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Electrically controlled entanglement of cavity photons with electromagnons
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Electromagnonics is an emerging field with a focus on entangling magnonic excitations to the microwave
cavity photon modes with the prospect for use in quantum information science. Here, we discuss a class of
Hamiltonians that embody a substantial steady-state photon-magnon entanglement enabled by a chiral coupling
of the magnonic system to the cavity electric field. It is demonstrated how the entanglement can be controlled via
external parameters. As a realization, we study a layered system that hosts an interfacial Dzyaloshinskii-Moriya
interaction whose strength varies linearly with the cavity electric field rendering the low-energy spin excitations
susceptible to an electric field and resulting in nonlinear magnon-photon dynamics. Accounting for interactions
with the environment, we derive from the stochastic quantum Langevin equations explicit expressions evidencing
the existence of a finite, steady-state entanglement and detailing its dependencies on external probes. The
results point to particular types of electromagnonic systems that are potentially useful for quantum information
applications.
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I. INTRODUCTION

Recent advances in quantum devices have rendered possi-
ble the experimental implementation of theoretical concepts
for quantum metrology. Established research schemes exploit
the cavity quantum electrodynamics to enable atom-photon
entanglement or enhanced photon-phonon interactions in
optonanomechanical systems [1–5]. Relatively recent de-
velopments are the fields of electromagnonics [6] and
optomagnonics [7–10] which refer to studies on magnetically
ordered systems in photonic cavities with the aim to increase
and functionalize the coupling of the cavity and optical pho-
tons to low-energy magnetic excitations, for example, spin
waves (with magnons being the quanta of these excitations).
For a range of materials including ferrimagnet, antiferro-
magnet, or helical multiferroic such as Cu2OSeO3 [11–19] a
coupled magnon-photon dispersion and energy levels repul-
sion due to magnon-photon modes hybridization were found.
Level repulsion or attraction of classical modes does not imply
an underlying quantum information content. From a quantum
information point of view, interaction does not guarantee a
steady-state entanglement of these two (magnon and photon)
bosonic continuous modes [20–22].

We will demonstrate that, for a steady-state entangle-
ment [23,24] that survives environmental perturbations, the
system must involve certain type of interactions leading to
a nonlinear response of the coupled modes. For a poten-
tial use in quantum information circuits, it is important to
achieve a sizable photon-magnon entanglement that can be
controlled by external fields. We demonstrate the need to go
beyond the conventional optomagnonic setup to entangle and

control the photon and magnon modes, and present a proposal
based on feasible materials for entangled (electro)magnonics.
Reference [25] demonstrated that a steady-state tripartite
entanglement of a photon-magnon-phonon system in the pres-
ence of noise can be obtained. Here we show that introducing
Dzyaloshinskii-Moriya interactions (DMI) and applying a
static electric field, even bipartite photon-magnon systems
could exhibit feasible entanglement effect in the presence of
noise.

We exploit the experimental observation (backed and ra-
tionalized with theoretical simulations) that layered systems
containing an ultrathin magnetic film exhibit an interfacial
DMI with an electrically tunable strength. Examples are
Co films sandwiched between nonmagnetic layers [26] or
MgO/Fe/Pt [27] (cf. Fig. 1). In fact, the low-energy ex-
citations are then electromagnons, as detailed below. The
susceptibility of the spin excitations to an electric field (me-
diated by DMI) offers the opportunity of entangling the spin
modes to the cavity electric field. In contrast to conventional
magnonics where the cavity magnetic field interacts with the
magnon modes, the setup sketched in Fig. 1 is demonstrated
to exhibit a nonlinear spin dynamic and a sizable steady-state
electromagnon-photon entanglement that can be varied by the
cavity characteristics and/or an electric gate.

Paper is organized as follows. In Sec. II, we consider
magnetoelectric excitations in the cavity and specify the
models of interest, in Sec. III, we demonstrate absence of
the steady-state magnon-photon entanglement in the con-
ventional model. In Sec. IV, we analyze the role of the
DMI term in the formation of robust magnon-photon en-
tanglement. In Sec. V, we discuss experimental proposals
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FIG. 1. Setup for photon-magnon entanglement. A cavity field is
coupled to magnonic excitations in a ferromagnetic layer which is
sandwiched between nonmagnetic layers resulting in an electrically
tunable interfacial Dzyaloshinskii-Moriya interaction (DMI). The
DMI mediates a coupling of the cavity electric field to magnetic
excitations. An external static magnetic field is applied along the z
axis. The cavity field is linearly polarized along the y direction.

for measuring the robust steady-state magnon-photon entan-
glement. Technical details of calculations are presented in
Appendices (A–C).

II. CAVITY MAGNETOELECTRIC EXCITATIONS

Our aim is to deduce material and system-independent
trends and statements on the entanglement existence and its
dependencies. To be specific however, we refer to Fig. 1 as
the cavity-enclosed layered heterostructure. The DMI vector
is along the z axis. As evidenced by theory and experiment
[26], the DMI strength depends linearly on the magnitude of
an electric field along the interfacial direction y. A relatively
small perpendicular magnetic anisotropy [26] exists but it is
negligibly small as compared to the DMI strength.

