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The pursuit of quantum spin liquid (QSL) in the Kitaev honeycomb magnets has drawn intensive attention
recently. In particular, α-RuCl3 has been widely recognized as a promising candidate for the Kitaev QSL.
Although the compound exhibits an antiferromagnetic order under zero field, it is believed to be endowed with
fractionalized excitations and can be driven to the QSL phase by magnetic fields. Here, based on a realistic
K-J-�-�′ model for α-RuCl3, we exploit the exponential tensor renormalization group approach to explore the
phase diagram of the compound under magnetic fields. We calculate the thermodynamic quantities, including the
specific heat, Grüneisen parameter, magnetic torque, magnetotropic susceptibility, and so on, under a magnetic
field with a tilting angle θ to the c∗-axis perpendicular to the honeycomb plane. We find an extended QSL in the
angle-field phase diagram determined with thermodynamic responses. The gapless nature of such field-induced
QSL is identified from the specific heat and entropy data computed down to very low temperatures. The present
study provides guidance for future high-field experiments for the QSL in α-RuCl3 and other candidate Kitaev
magnets.
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I. INTRODUCTION

Quantum spin liquids (QSL) constitute an exotic many-
body state without symmetry-breaking spin order, where a
number of unconventional properties such as fractionalized
excitations and long-range entanglement emerge [1–5]. The
celebrated, exactly solvable Kitaev model has attracted enor-
mous attention due to the QSL ground state with localized and
itinerant Majorana fermions useful for fault-tolerant quantum
computing [6,7]. Such remarkable properties incited a flurry
of works on the materialization of the Kitaev model in, e.g.,
certain 4d- and 5d-electron compounds including cations with
the low-spin d5 electron configuration and the edge-shared
ligand octahedra. It yields the Kitaev interaction by the syn-
ergy of large spin-orbit coupling and Coulomb repulsion on
a honeycomb lattice [8]. Moreover, some high-spin d- and
f -electron systems beyond the Jackeli-Khaliullin mechanism
have come forth recently which may also realize the Kitaev
interaction in the compounds [9–12].

The ruthenium halide α-RuCl3 is arguably the most stud-
ied Kitaev material [13–29]. Although it has a long-range
zigzag antiferromagnetic ordered state below 7 K [13–15],
proximate Kitaev QSL behaviors at elevated temperatures
were observed [15,16]. The zigzag spin order is sup-
pressed under an in-plane field of around 7 T [16–19],
where the possible field-induced QSL phase was in-
tensively studied via multiple experimental probes in-
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cluding the Raman scattering [22], terahertz absorption
measurements [23], nuclear magnetic resonance [19–21],
magnetic torque [24,25], and thermal Hall conductivity
measurements [26–29].

On the other hand, in the theoretical studies, the accurate
microscopic model description of α-RuCl3 is important for
understanding the compound, which, however, has been un-
settled for a long period [31]. Recently, some of the authors
proposed a Kitaev-Heisenberg-Gamma-Gamma′ (K-J-�-�′)
model with dominant Kitaev interaction K = −25 meV,
nearest-neighbor Heisenberg coupling J = −0.1|K|, off-
diagonal terms � = 0.3|K|, and �′ = −0.02|K|, which puts
the major experimental observations in a coherent picture and
makes a relevant prediction of QSL states induced by high
out-of-plane fields [32]. Such a high-field QSL phase is sepa-
rated from zigzag antiferromagnetic and the polarized phases,
through two quantum phase transitions (QPTs) at 35 T and
130 T, respectively. This theoretical prediction was recently
confirmed in high pulsed field experiments [30].

In this work, we extend the previous theoretical studies
to the angle-field phase diagram of the realistic K-J-�-�′
model with the thermal tensor network approach [33–35].
Through the finite-temperature simulations of the specific
heat Cm, Grüneisen parameters �B, magnetic torque τ , mag-
netotropic susceptibility k, and so on, we find a high-field
QSL phase residing between the zigzag antiferromagnetic and
the field-polarized phases. We determine the transition fields
with prominent thermodynamic responses and offer concrete
theoretical proposal for experimental probes of such spin liq-
uid transitions in α-RuCl3 and potentially also other Kitaev
candidate magnets.
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FIG. 1. The angle-field phase diagram of the realistic K-J-�-�′

