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Recent research developments in the area of spacetime metamaterial structures and systems have raised
new questions as to how the physics of fundamental phenomena is altered in the presence of spacetime
modulation. In this context, we present a generalized and comparative description of the phenomenon of total
internal reflection (TIR) at different dynamic interfaces. Such interfaces include, beyond the classical interfaces
corresponding to the boundaries of moving bodies (moving interface–moving matter systems), interfaces formed
by a traveling-wave step modulation of an electromagnetic parameter (e.g., refractive index) (moving interface–
stationary matter systems) and fixed interfaces between moving-matter media (stationary interface–moving
matter systems). We first resolve the problem using the evanescence of the transmitted wave as the criterion
for TIR and applying the conventional technique of relative frame hopping (between the laboratory and rest
frames), which results in closed-form formulas for the relevant critical (incidence, reflection, phase refraction,
and power refraction) angles. We then introduce the concept of catch-up limit between the dynamic interface and
the transmitted wave as an alternative criterion for the critical angle. We use this approach both to analytically
verify the critical angle formulas, further validated by full-wave (FDTD) analysis, and to explain the related
physics, using Fresnel-Fizeau drag and spacetime frequency transition considerations. These results might find
various applications in ultrafast optics, gravity analogs, and quantum processing.
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I. INTRODUCTION

Total internal reflection (TIR) is the optical phenomenon
according to which light impinging on an interface between
two media is totally reflected for incidence angles beyond
a threshold value, the critical angle, which depends on the
properties of the two media. This phenomenon has a long
history. It was initially discussed in the XIVth century by
Theodoric of Freiberg as one of the causes of the rain-
bow effect [1]. It was then revisited by several scientists
from the XVIIth to the XIXth century. Christiaan Huygens
explained TIR in terms of his wave theory of light and iden-
tified the existence of the critical angle in his Treatise on
Light in 1690 [2]. A few years later, Isaac Newton reinter-
preted TIR from the perspective of his corpuscular theory
of light and observed that the effect was frustrated (trans-
mission occurred again) when two prisms were put in close
proximity to each other in his book Opticks [3]. The exact
formula of the critical angle (between two isotropic media)
was established only about one century later by Pierre-Simon
Laplace [4]. Finally, shortly afterwards, Augustin-Jean Fres-
nel discovered the TIR-related subtle phenomena of phase
shift and polarization transformation [5]. Nowadays, TIR
is an ubiquitous effect in optical technology, where it un-
derpins a myriad of systems, such as optical waveguides,
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cavities, beam splitters, surface plasmonic couplers, pho-
tonic crystals, dielectric metamaterials, light-emitting diodes,
scanning near-field optical microscopes, biological molecule
detectors, quantum-information processing and communica-
tion systems.

The vast majority of the TIR effects and devices men-
tioned above pertain to stationary, or static, systems, i.e.,
medium-interface configurations without any motion what-
soever. Making the medium-interface system moving, or
dynamic, by using either moving-matter media [6] or mov-
ing interfaces or both, naturally enriches the related physics
and creates a potential for novel applications. Such systems
are not limited to moving matter, which involve a moving
body with comoving atoms and molecules that presents a
moving interface to incident light (moving matter and mov-
ing interface) [7–11] and which occur in various dynamic
engineering (e.g., aeronautics, radar and communications
systems, ultrafast optics and opto-mechanics, and quantum
electronics) and in natural (e.g., meteorology, radiophysics,
astronomy) systems. They also include moving perturbation,
without net transfer of matter, in the form of a traveling-
wave modulation [12–21] of an electromagnetic parameter,
such as, for instance, the refractive index (moving inter-
face and stationary matter) [22–30], whose particular case
of infinite modulation velocity corresponds to temporal sys-
tems [31–37], and moving-matter media separated by a fixed
boundary (moving matter and stationary interface) [38,39],
which may be realized in different ways (e.g., moving fluid in
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FIG. 1. Types of dynamic interfaces, with scattering at the criti-
cal angle. (a) Stationary interface between stationary media (static
system). (b) Stationary interface with a moving-matter medium
(conveyor-belt system). The dashed circles represent the previous
positions of the moving atoms and molecules. (c) Moving interface
between stationary media (domino-chain system) [49]. (d) Moving
interface with a moving-matter medium (moving-truck system). It
is assumed throughout the paper that v = vm. The green, blue, and
magenta dashed arrows in (b)–(d) represent the waves in medium 1,
the k vector and S vector of transmitted wave in medium 2 in (a),
respectively.

a bent enclosure [39], fluid flowing across a Faraday cage [38]
and interface involving a nonmoving but motion-equivalent
bianisotropic medium [40–43]). For terminological simplic-
ity and analogical help, we refer to these systems as the
“moving-truck,” “domino-chain,” and “conveyor-belt” sys-
tems, respectively.