The cavity field (cf. Fig. 1) is described by Ê =∑
l iεUl (r)(âl − â†

l ), ĥ = ∑
l εUh

l (r)(âl + â†
l ) where

âl and â†
l are annihilation and creation operators of photons

of the mode l , respectively. Below, we study a field with fixed
frequency ω f and polarized along the y axis (which fixes l).

ε =
√

ω f

2ε0V , where ω f = c|k| is the energy dispersion and k

is the wave vector (c is light speed). V is the cavity mode
volume, ε0 is the vacuum permittivity, and U(r), Uh

l (r) are
the cavity mode function for photon electric and magnetic
fields. The components of the cavity mode function follow
from the Helmholtz equation �Ux,y,z + k2Ux,y,z = 0.

As control parameters, we apply an external (unquantized)
static electric field E0y along the y direction and a strong
magnetic field H0 along the z direction. The spins in the
magnetic layer experience a DMI with a strength D0 related
to an intrinsic DMI part, and a part controllable by E0y which
behaves as D0z = αE0y. A further DMI contribution, propor-
tional to α depends on the quantized cavity electric field Ê .
The linear dependence of DMI on the electric fields is evi-

denced by theory and experiment [26] yielding an estimate of
the (magnetoelectric) coupling constant α.

The low-energy spin dynamics of the system sketched in
Fig. 1 is captured by the Hamiltonian

Ĥ = − J
∑

n

ŜnŜn+1 − H0

∑
n

Ŝz
n + BŜ⊥

n e−i(ω0t−kx)

+ (D0 + D0z )
∑

n

(Ŝn × Ŝn+1)z + Ĥc (1)

with

Ĥc = ω f â+â −
∑

n

ĥ · Ŝn + αÊy

∑
n

(Ŝn × Ŝn+1)z.

Here Ŝ⊥
n = Ŝx

n + iŜy
n. The electric Ê and magnetic ĥ compo-

nents of the cavity field are to be expressed through the photon
creation and annihilation operators â+ and â. Ŝn describes
the spin on the nth site exchange coupled (with coupling
constant J > 0) to the next neighbor (sample’s translational
invariance along z is assumed). In Eq. (1), Ĥ − Ĥc describes
an exchange-coupled spin system with DMI in static electric
and magnetic fields and circularly polarized magnetic field
B, while Ĥc encompasses the cavity fields coupled to the
spins. The last term in Ĥc is a product of three operators
which we show to result in a nonlinear spin wave dynamics
and a finite steady-state, electrically sensitive magnon-photon
entanglement. For α = 0 (thus D0z = αE0y = 0), we retrieve
the conventional cavity photon magnon Hamiltonians [18]
(with or without DMI), which leads in first order to a linear
dynamic and a vanishing steady-state entanglement.

To account for environmental effects, we intro-
duce âin(t ) and m̂k,in(t ) as input noise operators
affecting the cavity and magnon modes, respectively.
The noise is characterized by the following cor-
relators [25]: 〈ain(t )a+

in(t ′)〉 = [Na(ω f ) + 1]δ(t − t ′),
〈a+

in(t )ain(t ′)〉 = Na(ω f )δ(t − t ′), 〈mk,in(t )m+
k,in(t ′)〉 =

[Nm(ωk ) + 1]δ(t − t ′), 〈m+
k,in(t )mk,in(t ′)〉 = Nm(ωk )δ(t − t ′),

Na(ω f ) = [exp[(h̄ω f /kBT )] − 1]−1, and Nm(ωk ) =
[exp[(h̄ωk/kBT )] − 1]−1 (and T is the temperature). Upon
a Holstein-Primakoff transformation [28] we switch to
reciprocal space operators m̂+

k and m̂k , and proceed in the
spirit of the input-output formalism [12,29–31] to obtain a set
of quantum Langevin equations for the photon and magnon
modes affected by the magnon and photon baths (γ f /m are
photonic/magnonic damping rates):

dâ(t )

dt
= −i[â(t ), Ĥ ] − γ f â(t ) + √

2γ f âin(t ),

dm̂k (t )

dt
= −i[m̂k (t ), Ĥ ] − γmm̂k (t ) +

√
2γmm̂k,in(t ). (2)

The procedure applies to both, the conventional (α = 0, D0 �=
0) and our general (α �= 0) cases.