model for α-RuCl3. There are three phases including zigzag (ZZ),
quantum spin liquid (QSL), and the polarized (P) states as indi-
cated in the figure. The phase boundaries are determined from the
responses in Grüneisen parameters �B, magnetic torque τ , and the
magnetotropic susceptibility k at T/|K| � 0.01, consistent with that
from the ground-state magnetization curves [30]. We reveal that the
phase transitions between ZZ (a “solid” order), QSL (liquid-like
phase), and the P (a weakly interacting “gas”-like system) phases
meet at a tricritical point. The inset illustrates the honeycomb lattice
defined on a cylinder of width W = 4, where the x, y, and z bonds
with bond-directional Kitaev interactions are marked in blue, green,
and red colors, respectively. The in-plane a-axis, out-of-plane c∗-
axis, and the angle θ of the applied field within the ac∗-plane are
indicated by the arrows.

II. MODEL AND METHODS

The effective spin Hamiltonian of α-RuCl3 [32] considered
in this work reads

H =
∑

〈i, j〉γ

[
KSγ

i Sγ
j + J Si · S j + �

(
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i Sβ
j + Sβ

i Sα
j

)

+ �′(Sγ

i Sα
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i Sβ
j + Sα

i Sγ

j + Sβ
i Sγ

j

)]
, (1)

where the summation is over the nearest-neighbor (NN) bond
〈i, j〉γ with γ = {x, y, z} (see inset in Fig. 1). K denotes
the bond-dependent Kitaev interactions, J is the Heisenberg
term, and �, �′ are the off-diagonal symmetric couplings
with {α, β, γ } being the three spin components under a cyclic
permutation.

The magnetic field B is applied along the direction [l m n]
in the spin space (Sx, Sy, Sz ), i.e., the Zeeman term is
HZeeman = B√

l2+m2+n2 [Sx, Sy, Sz] · [l, m, n]T . Therefore, H[112̄]

and H[111] correspond to the fields applied along the a- and
c∗-axes, respectively. The angle between the applied field
H[11n] and c∗-axis within the ac∗-plane can be represented by
θ = arccos( 2+n√

6+3n2 ) × 180◦
π

, as depicted in the inset of Fig. 1.
Simulations based on the K-J-�-�′ model can

well reproduce the low-temperature zigzag or-
der [13–15], double-peaked specific heat [15,36,37],
magnetic anisotropy [13,14,36,38–41], magnetization
curves [16,19,36,38], and the prominent M-star dynamical
spin structure factors [14,15] in α-RuCl3 (see a brief
recapitulation in Appendix A). Besides, one remarkable
prediction based on this realistic model is the presence of

high-field QSL driven by out-of-plane fields [32] whose
nature is still under intensive investigation [42].

Below we employ the exponential tensor renormaliza-
tion group (XTRG) [34,35] method and perform finite-
temperature calculations on a honeycomb-lattice cylinder
with total sites N = W × L × 2, where the width is fixed as
W = 4 and length L ranges from 6 to 12, as illustrated in the
inset of Fig. 1. We retained up to D = 400 bond states with
truncation errors ε � 10−4 down to the lowest temperature
T/|K| � 0.0085, which guarantees well-converged results till
the lowest temperature (cf. Appendix B).

III. FINITE-TEMPERATURE CHARACTERISTICS
OF QUANTUM SPIN STATES AND TRANSITIONS

A. Specific heat and isentropes

We start with conventional thermodynamic quantities such
as the specific heat Cm and magnetic entropy S/ ln 2 in
Figs. 2(a) to 2(d), where the contour plots can be used to
map the temperature-field phase diagram with various angles
θ . As shown in Fig. 2(a), when the field is applied along the
θ = 0.8◦ direction, the double-peaked Cm structure can be ob-
served under a finite range of fields (B/|K| � 0.22), with the
high-T and low-T peaks correspond to two temperature scales
TH and TL: the short-range spin correlations establish at TH

and the long-range antiferromagnetic zigzag order is formed
below TL, respectively. When the field B/|K| is increased
from 0 to 0.22, the low-T Cm peak moves towards lower
temperatures, indicating that the zigzag order gets gradually
suppressed by the magnetic fields. On the other hand, as the
field exceeds B/|K| = 0.22, and below the polarization field,
a low-T peak emerges as indicated by T ′′

L , below which there
exists a field-induced QSL phase (cf. Appendix A).

