CHARGE

The electric dipole moment in the HOTI phase has im-
portant consequences for finite-size geometries. As shown in
Fig. 2(a), the triangular lattice has two canonical edge termi-
nations: the zigzag and the flat edge. The bulk polarization

P, arising from Wannier centers located at 15 (blue dots) in
Fig. 2(a), is parallel to the zigzag edge and normal to the flat
edge; the latter favors metallic edge states [26,44]. For the
model, the edge states of the flat termination are nondegen-
erate and possess a linear band crossing at I', as shown in
Fig. 2(b) (the touching is quadratic in the limit of vanishing
SOQ). In contrast, the zigzag geometry has degenerate insu-
lating edge states, shown in Fig. 2(c).

To isolate the fractionally filled corner states living in
the bulk and edge gaps, we consider triangular flakes with
the insulating zigzag termination. In the HOTI phase at
charge neutrality, we find six degenerate exponentially corner-
localized states that are one-third occupied at an energy within
the bulk and edge gaps, as shown in Fig. 3(a) and in agreement
with the corner charge of Qj» = 2/3 computed in the previ-
ous section. That there are two electrons to occupy the six
midgap states at charge neutrality is referred to as the “filling
anomaly,” n = 30, = 2, where the factor of three corre-
sponds to the three corners of the triangular flake [14,15,17].
While the energy and hence the filling of the corner states
can be tuned via a Cs-symmetric corner potential, the fill-
ing anomaly remains a protected observable of the HOTI
phase.

(b) flat edge
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FIG. 2. Polarization and slab calculations for the HOTI phase
with SOC. (a) The bulk dipole moment (red vector), resulting from
Wannier centers located at the 156 Wyckoff position (blue dots) is
perpendicular to the flat edge and parallel to the zigzag edge. [(b), (c)]
Slab band structure and edge character (orange-green color code) for
the two slab terminations. The polarization parallel (perpendicular)
to the edge in the zigzag (flat) geometry yields insulating (metallic)
edge states.
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For the flat-edge termination with finite edge polariza-
tion and metallic edge states [Fig. 2(a)], fractionally filled
corner states can be only stabilized if the edge charge is
compensated [16,17,26,27]. In a general finite-size flake, e.g.,
a round geometry, where all fundamental edge terminations
are present, the corner states will be buried in the metallic edge
continuum.

V. MATERIAL REALIZATION

Having established the existence of the HOTI phase in
our minimal triangular model, we propose a general ma-
terial realization concept: triangular adsorbate systems on
the high symmetry sites of the (111) surface of zinc-
blende/diamond-type substrates. This substrate provides three
important ingredients: (1) structural stabilization of a trian-
gular adsorbate monolayer; (2) symmetry breaking across the
horizontal mirror plane to open a hybridization gap (H #+); and
(3) symmetry breaking across the vertical mirror planes (H %)
to induce the bulk quadrupole moment.

We propose a monolayer of light group 3 elements (B,
Al, Ga) on SiC and verify our prediction with an ab initio
DFT study. For the T1 adsorption site of the Si-terminated
surface, the adatom is located on top of the surface Si atom,
while the C atom of the first SiC layer reduces the rotational
symmetry of the triangular site from Cs down to Cs as shown
in the inset of Fig. 4. In the case of Al, in-plane and out-of
plane reflection symmetry breaking (LG p3m1) dominates
over SOC and results in an insulating bulk band structure
with the p.-type T'4(2) irrep and a pi-type K4(1) ® Kg(1)
irrep (j, = {3/2, 1/2}) in the valence bands (see also Ap-
pendix F), identical to the triangular HOTI phase, as shown
in Table I. Consequently, this phase has a quadrupole moment
Q12 = 2/3 mod 1 and a corresponding corner charge.

Varying the group 3 elements, our ab initio calculations re-
veal a valley momenta gap of Ag = 0.49eV, A = 0.24¢eV,
and Ag, = 0.22eV. As shown in Appendix D, only Al ex-
hibits a direct band gap at the valley momenta; the global
indirect band gap is 0.27eV and 0.18eV for B and Ga,
respectively.