This paper presents a generalized and comparative de-
scription of the phenomenon of TIR for the moving-truck,
domino-chain, and conveyor-belt interfaces. First, it depicts
these systems and identifies the relevant physical quantities.
Second, it addresses the related problems using the relativity
approach of frame hopping based on the TIR criterion of
evanescent transmitted wave. Then, it introduces the alterna-
tive TIR criterion of ‘catch-up’ between the interface and the
transmitted wave, and leverages it to explain the physics of the
problem. Next, it elaborates momentum diagrams to bridge
the transmitted wave and the incident wave. Finally, it plots
the critical angles versus velocity and explains them using the
catch-up and momentum diagrams.

II. TYPES OF INTERFACES

Figure 1 depicts the four dynamic systems of interest and
the related scattering phenomenology at the critical angle. In
all the cases, the interface is sandwiched between two media,
the incidence medium, labeled 1, and the transmission [44]
medium, labeled 2. In the absence of any motion, both media
are isotropic, with respective refractive indices n1 and n2, and
n1 > n2. The incidence medium is always motionless, while
the interface may move at the velocity v and the transmission

medium may move at the velocity vm, where we will mostly
consider vm = v. The subscripts “i,” “r,” and “t” denote the
incident, reflected and transmitted waves, respectively, and
the subscript “c” stands for “critical,” and the superscripts “k”
and “S” respectively refer to the wave vectors k and Poynting
vectors S. We shall first describe the structure of these systems
and later establish the theory of total reflection that applies to
them.

Figure 1(a) shows a static system, which is constituted
of a stationary interface between two stationary media.
Although not dynamic, this system is shown here for refer-
ence and comparison with the following dynamic systems.
Figure 1(b) represents the conveyor-belt system. In this sys-
tem, the atoms and molecules composing the transmission
medium (medium 2) move perpendicularly to a stationary
interface, which separates the transmission medium from a
stationary incidence medium (medium 1). The system is thus
akin to a conveyor belt juxtaposed to a stationary object.
The motion of the atoms and molecules produce a Fresnel-
Fizeau drag that makes medium 2, assumed isotropic at rest,
bianisotropic with respect to the laboratory frame (fixed xyz
coordinate system), K . As a consequence, the corresponding
refractive index depends on the propagation direction, n2(k),
and the vectors k and S are nonparallel to each other [45,46].
Figure 1(c) describes the domino-chain system. In this case,
the interface is formed by a moving modulation step between
two stationary media, i.e., two media involving no net transfer
of matter. The system is akin to a chain of falling domino tiles,
with its interface corresponding to the moving point between
the fallen and standing titles. The domino-chain system can
be both subluminal and superluminal [47]. However, it turns
out that TIR cannot occur in the superluminal regime (Sec. I
in Ref. [48]), and we will therefore hereafter restrict our
attention to the subluminal regime. Finally, Fig. 1(d) shows
the moving-truck system, which is the most common moving-
matter system. Structurally, the moving-truck system, with
both moving matter and interface, may be considered as a
combination of the conveyor-belt system [Fig. 1(b)], where
only matter moves, and the domino-chain system [Fig. 1(c)],
where only the interface moves.

III. GENERALIZED CRITERION

In a static system, the critical angle θic is defined as the
angle beyond which the incident wave is totally reflected
at the interface, and this occurs when the transmitted wave
propagates exactly along the interface, i.e., at θtc = π/2, as
illustrated in Fig. 1(a). In contrast, in a dynamic interface
system, the motion of matter or/and perturbation alters the
momentum of the system and the angles must generally
change to ensure the conservation of the tangential momen-
tum. We must therefore introduce–and find!–the additional
(nontrivial) angles θk

tc, θS
tc, and θrc, indicated in Figs. 1(b)–

1(d), which denote the critical transmission phase angle, the
critical transmission power angle and the critical reflection
(phase or power) angle, respectively. Moreover, we need to
generalize the static condition θtc = π/2 to the more general
and more fundamental condition that the transmitted wave be
evanescent in the direction perpendicular to the interface.
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TABLE I. Critical angle formulas for different dynamic interfaces.