It is noteworthy to mention that above T ′′
L , and below the

high-T scale TH, there emerges an intermediate-temperature
regime strongly influenced by the Kitaev interactions [43–47],
dubbed the Kitaev fractional liquid (KFL). For the original Ki-
taev model, the KFL regime arises as, in the parton language,
the itinerant Majorana fermions move in the background of
strongly fluctuating Z2 fluxes, where the bond-directional,
short-range spin correlations were established, while the Z2

fluxes are disordered [43–47]. Such a KFL regime has univer-
sal thermodynamic traits, including the metallic linear specific
heat, the fractional magnetic entropy, the emergent Curie-law
susceptibility, and so on [44,47]. The KFL behaviors are ro-
bust and were observed at intermediate temperature for the
realistic K-J-�-�′ model under out-of-plane fields along the
c∗ axis [32]. Here, as indicated in Figs. 2(a) and 2(b) we find
that the KFL behaviors are also present under tilted fields (see
more details in Appendix A).

The corresponding isentropes with θ = 0.8◦ are shown in
Fig. 2(c). The adiabatic T -B curves exhibit distinct changes
when entering (rapid increase of T ) and leaving (a dip) the
intermediate QSL regime. They clearly signal two QPTs from
the zigzag order to the QSL phase then to the field-polarized
phases, at B/|K| � 0.22 and 0.62, respectively. The transition
fields determined with density matrix renormalization group
(DMRG) calculations on the same geometry [30] are denoted
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FIG. 2. (a), (b) Contour plots of the specific heat results in fields applied along θ = 0.8◦ and 5◦, respectively. The solid dots marked on
the T = 0 axis denote the QPTs obtained through the DMRG calculations [30]. The white dashed lines separating the ZZ, QSL, P, Kitaev
fractional liquid (KFL), and paramagnetic (PM) phases are schematic and guides for the eyes (cf., Appendix A for the determination of the
temperature scales). (c), (d) The isentropes S/ ln 2 for two different θ angles, where the critical fields (Bc1,c2 and Bc) are indicated by the dots.
These calculations with scanned fields are performed on the YC4 × 6 × 2 lattice. (e) The field-dependent Grüneisen parameters �B at various
θ angles with fixed initial temperatures Ti � 0.015, 0.012, and 0.01. The data are calculated by �B = 1/T (dT/dH )S , and are shifted vertically
by a value of 30 for clarify. For small θ , e.g., 0.8◦, 1.4◦, and 2.8◦, two critical fields Bc1 and Bc2 indicated by the red and blue arrows denote the
low- and high-field phase transitions, respectively; while only a single phase transition Bc indicated by a black arrow is observed for θ � 4◦.
The segment around each arrow gives the range of error bar for the determined transition fields.

in the T = 0 axis with solid dots, where excellent agreements
with the present finite-temperature results are seen.

The situation changes dramatically when the field angle in-
creases to θ = 5◦. As shown in Figs. 2(b) and 2(d), the results
suggest that there is only one critical field between the zigzag
ordered and field polarized phases, with no intermediate states
any more. The behaviors of Cm and S are quite similar to
that of the in-plane-field case [32], except that the transition
field is higher. Thus we find the intermediate QSL phase very
sensitively depends on the angle θ . To accurately determine
the phase boundaries in the angle-field phase diagram, below
we resort to the thermodynamic, experimentally accessible
quantities and parameters.

B. Grüneisen parameter

The magnetic Grüneisen parameter �B was employed
to accurately determine the critical in-plane fields in
α-RuCl3 [48], which, however, poses challenges to many-
body calculations. Here with the state-of-the-art XTRG
method, we are able to compute this thermodynamic ratio
and show the results in Fig. 2(e). The field-dependent �B =
1/T (dT/dH )S are derived from the simulated isentropes
starting from various initial temperatures (and a fixed field).
A sign change structure in �B can be observed in Fig. 2(e)
near the higher transition field Bc2/|K| � 0.62 (indicated by

the blue arrows) and it becomes more and more pronounced as
temperature lowers, revealing a second-order phase transition
from QSL to the polarized phase. On the other hand, in the
relatively low-field regime with Bc1/|K| � 0.22, a peak in �B

is observed (indicated by a red arrow) that corresponds to a
first-order QPT between ZZ and the QSL phases.

When the field is rotated within the ac∗-plane, the higher
transition field shifts from B/|K| � 0.62 to 0.06 as the angle θ

changes from 0.8◦ to 20◦, which reflects that the polarization
field is very sensitive to the angle θ . The first-order QPT stays
around Bc1/|K| � 0.23 for small angles and merges to the
second-order QPT at around θ � 4◦, where a tricritical point
emerges. In Fig. 1, we gather the transition fields estimated by
�B and obtain the angle-field phase diagram. As also indicated
in Fig. 2(e), the error bars of the phase boundaries can be
estimated as the difference in field strengths of the dips and
peaks in �B.