For clarity, we use dimensionless time by redefining t →
γ S0Jt . The DMI constants, excitation frequencies, and damp-
ing rates are measured in units of γ S0J , where γ is the
gyromagnetic ratio, and S0 is the saturated spin value. The
experimental parameters, the symmetric and antisymmetric
exchange constants are taken from Refs. [32] and [26], respec-
tively. The exchange constant per magnetic atom is chosen
to be JS2

0 ≈ 5 meV, while the enhanced DMI constant per
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atom is of the order of 1.55 meV. We use the value of D0 in
units of J as D0 = 0.3. The parameter α quantifies the linear
dependence of the DMI constant on the value of the external
electric field and is equal to α ≈ 20 meV nm V−1. For an
electric field in the range of 1 V/nm, the values of D0z and
D = εUα are about 0.05 (in units of J), while the circularly
polarized magnetic field strength B is measured in units of JS0

and its values are on the order 0.01 A/nm.

III. CONVENTIONAL CASE - NO ENTANGLEMENT

For α → 0; or if α �= 0 but the electric fields (static or cav-
ity fields) are not directed along y axis, our problem reduces
to the conventional optomagnonic Hamiltonian Ĥα=0 [18]. In
rotating wave approximation, Eq. (1) reduces for linear spin
excitations to

Ĥα=0 =
∑
f ,k

ωkm̂+
k m̂k + ω f â+

f â f + g(m̂+
k â f + m̂kâ+

f ), (3)

where ωk and ω f are spectra of the magnon and photon sub-
systems, and the magnonic spectrum has the form

ωk = H0 + (1 − cos k) + D0 sin k, (4)

where g is the coupling to the cavity magnetic field. In (3), for
brevity we dropped the magnonic pump field B, however it is
included in the calculations and has a crucial importance for
the case α �= 0.

In the conventional model (3), the magnon-photon entan-
glement is zero. In the absence of the environmental effects
for model Ĥα=0, one can calculate the magnon-photon en-
tanglement in the eigenstates of Ĥα=0 and the entanglement
between the cavity field and the coherent magnon state. The
Hamiltonian Ĥα=0 conserves the mean excitation number in
the system nβ + nph = const, where nβ and nph are magnon
and photon numbers, respectively. At first we assume that the
number of magnons and photons is very small (e.g., zero or
single magnon and photon states nβ = 0, 1 and nph = 0, 1).
Then using the basis of uncoupled magnon |β〉m and pho-
ton |α〉 f states |β〉m ⊗ |α〉 f , we diagonalize Ĥα=0 and find
the eigenstates |	〉n and eigenvalues En, n = 1, . . . , 4 of the
Hamiltonian Ĥα=0. The two entangled states

|	〉1,2 = A|0〉m ⊗ |1〉 f ± B|1〉m ⊗ |0〉 f , (5)

(the functions A and B are given below explicitly) have the
same concurrence and the other two |	〉3,4 are product states
(not shown). Considering only entangled states |	〉1 or |	〉2

we construct the density matrices ρ̂n = |	〉〈	|n=1,2 and cal-
culate the magnon-photon concurrence:

Cn = max(0,
√

Rn,1 − √
Rn,2 − √

Rn,3 − √
Rn,4), (6)

where Rn,i are the eigenvalues of the matrix Rn = ρ̂n(σ̂ y
1 ⊗

σ̂
y
2 )(ρ̂n)∗(σ̂ y

1 ⊗ σ̂
y
2 ) in decreasing order calculated in the

computational basis |β〉m ⊗ |α〉 f , α, β = 0, 1. The explicit
expression of the concurrence reads

C|	〉 = 2g√
(ωk − ω f )2 + 4g2

. (7)

The concurrence is maximal C|	〉 = 1 at resonance ωk = ω f

when the eigenstates correspond to the Bell’s state, i.e., A =

B = 1/
√

2, |	〉 ≡ |	〉+. In the nonresonant case, the expres-
sions of the coefficients A and B are involved:

E = ωk − ω f + √
(ωk − ω f )2 + 4g2

2
,

A = 1√
2

√
ω f − ωk + √

(ωk − ω f )2 + 4g2

4
√

(ωk − ω f )2 + 4g2
,

B =
√

2g

4
√

(ωk − ω f )2 + 4g2
√

ω f − ωk + √
(ωk − ω f )2 + 4g2

.

While in Eq.(7), entanglement between magnons and photons
is not zero, entanglement becomes zero when we consider
environmental effect (see below). We proceed with the less
trivial case when the number of magnons in the cavity field is
larger nβ � 1.

To calculate entanglement between cavity field and coher-
ent magnon states, we follow [33] and solve Schrödinger’s
equation

i
d

dt
|ψ〉 = Ĥα=0|ψ〉, (8)

using the following ansatz

|ψ (t )〉 =
∞∑

n=0

[ϕ f =0,n+1(t )| f = 0, n + 1〉

+ ϕ f =1,n(t )| f = 1, n〉] + ϕ f =0,0(t )| f = 0, 0〉. (9)

Here, f defines the photon number and |n〉 stands for the
magnon coherent state. In the resonant case, the solution of
Eq. (8) has the form

