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Determining the (bare) electron mass m0 in crystals is often hindered by many-body effects since Fermi-
liquid physics renormalizes the band mass, making the observed effective mass m∗ depend on density. Here,
we use a one-dimensional (1D) geometry to amplify the effect of interactions, forcing the electrons to form a
nonlinear Luttinger liquid with separate holon and spinon bands, therefore separating the interaction effects from
m0. Measuring the spectral function of gated quantum wires formed in GaAs by means of magnetotunnelling
spectroscopy and interpreting them using the 1D Fermi-Hubbard model, we obtain m0 = (0.0525 ± 0.0015)me

in this material, where me is the free-electron mass. By varying the density in the wires, we change the interaction
parameter rs in the range from ∼1–4 and show that m0 remains constant. The determined value of m0 is ∼22%
lighter than observed in GaAs in geometries of higher dimensionality D (D > 1), consistent with the quasiparticle
picture of a Fermi liquid that makes electrons heavier in the presence of interactions.
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I. INTRODUCTION

Since its creation in the 1920s [1], gallium arsenide (GaAs)
has become one of the first materials of choice for study-
ing a number of problems in fundamental physics, from the
well-known quantum Hall effects [2–4], to spin-orbit coupling
[5], and Wigner crystallization [6]. Simultaneously, it has
also been used, together with other compounds of the III-V
family, in manufacturing a range of electronic devices, such
as laser diodes, integrated circuits, and solar cells, with its
versatility as a direct band-gap material being still reflected
to date, as the most widely used semiconductor after silicon
[7]. One of the basic parameters of any material is the band
mass of its electrons m0, the value of which for GaAs is
often quoted as the effective bulk [three-dimensional (3D)]
mass of m∗

3D = 0.067me measured at low densities. Indeed,
it is well established that in a crystal the effective mass can
often differ from its free-space counterpart by up to several
orders of magnitude, something which is understood as a
direct result of the electron wave function interfering with the
ionic lattice. Additional degrees of freedom such as phonons,
spin waves, and plasmons, as well as impurity scattering and
spin-orbit interactions, have also been known to affect the
effective mass of carriers, including bulk GaAs [8]. At a
deeper level, however, one may wonder how strong the effect
of the unavoidable electron-electron (e-e) interactions may be
on their mass, given that, according to Fermi-liquid theory [9],
this cannot be separated from the band-structure effect on the
bare mass of one electron.

*Corresponding author: pmtv2@cam.ac.uk

A way of controlling the effect of e-e interactions on the
carrier mass is by altering the coordination number of the
electrons, via lowering the dimensionality D of the system.
In 1970, after Esaki and Tsu’s [10] breakthrough with the
invention of semiconductor quantum wells, two-dimensional
electron systems became available, which have since been
perfected to extremely high qualities. The study of the elec-
tron mass as a function of carrier density in GaAs/AlGaAs
two-dimensional (2D) heterostructures has, however, resulted
in conflicting results, with values both above and below the
band mass being reported across a range of techniques and
for varying carrier densities [11–14]. Going further to a one-
dimensional (1D) geometry changes the effect of interactions
drastically, with reduced masses having already been found in
gold atomic chains [15]. In semiconductor systems, however,
the most drastic departure from the single-electron picture has
been what came to be known as spin-charge separation [16,17]
predicted by the Luttinger-liquid theory [18,19]. As a result,
we have shown that the Fermi sea of electrons described by
only one mass (making the band-structure and the many-body
effects fundamentally indistinguishable in D > 1) separates
into two bands for excitations of spin (i.e., spinons) and charge
(i.e., holons), which can be described by two incommensurate
masses ms and mc, respectively [20]. This offers a method for
decoupling the effect of interactions from the measured band
mass, whereby m0 can be determined by increasing the density
and observing the point where the two masses converge in the
noninteracting limit.

In the present work, we demonstrate the experimental fea-
sibility of this method in GaAs by probing the dispersion
of the system via a tunneling spectroscopy technique. The
paper is organized as follows. In Sec. II we introduce the
experimental devices and spectroscopy technique used to
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probe the dispersion of a 1D wire array. Since the same de-
vices also allow for a 2D Fermi-liquid system to be probed,
we discuss in Sec. III how our technique already results in
mass values closely matching others obtained independently.
In Sec. IV we then introduce the Hubbard model, used in
analyzing the 1D experimental data, and extract m0 in Sec. V.
Section VI discusses the results, comparing them with previ-
ous works at higher dimensionality before the conclusion in
Sec. VII. Appendix A contains details on sample preparation
and the experimental setup. Appendix B discusses the interac-
tion parameter rs and how it can be enhanced by mapping at
the bottom of the second 1D subband.