We verify the symmetry indicated prediction of corner
charge by a first principles calculation on a finite size lat-
tice for Al on SiC as summarized in Fig. 4. The insulating

FIG. 4. The energy spectrum of a finite-size triangular flake of
Al on SiC, truncated as shown in the lower inset. The red color code
denotes the corner character of the state: The six degenerate midgap
states are completely localized on the corners. Upper inset: bulk band
structure of Al on SiC; color code denotes the Al p, (green) and Al
p+ (orange) character. Lower inset: unit cell geometry and charge
density of corner states: The Cg symmetry of the Al (black) site
on top of the Si atom (gray) is reduced to C; by the first C layer
(blue).

band structure of its zigzag termination can be found in
Appendix C. Indeed, although the in-gap position of the cor-
ner states is not crystal symmetry protected, the ab initio
calculation reveals six degenerate states in the bulk band gap,
which are filled with two electrons at charge neutrality. The
charge density of these states are shown in the lower inset to
Fig. 4, which are tightly localized to the corners. Furthermore,
they display an almost perfect symmetry with respect to two
of the three vertical mirror reflection planes of the bulk, even
though these symmetries are broken at the edges and corners
of the flake.

VI. CONCLUSION

We have proposed a recipe for electronic HOTIs in ma-
terials where the low-energy bands are composed of an [ =
1 angular momentum subshell on a Cs;-symmetric lattice.
The essential ingredient is inversion- and reflection-symmetry
breaking: On the symmetric triangular lattice, the HOTI phase
is forbidden. We identified the HOTI phase using symmetry
indicators and by an explicit calculation of the spectrum on a
finite-sized triangular sample.

Our approach is very general and may be realized in many
compounds by depositing adatoms onto the three-fold sym-
metric (111) surface of a zinc-blende/diamond substrate. We
identified by first-principles calculations the Z,-trivial analogs
of the recently synthesized QSHI indenene [39,45], namely
B, Ga, and Al on SiC, as potential candidates and showed
explicitly for the case of Al a full finite-size study: It is
bulk insulating and has gapped edges and localized corner
charge on a finite-sized triangular flake. Given the abundance
of zinc-blende/diamond substrates (Si, C, GaAs, and InSb,
for example), and a variety of potential adsorbates, we expect
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many other material combinations will also realize the HOTI
phase.

The presence of HOTI corner states could be detected via
scanning tunneling microscopy. A proposal for detecting their
quantized corner charge via atomic force microscopy has been
put forth in Ref. [46]. By offering a realistic platform, our
work paves the way to an experimental demonstration of a
2D electronic HOTT and may also inspire new techniques for
more direct experimental observation.

A systematic ab initio study of the material combinations
to determine which are bulk insulators will also be essential to
future work. Upon extension to atoms with d and f orbitals,
we expect “heavy” HOTIs with sizable electron-electron
interactions and SOC.
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APPENDIX A: TIGHT-BINDING MODEL

Here we describe the tight binding Hamiltonian of a p shell
in the {py, py, p;} basis on a triangular lattice with the Bravais

vectors a; = (1,0) and a, = (0.5, v/3/2).

1. Triangular lattice hopping Hamiltonian

The transition matrix elements Hg allowed by the sym-
metries of LG p6/mmm can be obtained by following the

approach of Slater and Koster [47]. They are given for an

TABLE II. Tight-binding parameters of the model Hamiltonian
HT in units of 7.

E, ve v vy

—-0.7 0.7 —0.15 —-0.25

TABLE III. Tight-binding parameters of the SOC and the
symmetry-breaking model Hamiltonian terms in units of ¢. For each
phase, the layer group with highest symmetry is given.

LG )"SOC A #n A %,
p6/mmm 0.30 0.1/6 0.04/3
p6mm 0.30 0.1 0.04/3
p6m2 0.30 0.1/6 0.08
p3ml 0.15 0.1 0.04

orbital p; located in the home unit cell (0) to an orbital p;
at site R:

Hii R) = (piO)H" |pi(R)) = nfV? + (1 = nf)V7, (Al)

HER) = (pi(O)[H |p;(R)) = nin; (V7 — V), (A2)

with i = x,y,z and i # j. The coefficients n; incorporate the
in-plane orientation [n, = cos(¢)sin(9), n, = sin(¢) sin(0)
and n, = cos(f)] with the azimuthal angle ¢(R) and polar
angle 0(R). The transfer integral values V” and V” in the p,,
subspace, the p, transfer integral V", and the on-site energy
shift of the p, orbital E, are given in Table II. The strength of
the SOC interaction and the symmetry-breaking terms of the
relevant layer groups are listed in Table III. All tight-binding
parameters have been chosen such that an insulating ground
state in the corresponding phase is stabilized. The overall band
character reflects qualitatively the low-energy band structure
of the group 3 elements on SiC, with p, and p,, valence band
characters at I' and K, respectively.