ϕ f =1,n(t ) = Cnwnc1 − iSnwn+1c0,

ϕ f =0,n+1(t ) = Cnwn+1c0 − iSnwnc1,

ϕ f =0,0(t ) = c0w0. (10)

c0 and c1 define the amplitudes of the zero and single photon
states, Cn = cos(

√
n + 1gt ), Sn = sin(

√
n + 1gt ), and w2

n =
nn

β

n! e−nβ is the magnon coherent state with the mean magnon
number nβ . Taking into account Eq. (10), we construct the
reduced density matrix after tracing the magnon states �̂ =∑∞

n=0〈n|ψ (t )〉〈ψ (t )|n〉. The entanglement between the cavity
field and the coherent magnon states is quantified in terms of
purity

P = Tr(�̂2) =
∞∑

n=0

[(|ϕ f =1,n|2 + |ϕ f =0,n+1|2)2 + 2|ϕ f =0,0|2

× (|ϕ f =0,n+1)|2 + |ϕ f =1,n|2)] + |ϕ f =0,0|4.
Using Eq. (10), from the above equation we infer

P = |c1|4e−2nβ I0(2nβ ) + 2|c0|2|c1|2e−2nβ I1(2nβ )

+ |c0|4e−2nβ (I0(2nβ ) − 2) + 2|c0|2e−nβ . (11)

In(x) is the modified Bessel function. In the limit of a large
magnon number nβ � 1, we find P = 0, meaning zero entan-
glement between the quantized cavity field and classical spin
wave.
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To apply the procedure (2) to Eq. (3), we specify a
linear amplifier A which transforms the input state ρ̂in,n

into an output signal ρ̂out = Aρ̂in,n and has the following
property 〈â〉out = tr[âAρ̂in] = G〈â〉in. Considering the Hamil-
tonian Ĥα=0 given by Eq. (3) in the main text, we solve
for the associated Eqs. (2). To this end, we implement the
input-output formalism. The output field is calculated from
the following equation: âout + âin = √

2γ f â. The amplifier
is phase preserving if G is real. Then, for a resonance fre-
quency component at frequency (ω) of the stochastic input
field âin(ω) = eiωt âin, we seek harmonic solutions of Eqs. (2),
i.e., â ∼ eiωt and m̂k ∼ eiωt . We assume that the magnons are
not pumped into the system m̂k,in = 0 and therefore

â f =
√

2γ f (i(ωk − ω) + γm)

(i(ω f − ω) + γ f )(i(ωk − ω) + γm) + g2
â f ,in. (12)

Taking into account âout + âin = √
2γ f â for the reflection co-

efficient, we obtain

aout

ain
= 2γ f (i(ωk − ω) + γm)

(i(ω f − ω) + γ f )(i(ωk − ω) + γm) + g2
− 1. (13)

We evaluate the real and imaginary parts and obtain the mi-
crowave reflection coefficient in the explicit form:

G = aout

ain
≡ G0eiφg, G0 =

√
G2

1 + G2
2, tan φg = G2

G1
,

G1 = − g4 − 2g2ωm� f + (γ 2
m + ω2

m)(�2
f − γ 2

f )

((γmγ f − ωm� f ) + g2)2 + (� f γm + ωmγ f )2
,

G2 = − 2γ f � f (γ 2
m + ω2

m) − 2g2ωmγ f

((γmγ f − ωm� f ) + g2)2 + (� f γm + ωmγ f )2
,

ωm = ωk − ω, � f = ω f − ω. (14)

The amplitude and the phase of the amplifier are plot-
ted in Fig. 2 exhibiting absorption tracks, along which the
amplitude of the amplifier is less than one, and the phase
abruptly changes sign. For those values of the parameters, the
absorption is large.

To study the steady-state magnon-photon entangle-
ment corresponding to Ĥα=0, we introduce (similar to
Refs. [25,34,35]) the following variables (xm, pm, xa, pa) and
the vectors xm = (m̂ + m̂+)/

√
2, pm = i(m̂+ − m̂)/

√
2, xa =

(â + â+)/
√

2, pa = i(â+ − â)/
√

2, u(t ) = [xm, pm, xa, pa],
and n = [

√
2γ f xin

m ,
√

2γ f pin
m,

√
2γmxin

a ,
√

2γm pin
a ]. Equa-

tion (2) is cast as

du(t )

dt
= Au(t ) + n(t ). (15)

The Gaussian steady covariance matrix Vi j = 〈uiu j + u jui〉
follows from the equation

AV + VAT = W. (16)

For low temperatures T → 0, the matrix W is cast as W =
diag(A). For the general case, analytic expressions are more
involved and the results are presented in Appendix B.