Stationary Matter Moving Matter

STATIC SYSTEM CONVEYOR-BELT SYSTEM

Stationary θic = θrc = arcsin(n2/n1) (1a) θic = θrc = arcsin(
√

α2n2/n1) (2a)

Interface θS
tc = θk

tc = π/2 (1b) θS
tc = π/2, θk

tc = arccos(χ2/
√

α2n2
2 + χ 2

2 ) (2b)

DOMINO-CHAIN SYSTEM MOVING-TRUCK SYSTEM

Moving
Interface

θ{
i
r

}
c
= arcsin(n2/n1) ∓ arcsin(βn2) (3a) θ{

i
r

}
c
= arcsin(n2/n1

√
1 − β2 + β2n2

2 ) ∓ arcsin(βn2/
√

1 − β2 + β2n2
2 ) (4a)

θtc = θk
tc = arccos(βn2) (3b) θtc = arccos(βn2/

√
1 − β2 + β2n2

2 ), θk
tc = arccos(β/

√
n2

2 + β2 − β2n2
2 ) (4b)

To find the critical angles θic, θrc, θk
tc, and θS

tc, we shall
apply the frame-hopping technique [50] associated with
the theory of relativity, where we define the rest frame,
K ′, as the frame of the interface, whether it is moving
[Figs. 1(c) and 1(d)] or not [Fig. 1(b)]. First, we en-
force the conventional (static) boundary conditions in K ′,
where the interface is stationary; this yields ω′

i = ω′
r = ω′

t
and k′

xi = k′
xr = k′

xt . Second, we transform these relations
to the K frame, using the inverse spectral Lorentz trans-
formations ω′ = γ (ω ∓ βckz ), k′

z = γ (kz ∓ βω/c) and k′
x =

kx, where γ = 1/
√

1 − β2 with β = v/c [45] [NB: β =
0 in Fig. 1(b)], and obtain ωi − βckzi = ωr + βckzr = ωt −
βckzt and kxi = kxr = kxt . Third, we substitute these relations
into the dispersion relations for two media, i.e., k2

zi,r + k2
x =

(ωi,rn1/c)2 for medium 1 (isotropic) and (kzt − ωtχ2/c)2 +
α2k2

x = (α2n2ωt/c)2, with α2 = (1 − β2
m )/(1 − β2

mn2
2) and

χ2 = βm(1 − n2
2)/(1 − β2

mn2
2), for medium 2 [bianisotropic

(Sec. II in Ref. [48]), except when matter does not move,
as in Fig. 1(c), where βm = 0]. Finally, we search for the
limit where kzt become complex (evanescence regime) in
the resulting equations and solve for the angles. The results
are given in Table I (see Sec. III in Ref. [48] for detailed
derivations). In the stationary interface systems (first row), the
transmission power angles (θS

tc) always equal π/2, whereas in
the moving-interface systems (second row), they vary with the
velocity of the interface (v = βc). At the same time, k // S,
and hence θk

tc = θS
tc, in the stationary matter systems (first

column), whereas k ∦ S and θk
tc �= θS

tc in the moving-matter
systems (second column).

IV. CATCH-UP CRITERION

Table I provides the formulas for the critical angles, but
it does not provide insight into the physics of the TIR
phenomenon in the considered systems. Therefore we in-
troduce here an alternative perspective of TIR, namely the
catch-up limit between the interface and the transmitted
wave—assuming that the incident wave is always fast enough
to catch up with the interface for scattering to occur, which im-
plies θi < θi,max = arccos(βn1) [51]. This perspective is illus-
trated in Fig. 2 for the most general case of the moving-truck
system, where the isofrequency curves are shifted ellipses,
due to matter motion (drag). It is based on the recognition
that the limit of transmission evanescence corresponds to the
limit where the velocity of the interface (v) equals the velocity
of the transmitted wave power in the direction of motion,

vgzt , i.e., v = vgzt . In the codirectional case (v = vm > 0),
represented in Fig. 2(a), the interface moves below this limit
(v < vgzt ), so that the transmitted wave propagates in medium
2 (refraction), whereas the interface “catches it up,” and
hence makes it evanescent in medium 2, above this limit
(v > vgzt ), which corresponds to the TIR regime; the situa-
tion is inverted in the contradirectional case, represented in
Fig. 2(b). This procedure leads to θS

tc = arccos(v/|vgt |), from
which we can compute θk

tc, and then θic and θrc (Sec. III in
Ref. [48]).