II. EXPERIMENTAL SETUP

The system we have investigated is composed of an
array of gated 1D wires, separated from a nearby two-
dimensional electron gas (2DEG) by a superlattice barrier.
The surface structure of all devices was fabricated on a
200-μm-wide etched Hall bar, with current flowing along
the high-mobility axis (〈110〉 direction) of a molecular-beam
epitaxy (MBE) grown GaAs/Al0.33Ga0.67As double-well het-
erostructure. Electrical contact to both wells was established
using AuGeNi Ohmic contacts. All gates were patterned us-
ing electron-beam lithography, and consisted of split (SG),
midline (MG), bar (BG), and cut-off (CG) gates (used to set
up independent electrical contact to each well and, therefore,
the tunneling conditions), together with an array of air-bridge-
connected [21] wire gates (WGs) (used to define the quantum
wires in the top well only) [see Fig. 1(a)] . For full details on
sample preparation and measurement, see Appendix A.

In order to extract the bare electron mass m0, decou-
pled from e-e interaction effects, we perform a low-noise,
low-temperature spectroscopy measurement of the tunneling
current between each layer, given by

I ∝
∫

dk dE [ fT (E − EF1D − eVDC) − fT (E − EF2D)]

× A1(k, E )A2[k + ed (n × B)/h̄, E − eVDC]. (1)

Here, e is the electronic charge, fT(E ) the Fermi-Dirac dis-
tribution, d the center-to-center wave-function separation, n
the unit normal to the 2D plane, B = −Bŷ the magnetic-field
vector, ŷ the unit vector in the y direction, and A1(k, E ) and
A2(k, E ) the spectral functions of the 1D and 2D systems,
respectively, with Fermi energies EF1D and EF2D. As can be
seen, the tunneling current is then proportional to the overlap
integral of the two spectral functions.

In our devices, while the bottom 2DEG always remains
2D in nature, the top 2DEG has confined (1D) regions, in
between the wire gates (together with a small 2D “parasitic”
injection region, colored yellow). This means that we can use
the bottom layer as a well-understood spectrometer in order
to probe the 1D dynamics, along the wire, taking place in
the layer above [see Fig. 1(b) for a schematic representa-
tion]. An offset eVDC between the Fermi energies of the two
systems is obtained by applying a DC bias VDC between the
layers. Similarly, a shift in momentum can also be achieved
via a magnetic field of strength B parallel to the 2DEG lay-
ers, with the Lorentz force then adding �k = edB to the

FIG. 1. A vertical tunneling spectrometer. (a) Scanning elec-
tron microscopy micrograph of a 1-μm long device. A number of
electron-beam-defined gates are used in setting up the tunneling
conditions (see Appendix A for details). Inset: Air-bridge intercon-
nections, suspended ∼100 nm over the surface [21]. (b) Schematic
of a device operating in tunneling mode. Here, tunneling occurs
between a 1D wire array defined in the upper well (UW) and a 2D
spectrometer in the lower well (LW).

momentum of the tunneling electrons, where d is the center-
to-center wave-function separation. The dispersion of each
system is then mapped by measuring the differential tunneling
conductance G = dI/dV between the systems, as both energy
and momentum are varied.

III. MEASURING m∗
2D

We can set the wire-gate voltage VWG such that the wires
pinch off and are unable to conduct. Under these condi-
tions, electrons can only tunnel from the ‘parasitic injection
area running alongside the WG array. This is wide enough
(0.45–0.6 μm) for the electron gas to remain unconfined and,
therefore, 2D in nature (see Fig. 2). Note that the electron
densities in this region for both the upper (UWs) and lower
wells (LWs) [see Fig. 7(c) in Appendix B] are high enough for
these systems to be treated as Fermi liquids, with the effective
mass m∗