To quantify the magnon-photon entanglement, we use the
logarithmic negativity [20,23,36,37]:

EN = max[0,− ln[2η−]], (17)

FIG. 2. The amplitude (a) G0[� f , ω] and the phase (b) φg[� f , ω]
of the amplifier [see formulas (2) and (3)] plotted for the values of
parameters γ f = 0.2, ωk is given by (4) with k = π/2, γm = 0.04,
H0 = 0.2, and D0 = 0.5. All the quantities are in the reduced units
and in graph (b) the color map is in degrees.

where η− = min eig|i�2P12V P12|, �2 = ⊕2
j=1 iσy, and P12 =

diag(1,−1, 1, 1). The entanglement is nonzero (the case of
our interest) if 0 < 2η− < 1. The calculations show that

2η− =
√

(κ + δ0)2 − 4(β2
0 + μ2) − (κ − δ),

κ = γ f + γm

2γ f
, β0 = γm(ωk − ω f )

2gγ f
, μ = γm

2g
,

δ0 = g2(γm + γ f ) + γm
(
γ 2

f + (ωk − ω f )2
)

2g2γ f
. (18)

Because of the δ0 term 2η− > 1. Thus Eq. (18) reveals that
dissipation and decoherence included in the quantum stochas-
tic Langevin equation Eq. (2) leads to a vanishing steady-state
photon-magnon entanglement for models based on the Hamil-
tonian Ĥα=0, given by Eq. (3).

IV. MAGNETOELECTRICALLY INDUCED
ENTANGLEMENT

For α �= 0, the cavity electric field in Fig. 1 affects the
DMI and hence the magnons. The Hamiltonian Ĥ for small-

115126-4



ELECTRICALLY CONTROLLED ENTANGLEMENT OF … PHYSICAL REVIEW B 107, 115126 (2023)

FIG. 3. Logarithmic negativity EN as a function of the square
root of the mean magnon number |β|, and detuning δ = ωk − ω f

for the values of parameters γm = 0.04, γ f = 0.2. For all graphs,
H0 = 0.2, �k = ωk − ω0 = 0, and D0 = 0.3, while different magnon
modes and electric fields are considered: (a) k = π

2 , D0z = D = 0.05;
(b) k = π

4 , D0z = D = 0.05; (c) k = π

2 , D0z = D = 0.03; and (d) k =
π

2 , D0z = D = 0.02.

amplitude spin excitations reads

Heff =
∑

k

ωkm̂+
k m̂k + iB(m̂+

k e−iω0t − m̂keiω0t )

+ ω f â+â + iDm̂+
k m̂k (â − â+) sin k. (19)

D = εUα and the magnonic spectrum (4) is modified by the
term related to the static electric field along the y axis D0z =
αE0y

ωk = H0 + (1 − cos k) + (D0 + D0z ) sin k. (20)

In contrast to Ĥα=0 given by Eq. (3), low-energy excitations
of the Hamiltonian Heff , given by Eq. (19), are electro-
magnons which are governed by nonlinear equation of motion
and exhibit electrically controllable electromagnon-photon
entanglement. To show this, we insert Eq. (19) in Eq. (2) and
write any operator Q̂ as Q̂ = 〈Q〉 + δQ̂, and retain linear terms
in the deviation δQ̂ [25]. Then we obtain a general explicit ex-
pression for the entanglement measure (like in Ĥα=0 case) as
Eh,w

N = max[0,− ln[2η−
h,w

]]. As expected and demonstrated

in Appendix A, Eh,w
N → 0 for strong damping (γ f � 1, or

γ f � 1). For further insight, let us adopt the semi-classical
approximation 〈m̂+

k m̂k〉 = 〈m̂+
k 〉〈m̂k〉, 〈m̂+

k 〉 = β∗e−iϕ , 〈m̂k〉 =
βeiϕ and consider the resonant case �k = ωk − ω0 = 0 im-
plying β = B/γm (cf. Appendix A), with |β|2 defines the
mean magnon number. For a strong coupling with the classical
field, the mean magnon number |β|2 is large, approaching the
classical limit, i.e., vanishing entanglement as demonstrated
by Fig. 3. There, it is shown the entanglement is the largest
for vanishing detuning δ and moderate β (or field strength B).
For larger detuning, a small entanglement emerges for strong

0 0.5 1 1.5
0

0.1

0.2

0.3

0 0.5 1
0

5

10

|
|

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

FIG. 4. (a) Dependence of EN on the external electric field E0y =
D0z/α at T = 0 for the case D0 = 0.3, D = 0.05, ω0 = 1.9, ω f =
0.5, and k = π/2. Inset shows the dependence of the square root
of the mean magnon number |β| on the external electric field D0z.
(b) Dependence of EN on the bath temperature for the magnonic
driving field B. All parameters are the same as in graph (a), and
D0z = 0.

fields (large β) driven by nonlinearity. Note that we do not
consider larger values of δ, since for the given set of param-
eters, ωk has a fixed value and we shall keep ω f positive. On
the other hand, for weak fields such that 2BD sin k < γmω f

we find the limiting expression (cf. Appendix A)

Eh,w
N = − ln

(
1 − 2BD sin k

γmω f

)
. (21)

Clearly, the entanglement vanishes at zero field (B) and/or
vanishing k vector and/or DMI (D → 0), as illustrated by the
results from the formulas in Appendix A, depicted in Fig. 3.