2. Atomic SOC

We consider full p-shell atomic spin orbit coupling, which
is given in the {py, p,, p.}-basis by

A =[®8§ (A3)
1 0 —io; ioy
=—| io; 0 —ioy (Ad)
2
—ioy ioy 0

Energy [eV]

L -

— "\;»‘-,"
N—, ‘i"‘\\\:

FIG. 5. Band structure for the zigzag ribbon geometry. The color
code denotes the edge character, shown for alternating edges (dashed
lines).
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FIG. 6. Orbital resolved band character and equilibrium distances of the three adsorbate systems on four layers of SiC (0001). The color

code denotes the p. (orange) and sp, (green) orbital character.

Its matrix elements can be obtained by explicitly calculating
the components of the orbital angular momentum and spin
operators.

3. o,-symmetry breaking

The presence of vertical reflection symmetry prohibits the
hybridization between the in-plane and out-of plane orbitals.
When the symmetry is broken, the Slater-Koster integrals in
Egs. (A1) and (A2) become nonzero because the out-of-plane
coordinates of the p, and the in-plane orbitals differ, i.e., the
polar angle 6 # m /2. The effective transfer elements read

HPR) = (piO)|A% p.(R) = +n;,  (AS)

HJ'R) = (p.(0)|H% |pi(R)) = —n;. (A6)

4. o,-symmetry breaking

To break o, while preserving o, requires breaking C,,.
The absence of C,, symmetry allows for the hopping terms to
become asymmetric when the hopping direction is reversed.
Since they must still respect the threefold rotation symmetry
C3,, such an interaction can be described by the following
transfer matrix elements:

HE(R) = (py(0)[H" | p.(R)) = + cos(3¢), (A7)

HER) = (p(0)[H |py(R)) = —cos(3p),  (A8)

where ¢(R) is the azimuthal angle. The opposite signs in
Egs. (A7) and (AS8) are a consequence of the broken C,
symmetry.

APPENDIX B: DFT METHODS

For our theoretical study of B, Al, and Ga on SiC(0001), we
employed state-of-the-art first-principles calculations based
on density functional theory as implemented in VASP [48]
within the PAW method [49,50]. For the exchange-correlation
potential, the PBE functional was used [51] by expanding the
Kohn-Sham wave functions into plane waves up to energy
cutoffs of 500 and 300 eV for the bulk calculations and for
finite-size calculations, respectively. For the bulk calculations,
we sampled the Brillouin zone on a 12 x 12 x 1 regular mesh
and SOC was self-consistently included [52]. We consider a
(1 x 1) reconstruction of a triangular adatom monolayer ad-
sorbed on the T1 position of Si-terminated SiC(0001) with an
in-plane lattice constant of 3.07 A. The equilibrium structure
is obtained by relaxing all atoms until all forces converged
below 0.001 eV/A.. For the bulk calculations, we consider four
layers of SiC. To computationally access large lateral finite
size systems, the substrate thickness is reduced to one layer
of SiC. Electronic states arising from opposite surfaces are
disentangled by a vacuum distance of at least 10 A between
periodic replicas in the z direction. The dangling bonds of
the substrate terminated surface are saturated with hydrogen
atoms.

TABLE IV. Irreps and dipole/quadrupole moments of the four insulating phases. For each phase, the layer group indicated is the highest
symmetry group that satisfies the inequalities in columns four and five. The electric multipole moments in the v = 1 phases are ill defined.

Phase Layer group v SOC vs ¢, SOCvs ¢, IRREPsT IRREPs K P=(,P) On
SOC insulator p6/mmm 0 Asoc > Ag, Asoc > Ag T12(2) Ks(2) (0,0) mod 2 0 mod 1
Indenene-like ¢‘h QSHI p6mm 1 )"SOC < )\.m )‘-SOC > )\.% Fg (2) f(,(Z) - -
@, QSHI pém2 I Asoc > A4 Asoc K Ag T's(2) K7(1) @ K12(1) - -
Triangular HOTI p3ml 0 soc KAy o Asoc K Ay T6(2) Ky(1)®Ke(1) (=3,—3)mod2 2 mod 1
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FIG. 7. [(a), (b)] Impact of vertical reflection symmetry (red lines) on the hexagonal lattice. (a) The presence of o, maps the Wyckoff
position 1b onto 1c; thus, in groups with o, the two Wyckoff positions merge into a single position with multiplicity two. (b) The rotation of
real space and reciprocal space lattice by 7 /6 against each other translates o, into 0; in momentum space (see also Table V). This introduces
the vertical reflection to the little group of 15 and 1c. (c) Real space layer group subgroup relation.