2D renormalized by interactions.
The curves drawn in Fig. 2 were obtained assuming single-

electron tunneling processes between the wells, and they mark
the positions of resonant peaks arising from the maximal
overlap of the offset spectral functions ε(k) for both wells.
These were obtained assuming a parabolic functional form

ε2D(k) = h̄2

2m∗
2D

[
k2 − (

k2D
F

)2]
(2)
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FIG. 2. Extraction of m∗
2D. Tunneling conductance differentials (a) dG/dVDC and (b) dG/dB as a function of interlayer bias VDC and

in-plane magnetic field B, for a device where the 1D wires were pinched off, so that only the 2D parasitic region is measured. Dashed and
dotted black curves mark the dispersion of each 2DEG, respectively corrected and not corrected for capacitance, as given by Eqs. (2) and (4).
The extracted 2D mass value was m∗

2D = (0.062 ± 0.002)me, in very good agreement with independent work already reported in the literature
(see text).

as well as conservation of energy and momentum during the
tunneling process

εUW(k − �k) = εLW(k) − eVDC, (3)

where �k = edB.
From the MBE growth specifications we have simulated

the expected band structure of the semiconductor wafer ma-
terial used (see [22] for full details). The finite capacitance
of the device also leads to an increase/decrease in the 2D
electron density on each side of the barrier, ±δn2D, which in
turn results in slightly asymmetric parabolas as k2D

F changes
with interlayer voltage VDC (±δk2D

F = ±πδn2D/k2D
F ). These

can be modeled as

k2D′
F = k2D

F ± δk2D
F = k2D

F ± πVDCC

ek2D
F A

, (4)

where C/A is the capacitance per unit area.
The best match to the 2D-2D tunneling signal coming from

the parasitic injection region (shown in Fig. 2) was obtained
with d = 31 nm, and capacitances C2D

UW = 0.0047 F m−2 and
C2D

LW = 0.0033 F m−2 for the two wells. Note that the slight
difference in capacitance between each well can be attributed
to extra coupling arising from the different distances to the
surface gates, with the ratio of depths ∼111/79 = 1.4 and
C2D

UW/C2D
LW ∼ 1.42. COMSOL [23] simulations of our devices

(which are not self-consistent) predict C/A ≈ 0.005 F m−2,
very close to the values obtained from the fitting.

Having now accounted for well separation and ca-
pacitance effects, we obtain m∗

2D = 0.93m∗
3D = (0.062 ±

0.002)me, where m∗
3D = 0.067me is the electron mass in

bulk GaAs in the low-density limit. This result is in
very good agreement with independent work carried out in
systems with similar densities and mobilities to ours, de-
rived from both Shubnikov–de Haas oscillations [11,12,14],

microwave-induced resistance oscillations [13], quantum
Monte Carlo calculations [24], and cyclotron-resonance
measurements [25].

IV. THE HUBBARD MODEL

Having shown our technique to work successfully in 2D,
we now use it in order to extract m0 by probing the dispersion
of the 1D wires. In this section, we will discuss the theoretical
model employed with the next section detailing on the exper-
imental measurement.

In order to get some microscopic interpretation of our sys-
tem and extract m0, we analyze the measured 1D dispersions
by comparing them with the many-body spectra as predicted
by the 1D Fermi-Hubbard model. Here,

H = −t
L/a∑

j=1,α=↑,↓
(c†

jαc j+1,α + c†
jαc j−1,α ) + U

L/a∑
j=1

n j↑n j↓,

(5)
where c jα are the Fermi ladder operators, α is the spin index
↑ or ↓, n jα = c†

jαc jα the density operator, t the hopping ampli-
tude, U the interaction strength, L the length of the wire, and a
the lattice parameter of the host crystal. The many-body spec-
tra of this model are found from the Lieb-Wu equations [26],

k jL −
M∑

l=1

ϕ(λm − k ja) = 2π I j, (6)