The entanglement EN can be externally controlled, elec-
trically (via E0y = Dz0/α) or magnetically, as demonstrated
by Fig. 4. As evident from Fig. 4(a), large E0y enhances the
mean magnon number |β|2. EN decreases with increasing E0y.
This behavior depends on the pumping magnetic field which
has an involved role (increases the magnon population and
activates nonlinearities). For larger temperatures EN vanishes
but a magnetic field can stabilize to some extent EN against
thermal effects, as demonstrated by Fig. 4(b).

V. DISCUSSIONS AND EXPERIMENTAL PROSPECTS

The aim of this study has been to derive general analytical
expressions for a complete class of Hamiltonians that exhibit
steady-state entanglement of the low-energy spin excitations
to the cavity modes of the electromagnetic field as well as to
identify simple expressions for limiting cases that can serve
as benchmarks for more numerically based research.

For entanglement measurement we may rely on the fol-
lowing recipe (described in detail in, e.g., Refs. [25,38]):
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In essence, independent entries of the Gaussian steady
covariance matrix Vi j are to be measured [39]. In the ex-
periment, cavity field quadratures are measured directly by
homodyning the cavity output. On the other hand, infor-
mation about the magnon subsystem could be extracted
through a weak microwave probe field. We consider the
scenario when the entangled photons and magnons have
different frequencies ω f �= ωk . To measure the magnon
dynamics, one applies a resonant weak electromagnetic
field. The effect of that field on the magnon subsystem
is small, and one is left with the first equation from
(2) written in the following form: da′(t )

dt = −iωka′(t ) −
D sin k〈m+

k 〉δmk − γ f a′(t ) + √
2γ f a′

in(t ). As 〈m+
k 〉 = β∗e−iϕ

and δmk ∝ exp (iωkt ), in the rotating frame follows a′
out =√

2γ f a′ − a′
in = −

√
2D sin k〈m+

k 〉δmk

γ f
+ a′

in. Thus, through mea-

suring the output field, a′
out one extracts complete information

about the magnonic excitation δmk .

VI. SUMMARY

As it has been shown above, the magnon-photon entangle-
ment depends on two parameters: the mean magnon number
in the cavity |β|2 and the detuning between the magnon and
the photon modes δ = ωk − ω f . Different magnon modes are
differently entangled with the photons. As general trends, the
entanglement is maximal for the resonant modes ωk = ω f and
decays with an increasing mean magnon number in the cavity.
For weak D, the maximal magnon-photon entanglement is
shifted towards the states with larger magnons [cf. Fig. 3(c)].
While Eq. (21) unveils the entanglement dependence on the
cavity field strength, but also a gate voltage (corresponding
to E0y) affects the entanglement leading to its decay above a
threshold value of E0y. The results point to the potential of
other magnetoelectrically active structure such as nanoscale
skyrmions [40] and vortices or spin-driven magnetoelectrics
[41] (both entails a similar magnonic-magnetoelectric cou-
pling [42–44] as in Eq. (1)). Thereby the strength of the
magnetoelectric coupling and the direction of the induced
ferroelectric polarization being the determining factors.
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APPENDIX A: ABSENCE OF THE STEADY-STATE
MAGNON-PHOTON ENTANGLEMENT FOR THE CASE

OF ZERO DMI

In the present work, we considered two different Hamil-
tonians: the model given by Eq. (1), and Eq. (19) containing
DMI term, and the model described by Eq. (3) which does
not contain DMI term. The Hamiltonian with DMI term
Eq. (1) (nonzero α) can be converted into the Hamiltonian
without DMI term Eq. (3) through the transformation α → 0,
hz → hy. As we see from the analytical result in the main
text Eq. (21), the steady-state entanglement of the model

stated by Eq. (1), Eq. (19) is not zero when the pumping
field B and the DMI term are not zero D = εUα �= 0, A
nonzero DMI, i.e., nonvanishing D = εUα is essential for
nonzero steady-state magnon-photon entanglement. Without
DMI term direct magnon-photon coupling leads to the zero
steady-state magnon-photon entanglement, see Refs. [25,35].
These statements are supported by the following. Considering
α = 0 and exploiting Eqs. (1) and (2) from the main text and
in the rotating wave approximation, we deduce the following
coupled Heisenberg equations:

dâ(t )

dt
= −iω f â(t ) − igm̂k (t ) − γ f â(t ),

dm̂k (t )

dt
= −iωkm̂k (t ) − iBe−iω0t − igâ(t ) − γmm̂k (t ). (A1)

After separation of the stationary and perturbation parts of the
photonic and magnonic modes m̂k (t ) = m0

ke−iω0t + δm̂k (t ),
â(t ) = a0e−iω0t + δâ(t ) in the zero approximation, we obtain

m0
k = B(ω0 − ω f + iγ f )

(ω0 − ωk + iγm)(ω0 − ω f + iγ f ) − g2
,

a0 = Bg

(ω0 − ωk + iγm)(ω0 − ω f + iγ f ) − g2
. (A2)

For the perturbed parts from Eq. (A1), we obtain the following
equations:

dδâ(t )

dt
= −iω f δâ(t ) − igδm̂k (t ) − γ f δâ(t ), (A3)

dδm̂k (t )

dt
= −iωkδm̂k (t ) − igδâ(t ) − γmδm̂k (t ).