The domino-chain, conveyor-belt and static systems may
be further understood in terms of the catch-up limit per-
spective as particular cases of the moving-truck system

FIG. 2. Catch-up limit between the interface and the transmit-
ted wave, shown here for the case of the moving-truck system.
(a) Codirectional interface (v = vm > 0). (b) Contradirectional in-
terface (v = vm < 0). The blue, pink, and gray regions correspond
to the sectors of phase transmission, power transmission, and TIR
(evanescence), respectively.
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(see Sec. IV in Ref. [48] for specific graphs), with centered-
circle isofrequency curves in the stationary-matter systems
(domino-chain and static systems) and θS

tc = π/2 resulting
from the zero velocity of the interface in the stationary-
interface systems (conveyor-belt and static systems). The
problem can naturally also be solved in the even more general
regime v �= vm (Sec. V in Ref. [48]), from which the critical
angle formulas in Table I of the four systems are obtained by
setting β = βm = 0, β = 0 (and βm �= 0), βm = 0 (and β �=
0) and β = βm �= 0, respectively, in the generalized formulas.

An interesting observation may be made about the inci-
dence and reflection angles in the moving-interface systems.
Applying the identity arccos(x) + arcsin(x) = π/2 in Ta-
ble I, we find that θ(i,r)c = arcsin(n2/n1) ∓ 	θS

tc and θ(i,r)c =
arcsin

(
n2/(n1

√
1 − β2 + β2n2

2)
) ∓ 	θS

tc, for the domino-

chain and moving-truck systems, respectively, where 	θS
tc =

|θS
tc − π/2| is the excess power angle due to the motion of

the interface. These relations reveal that the incidence and
reflection critical angles are simply offset by the catch-up
(power) angle. Moreover, defining a new coordinate system
rotated by the angle 	θS

tc towards the direction of v results
into relations that are formally identical to the static ones
for the domino-chain case and, specifically, lead hence to the
concept of an effective interface for that system (see Fig. S1
in Ref. [48]).

V. MOMENTUM DIAGRAM EXPLANATION

The catch-up graphs of Fig. 2 were instrumental for il-
luminating the physics of the dynamic TIR phenomenology,
but they are restricted to the representation of the transmitted
wave. In order to bridge the transmitted wave to the incident
wave, which is the wave associated with the most important
critical angle (the source angle), Fig. 3 introduces incidence-
transmission momentum diagrams (see Sec. VI in Ref. [48]
for diagrams including also reflected waves). These diagrams
are dynamic generalizations of isofrequency diagrams that
follow possible anisotropic frequency transformations. They
also provide here a comparison means with the static case as
well as a global perspective of scattering beyond the critical
angles.

These momentum diagrams in Fig. 3 are obtained
as follows. First, we rewrite the phase-matching
condition ωin1 sin θi/c = ωtn2(kt ) sin θk

t /c as n1 sin θi =
n2,eff (kt ) sin θk

t , where n2,eff (kt ) = n2(kt )ωt (kt )/ωi is
the effective (anisotropic and anisofrequency) re-
fractive index of medium 2, which is constituted of
the moving-interface frequency-transformation term
ωt (kt ) = ωi[(1 − βn1 cos θi]/[1 − βn2(kt ) cos θk

t ] and the
moving-matter bianisotropy term, n2(kt ) (Sec. VI in [48]) [52]
Then, we plot the n1 and n2,eff (kt ) curves in the kzkx plane.