N∑
j=1

ϕ(λm − k ja) −
M∑

l=1

ϕ(λm/2 − λl/2) = 2πJm, (7)

where ϕ(x) = −2 arctan(4tx/U ) is the two-body scatter-
ing phase. A particular set of N nonequal integers I j and
M nonequal integers Jm dictate a unique solution of this
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FIG. 3. 1D many-body modes. (a) Theoretically obtained spinon (�) and holon (�) spectra as given by the Lieb-Wu equations for
unpolarized electrons (i.e., M = N/2) for an interaction strength γ = 2. The dashed curves correspond to parabolic fits, showing that each
mode closely matches a parabola. From here we extract the respective spin ms and charge mc mass. Note that the charge mode crossing the line
of the chemical potential at the −3kF and +kF points (or equivalently, at −kF and +3kF) corresponds to the density of its constituent particles
that is twice that for the spin mode crossing at the ±kF points, since the repulsive interaction lifts the twofold spin degeneracy, making the
number of charge degrees of freedom twice that for spin in the spin-unpolarized system. (b) Evolution of the spin and charge mass as a function
of γ . The symbols are calculated numerically by repeating the calculation shown in (a) for several γ (only every third point is shown in the
figure for simplicity) and the lines are obtained from smooth interpolation. (c) Dependence of the ms/mc ratio obtained from the pair of curves
in (b).

system of N + M connected equations for two types of mo-
mentum states, k j for charge and λm for spin degrees of
freedom, giving immediately the eigenenergy of the many-
body state as E = ta2 ∑N

j=1 k2
j and its momentum as k =∑N

j=1 k j . In the long-wavelength limit of our semiconductor
experiment, the hopping amplitude is given by the single-
particle mass m0 as t = h̄2/(2m0a2), scaling the spin and the
charge spectra simultaneously by 1/m0.

Selecting the two sets of integers as Fermi seas [I j =
−(N − 1)/2 · · · (N − 1)/2, Jm = −(M − 1)/2 · · · (M − 1)/2]
and creating linear excitations on top of them corresponds
to calculating two phenomenological parameters of the
low-energy field theory around the Fermi points ±kF

(the Tomonaga-Luttinger model) [27]. Extension of these
excitations away from the Fermi points provides a natural
continuation of the charge/spin branches into the nonlinear
region. Numerical calculation of their dispersions, shown by
triangles and squares in Fig. 3(a), gives shapes that are close
to two different parabolas (see magenta and green dashed
lines), which can be described by a pair of incommensurate
masses ms and mc. We use these two dispersions in fitting the
1D signal and its evolution with the microscopic Hubbard
parameters to extract the dependence of the two masses on
the interaction strength in our experiment. Instead of U we
use a more natural dimensionless interaction parameter of the
1D Fermi-Hubbard model [28],

γ = λF

16a

U

t

1

1 − 1
N

∑N/2
l=1

λ2
l (∞)−( U

4t )2

λ2
l (∞)+( U

4t )2

, (8)

where λF = 4L/N is the Fermi wavelength of the free-electron
gas and λl (∞) are the spin part of the solution of Eqs. (6) and
(7) in the infinite-interaction limit U → ∞. Taking the ther-
modynamic limit and assuming an unpolarized Heisenberg
chain (see also [29] for details), we obtain 1 − ∑

l . . . /N =
1.1931, giving

γ = 0.032
λF

a

U

t
. (9)

This serves as a more detailed counterpart of the generally
used interaction parameter rs in this particular dimension, by
including screening effects, which can be quite sizable in our
samples [20].

In order to model the dependence of the holon, mc, and
the spinon, ms, masses on the interaction strength, we repeat
the calculation of the dispersions of these two bands based
on the 1D Fermi-Hubbard model [presented in Fig. 3(a) for
γ = 2] for a range of γ from 0 to a large value. Fitting two
parabolas to the numerically obtained dispersions for each
calculation, we find the two masses’ dependence on γ , shown
in Fig. 3(b). At very large interaction strengths (i.e., large
γ ), the masses are very different from one another, with the
ratio of ms/mc becoming infinite for γ → ∞, since the spinon
dispersion flattens out, yielding ms → ∞, while the holon
mass remains finite in this limit [see Fig. 3(c)]. For small γ ,
on the other hand, the two masses are close to one another,
becoming degenerate and equal to the single-particle mass i.e.,
ms = mc = m0) in the free-particle limit of γ = 0. Since the
mass ratio is a monotonic function of γ for all interaction
strengths, we can use this dependence in order to extract
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FIG. 4. Probing the dispersion of a 5-μm 1D wire array. (a) Tunneling conductance differential dG/dVDC vs magnetic field B and interlayer
bias VDC for 1D-2D tunneling processes [dark-blue region in Fig. 1(a)]. VWG = −0.57 V so that only one 1D subband is occupied. VDC > 0
corresponds to the particle sector (+), and VDC < 0 to the hole sector (−), for electrons tunneling into and out of the wires, respectively. Black
dashed lines mark the locations of the resonances resulting from the 2D-2D tunneling processes between both wells in the parasitic injection
region [yellow region in Fig. 1(a)]. This has been separately mapped and subtracted from the data shown. The blue dashed line corresponds to
the dispersion of the bottom 2DEG as mapped by the 1D wires, while the green and magenta dashed lines are associated with the dispersions
of the 1D system, marking the locations of the spinon (s) and holon (h) modes, respectively. (b) Same as (a) but now with VWG = −0.535 V
so that the second 1D subband is also partially occupied. This allows us to reach significantly higher rs values (see text for discussion). Inset:
dG/dB differential of the same data showing two holon modes at high energies.