We see that Eq. (A3) can be derived as well through the
Hamiltonian Ĥα=0 Eq. (3) after the substitution δm̂k (t ) →
m̂k (t ), and δâ(t ) → â(t ). Thus, the role of the coherent
magnonic pumping field is clear. It causes a shift of the
stationary states from zero to nonzero values, as presented
in Eq. (A2). However, this is not enough for the nonzero
steady-state magnon-photon entanglement in Hamiltonian
Ĥα=0 Eq. (3). According to Eq. (21), for a steady-state
magnon-photon entanglement is essential to have a nonzero
DMI α �= 0 and for α �= 0 model Eqs. (1) and (19) cannot
be converted into model Eq. (3), while in the presence of
the magnon pumping field and in the absence of the DMI
term Hamiltonians (1) and (3) lead to the same Heisenberg
equations.

APPENDIX B: COVARIANCE MATRIX

The next problem is the evaluation of the photon-magnon
entanglement for the Hamiltonian Ĥeff [see Eq. (19)] in
the presence of dissipation and noise. Using Eq. (2) and
Hamiltonian (19) and the commutation relations [m̂k, m̂+

k ] =
1, n̂k = m̂km̂+

k , [n̂k, m̂k] = −m̂k , [n̂k, m̂+
k ] = m̂+

k , [â, â+] = 1,
n̂ = ââ+, [n̂, â] = −â, and [n̂, â+] = â+, we deduce the set of
equations in the rotating wave approximation m̂k → m̂ke−iω0t
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and m̂k,in → m̂k,ine−iω0t :

dâ

dt
= −iω f â − D sin(k)m̂+

k m̂k − γ f â + √
2γ f â f ,in,

dâ+

dt
= iω f â+ − D sin(k)m̂+

k m̂k − γ f â+ + √
2γ f â+

f ,in,

dm̂k

dt
= −i�km̂k + D sin(k)(â − â+)m̂k − γmm̂k

+
√

2γmm̂k,in + B,

dm̂+
k

dt
= i�km̂+

k + D sin(k)(â − â+)m̂+
k − γmm̂+

k

+
√

2γmm̂+
k,in + B. (B1)

Here, �k = ωk − ω0 is the detuning between the external
classical magnetic field ω0 and the magnon frequency ωk .
Introducing the new variables:

x̂m = m̂+
k + m̂k

2
, p̂m = i(m̂+

k − m̂k )

2

x̂a = â+ + â

2
, and p̂a = i(â+ − â)

2
, (B2)

we rewrite Eq. (B1) above as

dx̂m

dt
= �k p̂m −

√
2D sin(k) p̂m p̂a − γmx̂m

+
√

2γmx̂m,in +
√

2B,

d p̂m

dt
= −�k x̂m +

√
2D sin(k)x̂m p̂a − γm p̂m

+
√

2γm p̂m,in +
√

2B,

dx̂a

dt
= ω f p̂a − 2 sin(k)

x̂2
m + p̂2

m − 1

2
− γ f x̂a + √

2γ f x̂a,in,

d p̂a

dt
= −ω f x̂a − γ f p̂a + √

2γ f p̂a,in. (B3)

Following Ref. [25], we use for a general operator Q̂
the ansatz: Q̂ = 〈Q̂〉 + δQ̂, and for the steady state, we ex-
ploit the semiclassical approximation 〈m̂+

k m̂k〉 = 〈m̂+
k 〉〈m̂k〉,

〈m̂+
k 〉 = β∗e−iϕ , 〈m̂k〉 = βeiϕ and deduce 〈pm〉 = √

2β sin ϕ,

〈xm〉 = √
2β cos ϕ, where we assumed that σ = 2ω f D2 sin2 k

ω2
f +γ 2

f
<

1 is a small parameter. On resonance, i.e., �k = ωk − ω0 =
0, we infer β = B/γm, tan ϕ = σ |β|2/γm. From the equa-

tions of motion, it follows that 〈pa〉 = ω f

√
2D sin(k)|β|2
ω2

f +γ 2
f

and

〈xa〉 = − γ f

√
2D sin(k)|β|2
ω2

f +γ 2
f

. Note, nβ ≡ |β|2 defines the mean

magnon number and in the steady state is defined through the
following relation:

nβ

(
2ω f D2 sin2 k

ω2
f + γ 2

f

nβ − �k

)2

+ nβγ 2
m = B2. (B4)