APPENDIX C: Al ON SiC EDGE STATES

Figure 5 shows the DFT band structure of a slab geometry
with a zigzag edge termination. The width of 12 unit cells
is chosen to be comparable to the height of the finite-size
triangular flake. In agreement with the tight-binding model,
the band structure is insulating and the edge states arising
from opposite edges are energetically degenerate.

APPENDIX D: BULK BAND STRUCTURES OF B, Al,
AND Ga ON SiC

The orbital character projected bulk band structures of B,
Al, and Ga on SiC(0001) are shown in Fig. 6. All adsorbate
systems show perfect qualitative agreement with the proposed
HOTI model as they possess an insulating bulk band structure
with massive in-plane Dirac cones at the valley momenta.
The irreps of the valence bands are given in Table IV for LG
p3m1 and indicate a nonvanishing bulk dipole and quadrupole
moment. The weak SOC interaction in B and Al results in
almost twofold degenerate bands, while the bands of the Ga
monolayer possess a weak spin splitting.

APPENDIX E: VERTICAL REFLECTION SYMMETRY
BREAKING IN REAL AND RECIPROCAL SPACE

We now describe the role of the vertical reflection sym-
metry in real and reciprocal space. As illustrated in Fig. 7,

TABLE V. Little groups at I' and K for relevant layer groups.

Real space layer group p6/mmm  pbmm pb2m  p3ml
Reciprocal space layer group  p6/mmm  pbmm pbm2 p3lm

Little group at T 6/mmm  6mm  62m  3m
Little group at K 6m2 3m 6 3

if vertical reflections [red lines in Fig. 7(a)] are introduced,
the LG p3m1 (or p6m?2) is promoted to p6mm (or p6/mmm)
[the relationship between layer groups is shown in Fig. 7(c)].
The vertical reflection planes map the Wyckoff position 15
onto lc (notation refers to LG p3ml), which results in a
single Wyckoff position with a multiplicity of two in the more
symmetric group. This explains why the bulk dipole moment,
which requires an asymmetric charge distribution with respect
to the 15 and 1¢ Wyckoff positions, is only allowed when o,
is broken.

As the hexagonal real and reciprocal lattices are rotated
relative to each other by /6, the presence of o, in real space
translates into o, in reciprocal space, as shown in Fig. 7(b).
Thus, the reflection planes of o, leave the K and K’ points
invariant, which enlarges their little group from 3 to 3m. Since
the group 3 only has one-dimensional single-valued irreps,
in the absence of SOC, the o,-breaking term gaps the Dirac
cones at K and K'. In the presence of SOC, it can still drive
a band inversion at the valley momenta which is identified by
the irreps. The little groups at each high symmetry point for
each layer group are listed in Table V.

APPENDIX F: IRREDUCIBLE BAND REPRESENTATIONS

Table IV shows the irreps at high symmetry points for the
four topological phases of our model. The labels of the irreps
depend on the LG and can be derived from the characters
tables shown in Tables VI, VII, VIII, X, IX, and XI. The
notation follows Ref. [53]. All of the band structures (B, Al,
and Ga on SiC) shown in Fig. 6 are classified by the irreps of
the HOTI phase in LG p3m1.
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TABLE X. Character table for point group 3m.

TABLE XI. Character table for point group 3; € = (I%ﬁ)

3m 1 3001 Mo d 3y, A5,
r, 1 1 1 1 1
I, 1 1 -1 1 1 -1
rs 2 ~1 0 2 ~1 0
T, 1 -1 i -1 1 i
T 1 —1 i -1 1 —i
T 2 1 0 -2 -1 0

3 1 31 3001 d; d%l d3601
I 1 1 1 1 1
r, 1 —€ —€ 1 —E —€
I 1 —€ — 1 —€ —
T, 1 - -1 -1 1 1
Ts 1 3 € -1 —€ —€
Te 1 € —1 —€ B
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