γ from the sets of experimentally measured values of mc

and ms.

V. MEASURING m0

Figure 4(a) shows a tunneling differential map dG/dVDC

vs B and VDC for a device where the wire-gate voltage VWG is
set so that only one 1D subband is occupied in the wires. The
curves drawn here were, similarly to before, obtained assum-
ing single-electron tunneling processes between the wells, and
mark the positions of resonant peaks arising from the maximal
overlap of the offset spectral functions. Black dashed lines
mark the location of 2D-2D resonant-tunneling processes al-
ready separately mapped and analysed in Sec. III, and which
have now been subtracted from the data.

From the zero-bias field intersections of the charge
(magenta) and spin (green) parabolas at B− and B+ (cor-
responding to k = ±kF), we extract kF = ed (B+ − B−)/2h̄.
This can be converted to the free-electron density n1D and
the interaction parameter rs, which are given by n1D = 4/λF,
and rs = 1/(2a′

Bn1D), respectively; for an equivalent analy-
sis in 2D and 3D geometries see Appendix B. Here, a′

B is
the Bohr radius of the conduction electrons in GaAs i.e.,
with m0 = 0.067me and ε ≈ 12). Fitting of the whole 1D
dispersion in the data reveals its modification by strong e-e
interactions, including the emergence of separate collective
spin and charge modes. As can be seen from the data, however,
the spin parabola below the B axis does not extend smoothly
towards higher energies. Instead, the dispersion at positive

bias extends down towards the charge line, which we interpret
as indicative of the presence of two, not one, Fermi seas, for
charge and for spin degrees of freedom, respectively (see our
previous work [20] for details). Nevertheless, both dispersion
modes are essentially parabolic, meaning that they can be
associated with an effective mass, ms and mc, respectively,
as predicted by the 1D Fermi-Hubbard model and shown
numerically in Fig. 3.

Our goal is to extract the electron mass m0 in 1D
GaAs wires as a function of density. In our previous works
[17,20,30–33], we generally worked at a range of rs =
0.8–1.5. Larger rs can nevertheless be obtained by mapping
near the bottom of a subband, by depleting it to as low
a density as possible. The present device design allows us
to vary the number of occupied 1D subbands up to four
(see Appendix B for details). Ideally then, the mapping would
be done at the bottom of the first 1D subband; however, at
these voltages the tunneling signal is strongly dominated by
the parasitic 2D injection region as the entire 1D channel is
near pinch-off. In addition, the presence of localized states
makes this region unsuitable for good subband resolution.
Similarly, fitting to the third or fourth subband proved inad-
equate, partially due to the proximity to the bottom of the 2D
band (where the upper 2DEG under the wire gates is not fully
depleted), and also due to the increase in overall map com-
plexity as more subbands become occupied. The most reliable
data were therefore obtained by mapping at the bottom of the
second subband, up to rs ∼ 4 [see Fig. 4(b) for an example of
a device mapped in the two-subband regime].
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FIG. 5. Extraction of the bare electron mass m0 in GaAs.
(a) Spinon (ms) and holon (mc) masses as a function of the interaction
parameter rs for devices with a variety of different lengths. (b) Same
data as that shown in (a) but now in terms of the interaction strength
γ . Note that γ is � rs but also includes screening effects that are
quite sizable in our samples (see details in [22]). In a 1D geometry,
m0 is then given as the convergence point of these two masses in
the limit as interactions are turned off (i.e., γ → 0). Dashed curves
represent a one-parameter fit for the evolution of ms and mc according
to the 1D Fermi-Hubbard model. Note that the obtained value of
m0 is significantly below 0.067me. The yellow shaded area marks
the region in which ms cannot be accurately determined, due to the
presence of the zero-bias anomaly (ZBA; see text for details).