It appears in Fig. 3 that the kzkx curves for the domino-
chain system [Fig. 3(b)] and moving-truck system [Fig. 3(c)]
are very similar to each other, while the curves for the
conveyor-belt system [Fig. 3(a)] are very different from them.
Specifically, the transmission curves, which include informa-
tion on all the scattered angles (not just the critical ones),
are shifted in opposite directions for the former (domino-
truck) and latter (conveyor) systems. The comparison of the

FIG. 3. Momentum diagrams for the incident and transmitted
waves in terms of the normalized wavenumber ki,t = ki,t/(ωi/c),
along with critical angles, for the dynamic interfaces in Fig. 1, for
(n1, n2) = (2, 1.5) and both positive z motion (left), with β = 0.2,
and negative z motion (right), with β = −0.2. (a) Conveyor-belt
system. (b) Domino-chain system. (c) Moving-truck system. In all
the cases, the dashed curves correspond to the static case. In cases
(b) and (c), the dotted curves are isofrequency curves at θk

tc.

conveyor-belt and domino-chain systems indicates that the
effect of interface motion is opposite to the effect of matter
motion on the transmission momentum curves; this is ex-
plained by the fact that the Fresnel-Fizeau drags in the K ′
frame are opposite for the two systems. The fact that the
moving-truck system behaves similarly to the domino-chain
system, while it includes both interface and matter motion,
further reveals that the motion of the interface dominates
the motion of matter in the overall scattering phenomenol-
ogy, apparently because scattering is more influenced by
the discontinuity formed by the interface than by the me-
dia surrounding it. Thus, interestingly, a matter interface,
which involves cumbersome moving parts, can essentially be
replaced by a modulation interface, which would be more
practical for electromagnetic devices.

The critical angles are graphically found from the
momentum diagrams upon noticing that kxic = max(kxt =√

k2
t − k2

zt ), or kxic = max
(
kxt =

√
k

2
t − k

2
zt

)
in normalized

terms, is an alternative criterion to the transmission evanes-
cence criterion. Indeed, the kxi = kxt matching condition
cannot be satisfied any more when kxi becomes larger than
max(kxt ) [53], which corresponds to the top of the transmis-
sion curve; this means that the transmitted wave becomes
evanescent above this limit, and that this limit is therefore
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equivalent to evanescence TIR criterion. From this point, θic is
found by simply tracing a horizontal line from the top of the
transmission curve to the incidence curve, and reading out the
corresponding angle from the kz axis. It appears (see Fig. 3)
that, as a direct consequence of the opposite shift directions of
the momentum curves explained above, the critical incidence
angle is slightly increased by motion in the conveyor-belt
system for both the codirectional and contradirectional cases,
and strongly decreased in the codirectional case and increased
in the contradirectional case by motion for the domino and
truck systems.

Note that the transmission group velocity is no longer the
gradient of the effective refractive index curves in moving-
interface systems [Figs. 3(b) and 3(c)], since these curves do
not conserve frequency (	ω �= 0); to find this group velocity,
one must plot the isofrequency curve locally, at each θt point
of interest, as done in the figure (in the dotted line), at the
critical angle point, where the isofrequency curves are circles
in the domino-chain system and off-centered ellipses in the
moving-truck system, respectively.

VI. RESULTS AND DISCUSSION

On the basis of the physics established in conjunction
with Figs. 2 and 3, we can now investigate the depen-
dence of the critical angles given in Table I on the velocity
of the interface or/and matter. The corresponding curves
are plotted in Fig. 4 [54]. These results are validated by
finite-difference time-domain (FDTD) [55] simulations that
combine the frame-hopping technique [56,57] and the spatial
Fourier transform of the scattered fields [49,58] (data given
in Sec. VII in Ref. [48] and full-wave animations available in
Ref. [48]).

Several observations and explanations are in order in
Fig. 4. A global observation is that the domino-chain and
moving-truck systems exhibit the same, monotonic slope re-
sponses for all the critical angles, while the responses of
the conveyor-belt system are very different. This corresponds
to the particular case (critical angles) of the general effects
(all scattering angles) explained in conjunction with Fig. 3
(opposite Fresnel-Fizeau drags and predominance of interface
effect).