In a linear approximation with respect to the perturbations
δx̂m, δ p̂m, δx̂a, and δ p̂a, we derive from (B3) the set of equa-
tions written in a similar form as Eq. (15) in the main text:

du

dt
= A1u + n, (B5)

where u = (δx̂m, δ p̂m, δx̂a, δ p̂a)T , n =
(
√

2γmδx̂m,in,
√

2γmδ p̂m,in,
√

2γ f δx̂a,in,
√

2γ f δ p̂a,in ) and
the explicit form of the matrix A1 reads

A1 =

⎛
⎜⎜⎜⎜⎝

−γm �k − √
2D〈p̂a〉 sin k 0 −√

2D〈p̂m〉 sin k

−�k + √
2D〈p̂a〉 sin k −γm 0

√
2D〈x̂m〉 sin k

−√
2D〈x̂m〉 sin k −√

2D〈p̂m〉 sin k −γ f ω f

0 0 −ω f −γ f

⎞
⎟⎟⎟⎟⎠. (B6)

Here, ωk = H0 + (1 − cos k) + (D0 + D0z ) sin k and �k =
ωk − ω0 is the detuning between the external classical mag-
netic field ω0 and the magnon frequency ωk . We observe
that the coupling to the external constant electric field D0z

shifts the magnon frequency and deteriorates the resonance
condition. However, the effect of the external constant electric
field can be compensated for by tuning the frequency of the
external classical magnetic field ω0.

Finally we find the explicit expression for the entanglement
as

Eh,w
N = max[0,− ln[2η−

h,w]], (B7)

with

η−
h,w = 2−1/2{�(V1) − [�(V1)2 − 4 det V1]1/2}1/2,

�(V1) = det G1 + det B1 − 2 det C1, (B8)

and the covariance matrix V1 is defined as

A1V1 + V1AT
1 = W, V1 =

(
G1 C1

CT
1 B1

)
. (B9)

Choosing the magnon mode ak = π/2, we show in Fig. 4
in the main text the square root of the mean magnon number
|β| as a function of D0z for different pumping field val-
ues B, see inset of Fig. 4(a). In the limit of weak DMI:
D0, D0z, D � 1, the steady-state mean magnon number reads
nβ = B2/(�2

k + γ 2
m). Considering the resonant case �k =

ωk − ω0 = 0 and for a weak DMI, we find upon relatively
cumbersome, but otherwise straightforward calculations the
expression

η−
h,w = 1

2

(
1 − 2D sin(k)

B
γm

1√
(γm + γ f )2 + ω2

f

)
. (B10)
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From Eq. (B10) above and in the limit ω f � γm + γ f and
0 < 2BD sin(k) < γmω f , we obtain the results presented in
the main text:

Eh,w
N = − ln

(
1 − 2BD sin k

γmω f

)
. (B11)

APPENDIX C: THERMAL ENTANGLEMENT

At finite temperatures, the equation for the thermal covari-
ance matrix takes on the form:

A1V1 + V1AT
1 = W, (C1)

where A1 is defined in Eq. (B6) above and the matrix W has a
form

W = −diag[γm(2Nm(ωk ) + 1), γm(2Nm(ωk ) + 1), γ f (2Na(ω f ) + 1), γ f (2Na(ω f ) + 1)]. (C2)

Here, Na(ω f ) and Nm(ωk ) are the distribution functions for cavity photons and magnons:

Na(ω f ) = [exp[(h̄ω f /kBT )] − 1]−1, Nm(ωk ) = [exp[(h̄ωk/kBT )] − 1]−1. (C3)

Therefore the expression of the matrix W can be rewritten in the compact form:

W = −diag[γm coth[(h̄ωm/2kBT )], γm coth[(h̄ωm/2kBT )], γ f coth[(h̄ω f /2kBT )], γ f coth[(h̄ω f /2kBT )]]. (C4)

Then the magnon-photon entanglement at a finite temperature is calculated straightforwardly as follows:

EN = max[0,− ln 2η−];

η− = 2−1/2
√

�(V ) −
√

�(V )2 − 4 det V ;

�(V ) = 1

4
coth2

(
h̄ωm

2kBT

)
+ 1

4
coth2

(
h̄ω f

2kBT

)
+ 2

(
D sin(k)B

γm

)2 1(
(γm + γ f )2 + ω2

f

) coth

(
h̄ωm

2kBT

)
coth

(
h̄ω f

2kBT

)
;

�(V )2 − 4 det V = 1

16

[
coth2

(
h̄ωm

2kBT

)
− coth2

(
h̄ω f

2kBT

)]4

+ 2

(
D sin(k)B

γm

)2

× 1(
(γm + γ f )2 + ω2

f

) coth

(
h̄ωm

2kBT

)
coth

(
h̄ω f

2kBT

)[
coth2

(
h̄ωm

2kBT

)
+ coth2

(
h̄ω f

2kBT

)]
; (C5)

In the low-temperature case,

kBT � h̄ωm, h̄ω f , coth

(
h̄ωm

2kBT

)
= 1, coth

(
h̄ω f

2kBT

)
= 1, (C6)

we find Eq. (B10) above. Concerning the microscopic theory
and the crucial role of electronic correlation and spin-orbital

interaction in determining the magnetoelectric coupled, we
refer to the works [45,46].
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