Figure 5(a) shows the evolution of both ms and mc on rs.
We did not observe any dependence of either mass on channel
length (which was varied from 1to 18 μm). Nevertheless, in
order to increase the robustness of the analysis, we focused on
two samples with longer wires (3 and 5 μm), as they provide a
larger ratio of wire to parasitic signal. Note that already from
Fig. 5(a), one can already infer that the bare electron mass
m0 (falling somewhere in between ms and mc) is significantly
lower than 0.067me.

For each measurement with a different density, we ob-
tained the interaction strength γ from the directly observed

FIG. 6. Effect of dimensionality of the effective electron mass.
(a) Density dependence of the electron mass in GaAs at dif-
ferent dimensionalities. Three-dimensional (bulk), m�

3D, and two-
dimensional, m�

2D, effective mass of electrons in GaAs as a function
of interaction parameter rs [data taken from [8,14,24,34–42]. �
shows m�

2D extracted from our devices using tunneling spectroscopy,
and shown in Fig. 2. (b) Bare electron mass m0 extracted using our
tunneling-spectroscopy technique, for a variety of different-length
devices. Closed symbols correspond to datasets where both ms and
mc can be extracted, while for open symbols only mc is obtained.

ratio ms/mc using the dependence between these two quan-
tities predicted by the 1D Fermi-Hubbard model and shown
in Fig. 3(c). Figure 5(b) shows the same spin and charge
mass data but now as a function of the interaction strength
γ . We are able to follow the evolution of the charge mode
across a large range of γ values with good agreement with
theory. We can also follow the evolution of the spin mass,
as extracted from the same set of measurements, up to about
γ ∼ 3. Above this, the spin mode is obscured by the zero-bias
anomaly (ZBA), which greatly suppresses the signal within
±0.5 meV of zero bias. This is further complicated as, unlike
its charge counterpart, the spin mode is only observed and
tracked in the hole sector, making the extraction of ms more
challenging. Nevertheless, the extracted values are shown to
evolve systematically with γ , and they are in good agreement
with our model. As the mass of each mode converges to the
bare electron mass m0 once interactions are turned off (i.e.,
γ = 0), taking the best fit to the data as given by the 1D Fermi-
Hubbard model, we obtain m0 = (0.0525 ± 0.0015)me.

Alternatively, we can extract values of both m0 and γ

from each individual measurement at a different density (i.e.,
interaction parameter rs). In addition to extracting γ from
the observed ms/mc ratio, we use the Hubbard spectra to fit
data similar to that shown in Fig. 4 by scaling the overall
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energy axis by 1/m0. As a result, we obtain an average mass
of m0 = (0.0515 ± 0.0015)me for rs < 1.6, which shows no
dependence on density [see Fig. 6(b), closed symbols] and
is in good agreement with the previous value within experi-
mental error. Note that uncertainty in m0 mostly arises here
from the error in extracting mc and ms, as the observed disper-
sions are not perfectly sharp and have some finite broadening
(� ∼ 0.2–0.3 meV). At higher rs (open symbols), on the other
hand, extraction of m0 is hindered, given that ms cannot be
accurately extracted due to the ZBA. We estimate m0 by fitting
the spinon mode up to the point where the ZBA takes over,
γmin, as well as assuming a scenario of minimal screening,
γmax, from which lower and upper bounds, respectively, on
m0 can be obtained given knowledge of mc (see [22] for full
details). The open symbols in Fig. 6(b) correspond to the aver-
age values between these two limits. Therefore, although the
current level of resolution of the spin mode in our experiment
does not allow us to discern between different mass models,
our results are compatible with a picture where m0 remains
constant as a function of density, as it is no longer being
determined by many-body effects.

VI. DISCUSSION

The value of m0 = 0.0525me observed in this work falls
about 22% below the most-commonly quoted value of the
band mass, 0.067me. A comparison with other experimental
values measured at different dimensions and for various den-
sities is presented in Fig. 6(a), where the data for D > 1 are
taken from [8,14,24,34–42].