Specific observations in Fig. 4 include the following.
Figure 4(a) shows that the critical incidence angle response for
the conveyor-belt system is symmetric with respect to β = 0
with ∂θic/∂|β| > 0, and decreases monotonically (∂θic/∂β <

0) in the moving-interface (domino and tuck) systems down
to zero, where the incident wave cannot catch up with the
moving interface any more. These critical incidence angle
responses have been explained from the perspective of mo-
mentum variations in conjunction with Fig. 3. Figure 4(b)
shows that the critical reflection angle responses are always
the β-symmetric counterparts of the incidence responses in
Fig. 4(a); this is explained by the time-reversal condition
θr (β, n1) = θi(−β, n1) in the TIR regime (only 2 propagating
waves). Figure 4(c) shows the θS

tc responses, whose trends
behavior can be understood from the catch-up explanations in
Fig. 2 (and Figs. S1–S3 in [48]). Finally, Fig. 4(d) shows the
transmission phase angle response. Compared to the curves in
Fig. 4(c), the curves for the conveyor-belt and moving-truck

(a) (b)

(c) (d)
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tc θk

tc
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π/2
π/2

π/2 π/2

ππ

π/5π/5
ββ

β β

1
n1

1
n1

1
n1

1
n1

- 1
n1

- 1
n1

- 1
n1

- 1
n1

00

0 0

conveyor
belt

conveyor
belt

conveyor
belt

conveyor
belt

domino
chain

domino
chain

domino
chain

domino
chain

moving
truck
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truck

moving
truck

moving
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staticstatic

staticstatic

Theory

Theory

Theory

Theory

FDTD

FDTD

FDTD

FDTD

FIG. 4. Critical angles vs velocity (β = v/c) for the four systems
in Fig. 1 with the same refractive indices in Fig. 3 [the curves in
(c) and (d) have been downshifted by π/5 rad for visualization
convenience]. (a) Incidence. (b) Reflection. (c) Power transmission.
(d) Phase transmission.

systems experience an anticlockwise rotation about static-
system point; indeed, the Fresnel-Fizeau drag associated with
matter motion in these two systems rotates the group velocity
vector towards the direction of motion while not affecting the
direction of wave vector, as shown in Fig. 2, so that one must
have θk

tc ≷ θS
tc for β ≷ 0.

So far, we have studied the dependence of the critical
angles on the velocity, which is the far-field description of
TIR for the dynamic systems in Fig. 1. In order to gain some
deeper insight into the TIR phenomenology, we shall finally
inspect the near-field power distribution in the vicinity of the
interface. The corresponding transmitted and reflected power
distributions are plotted in Figs. 5 and 6, respectively, versus
θi and β for the most general case of the moving-truck system
(see Sec. VIII in Ref. [48] for detailed derivations and plots of
the other cases).

The graphs in Figs. 5 and 6 may be divided into three
regions: the transmission region (0 < θi < θic), the TIR re-
gion (θic < θi < θi,max) and the no-scattering region (θi,max <

θi < π/2), with θic being given by Eq. (4a) and θi,max =
arccos(βn1), which are delimited by the green and blue
curves, respectively. The dashed white line corresponds to the
static case, where the TIR regime involves wave evanescence
perpendicularly to the interface (z direction) and wave prop-
agation along the interface (x direction). The region beyond
and under this dashed line correspond to the codirectional and
contradirectional cases, respectively. In the contradirectional
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FIG. 5. Normalized transmitted power vs incidence angle and
velocity at the (periodic) point x located just beyond the interface
(z = vt+) where power is maximal for the moving-truck system for
the same refractive indices as in Fig. 3. Poynting vector (a) in the
direction of motion, Szt/|Si| and (b) in the direction of the interface,
Sxt/|Si|.

case, a shock wave is formed across the interface, due to
the “smashing” effect of the wave by the interface associated
with the Doppler blue shift effect and amplifying reflection
(see [48]), while in the codirectional case, the wave becomes
sparser across the interface, due to the “cushioning” effect
of the wave by the interface associated with the Doppler red
shift effect and attenuating reflection (see [48]). Note that the

(a) (b)
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FIG. 6. Normalized reflected power vs incidence angle and ve-
locity at the (periodic) point x located just before the interface
(z = vt−) for the moving-truck system for the same refractive indices
as in Fig. 3. Poynting vector (a) in the direction of motion, Szr/|Si|
and (b) in the direction of the interface, Sxr/|Si|. The imaginary parts
of the reflected Poynting vector are zero since the incidence medium
is assumed to be lossless.

transmitted Poynting vector in the TIR regime has both real
and imaginary parts in both the x-z directions, which indicates
that the propagating part of the transmitted evanescent wave
travels obliquely, hence predicting an oblique Goos-Hänchen
shift. The distribution levels of the scattered, stored and in-
jected energies around the interface may be computed via
the Poynting theorem using the field expressions derived in
Ref. [48].
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