A systematic interpretation of this emergent picture can be
given in terms of Fermi-liquid theory [9], which is valid for
D > 1. Within this theory, the band mass m0 is renormalized
due to the many-body effect of the Coulomb interaction be-
tween electrons, producing an effective mass m∗. For weak
interactions (i.e., rs � 1), the well-understood random-phase
approximation [43] gives a reduction in the effective mass
m∗/m0 = 1 + b1rs ln rs + b2rs + O(r2

s ) < 1, where the posi-
tive coefficients bi depend on dimensionality and details of
the interaction potential, due to the screening effect, which
decrease the effect of interactions. For intermediate-to-strong
interactions, rs � 1, a larger degree of dressing in the forma-
tion of the quasiparticles competes with the screening, making
the effective mass heavier (m∗/m0 > 1), and for extremely
strong interaction rs � 20–30 the Fermi-liquid state is ex-
pected to break down, with interacting electrons undergoing
instead a type of exotic Wigner crystallization. However, the
microscopic calculation of the phenomenological parameters
of the Fermi liquid for intermediate-to-strong interactions
(i.e., rs � 1) is still an open problem, with effort being ex-
pended on both analytical [42,44,45] and numerical [46–48]
fronts. While these works converge at the qualitative level,
there is as yet no firm prediction for the exact dependence
of m∗ on rs beyond small rs, and at which value of rs the
crossover between the principal regimes occurs.

Given this state of the theory, we can conclude from our
data that for rs � 1–2 the Fermi liquid is already in the regime
where the quasiparticles consist of a large-enough number
of electrons to make the effective mass heavier than the
single-particle mass. Analyzing the dimensional dependence

in Fig. 6, we see that m∗ is heaviest for D = 3, in which the
largest coordination number makes the quasiparticles build
out of the largest number of electrons geometrically. Then,
m∗ decreases for D = 2, as expected for a smaller coordi-
nation number, and is lightest when D = 1, in which the
phenomenon of spin-charge separation and the emergence of
two separate Fermi seas fully decouples the interaction effects
from the mass renormalization, allowing the observation of
the bare band mass m0 directly. A further argument to support
this interpretation is the strong dependence of the observed
electron mass on density in D = 2, 3 but no clear variation of
the mass, within the error, for the density range observed in
D = 1. Indeed, note that even if there is some dependence of
m0 on rs, this can already be seen to be, within error, much
weaker than that observed in 2D and 3D over a comparable
range. It is also worth highlighting that the upper bound of the
error bars shown for rs � 2 was obtained assuming minimal
screening, an unlikely scenario since in this region every de-
vice has two 1D subbands occupied. Therefore, the real error
is most likely smaller than that shown in Fig. 6(b). Finally, we
stress that even without applying the Hubbard model, the fact
that m0 < m�

2D,3D can already be seen in Fig. 5(a) alone. For
additional effects that could affect the value of m0, see [22]
which includes [16,49–57].

VII. CONCLUSION

Using the effect of spin-charge separation in 1D we have
decoupled the interaction effects from the electron mass in
GaAs, allowing us to measure the bare mass directly. The
observed value of m0 = 0.0525me falls significantly below the
most commonly quoted value of the band mass 0.067me in
what is the second-most industrially important semiconductor.
Our experimental findings also show that a sizable proportion
of the effective mass in 3D (∼22%) can be accounted for by
interaction effects, which stresses further the need for non-
perturbative methods in the microscopic development of the
Fermi-liquid theory.

This result alone already provides reliable experimental
data on the decoupling of the single- from the many-particle
contributions to electronic parameters such as the carrier
mass, which could lead to direct improvements in the model-
ing of materials. Simultaneously, it also opens an opportunity
for improving the operational efficiency of electronic devices,
as additional control of the carrier mass can be achieved via
the toolbox of many-body physics. Indeed, lower carrier mass
should lead to lower resistivities, resulting in better energy
efficiency, as well as faster transistors, e.g. [58].

All data needed to evaluate the conclusions in the paper
are present in the paper and/or the Supplemental Materials.
The data and modelling code that support this work are also
available at the University of Cambridge data repository [59].
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FIG. 7. Characterization of the 1D wires and 2D spectrometer. (a) dG/dVWG (where G is the tunneling conductance) as a function of both
wire-gate voltage VWG and magnetic field B for a 3 μm device. As VWG becomes more negative, multiple 1D subbands start forming below
the 2D band, from VWG ≈ −0.3 V until ≈ −0.6 V, before the wires pinch off. The yellow-shaded area marks the bottom of the second 1D
subband. (b) Equilibrium 1D electron density n1D for each of the conducting subbands, determined from (a) (filled symbols). Open symbols
correspond to the equivalent density values as extracted from the full energy-momentum maps (see text). (c) 2D electron density n2D of the
parasitic injection region in both upper (blue) and lower (green) wells. The relative independence of n2D from VWG, together with the proximity
of the lower-well density values in the parasitic and wire (red) regions, allows us to use the lower well as a well-understood 2D probe (our
spectrometer). (d) Interaction parameter rs as a function of n1D, calculated using Eq. (B1).

APPENDIX A: SAMPLE PREPARATION
AND MEASUREMENT

All devices measured in this work were fabricated us-
ing two double-quantum-well semiconductor heterostructures
grown via MBE. These comprised two identical 18-nm
GaAs quantum wells separated by a 14-nm Al0.165Ga0.835As
superlattice tunneling barrier (ten pairs of Al0.33Ga0.67As
and GaAs monolayers). Both wafers had 20- and 40-nm
Al0.33Ga0.67As spacer layers above and below the wells,
respectively. These were followed in both cases by 40-
nm Si-doped layers of Al0.33Ga0.67As (donor concentration
1×1024 m−3). Wafer 1, however, differed from Wafer 2 by
having a 100×(2.5 nm/2.5 nm) GaAs/AlGaAs superlattice
below the 350-nm AlGaAs under the lower quantum well. The
electron concentrations were 3 (2.2)×1015 m−2 with mobili-
ties of 120 (165) m2 V−1 s−1 for the top (bottom) wells for
Wafer 1, and 2.85 (1.54)×1015 m−2 and 191 (55) m2 V−1 s−1

for Wafer 2, as measured at 1.4 K. The distance from the top of
the upper well to the surface was ∼70 nm, including a GaAs
cap layer to prevent oxidation.

The WGs fabricated were 1–18 μm long and 0.3 μm wide,
with their separation varying between 0.15 and 0.17 μm.
These parameters were chosen so as to provide an energy
spacing between the 1D subbands large enough that different
degrees of subband filling could be probed separately. By
changing the voltage applied to the WGs, one can continu-
ously change the degree of lateral confinement, and therefore
the strength of the e-e interaction. A parasitic gate running
along the length of the array was used to modulate the density
of the 2D parasitic injection region. All device dimensions
were carefully chosen to minimze any modulation of the
bottom well, which acted as a 2D spectrometer.

All measurements shown in this work were carried out in a
3He cryostat at 300 mK. The tunneling conductance was mea-
sured with the excitation current chosen so as to avoid sample
heating. Each sample was also measured in full during a single
cooldown, in order to allow for better data consistency, though
different samples were independently thermally cycled, with
no significant changes. In total, five different devices were
measured, from two different wafers, and belonging to dif-
ferent fabrication batches.
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APPENDIX B: INTERACTION PARAMETER rs

The Wigner-Seitz radius rs is often defined as the ra-
tio of the interaction energy to the kinetic energy, and
is used as a way to estimate the interaction strength
in Fermi systems independently of their dimension. It is
given by

rs =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2aBn1D

in 1D(
1

πa2
Bn2D

)1/2
in 2D(

3
4πa3

Bn3D

)1/3
in 3D,

(B1)

where n1D, n2D, and n3D, are the respective electron densities
in 1D, 2D, and 3D, and aB = 4πεε0 h̄2/me2 is the Bohr radius.
In GaAs, ε ≈ 12 and m = 0.067me.

In our experiment we can vary the number of occupied
1D subbands from one to four by applying a bias VWG to
WG [see Fig. 7(a)]. From here, we extract the value of the
Fermi wavelength λF in the 1D and 2D regions from their
respective densities [see Figs. 7(b) and 7(c)]. These values
can also be obtained from maps such as that shown in Fig. 4,
using the zero-bias intersection points, B+,−. This gives us
two independent estimates from which the value of rs can be
extracted. Note that n1D = 4/λF and n2D = 2π/λ2

F.
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