C. Magnetic torque and magnetotropic susceptibility

The torque magnetometry constitutes a sensitive technique
to probe the magnetic anisotropies in quantum materials and
recently was used to study the intricate quantum spin states
and transitions in α-RuCl3 [25,49]. However, its numerical
results are lacking, partly due to the challenges in its many-
body simulations.
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With thermal tensor networks, we can compute the mag-
netic torque and its derivative, magnetotropic susceptibility,
with a high accuracy. As the free energy F can be written
as dF = −SdT − PdV − MdB + τdθ where θ is the tilted
angle of the magnetic field, the first derivative τ = ∂F/∂θ

represents the magnetic torque, which can be measured in
α-RuCl3 experiments through M × B [49]. Recently, resonant
torsion magnetometry technique was also used to measure
the magnetotropic susceptibility k = ∂2F/∂θ2 (the second
derivative of free energy) [25,50]. Following this line, below
we perform XTRG calculations of the K-J-�-�′ model for
α-RuCl3, investigate τ and k at various temperatures and
fields, and predict salient features of the two QPTs in the
magnetotropic quantities to be checked in future high-field
measurements.

In Fig. 3(a), we show the magnetic torque τ (θ/2) = (Fθ −
F0)/θ (where F0 represents the free energy at zero field) with
θ = 0.8◦ and 1.4◦ computed at low temperatures T/|K| =
0.03, 0.02, and 0.01. At low fields, B < Bc1, we find a rela-
tively small value of τ , which is understandable as the torques
in two sublattices are expected to cancel each other in the
antiferromagnetic ZZ phase, resulting in a nearly zero total
net torque value. As the fields further increase, the calculated
τ gets enhanced rapidly as the ZZ order is suppressed in the
intermediate QSL regime, which eventually drops again to
small values at high fields as the system enters to the polarized
phase. This can be ascribed to the fact that the angle between
induced moments and fields is almost zero. The transition
fields can thus be determined from where the torque changes
most rapidly by computing the derivatives of τ with respect to
the field B, i.e., dτ/dB shown in Fig. 3(a). The red and blue
arrows indicate the transition fields from ZZ to QSL and QSL
to the polarized phases, respectively.

The behaviors of magnetic torque are also found to be
consistent with the static spin-structure factor results

S(k) =
∑

j∈N, j 
=i0

eik(r j−ri0 )
(〈

Si0 S j
〉 − 〈

Si0

〉〈
S j

〉)
, (2)

where i0 indicates a central reference site and the results are at
relatively low temperature T/|K| � 0.02 and 0.01. As shown
in Fig. 3(b), the zigzag spin correlations at small fields, e.g.,
B < Bc1 can be evidenced by the large S(M) value [with the
M as well as � point indicated in the inset of Fig. 3(b)], which
becomes suppressed in the intermediate QSL phase. The en-
hancement of S(�) near Bc1 signals the buildup of uniform
magnetization where the torque τ also increases rapidly in
Fig. 3(a). When the system enters the spin polarized phase at
Bc2, the structure factor peaks at M and � points both vanish
as expected [Fig. 3(b)].

The magnetotropic susceptibility k can also be used to sen-
sitively probe the two quantum phase transitions. In Fig. 3(c),
we plot the results with θ = 0.8◦ at T/|K| = 0.03, 0.02, and
0.01. The parameter k, second-order derivative of the free
energy with respect to the magnetic field orientation θ , has
an intimate relation to the susceptibility χ [50] and exhibits
discontinuities at second-order phase transitions. In Fig. 3(c),
the sharp dip at around B � Bc2 denoted by the blue arrow
corresponds to a second-order transition, while the low-field
one, as emphasized in the inset, shows a kink at around

FIG. 3. (a) The calculated magnetic torque τ (the upside curves
with left axis) and the absolute value of its derivative |dτ/dB| (the
downside two with right axis) of α-RuCl3 model with fields applied
along θ = 0.4◦ and 0.7◦ at T � 0.03, 0.02, and 0.01. Two transition
fields Bc1 and Bc2 are identified from the peak positions of |dτ/dB|
indicated by the red and blue arrows, respectively. (b) The static
spin-structure factors S(k) (see the main text) for θ � 0.8◦ with
k = M and � in the Brillouin zone (shown in the inset). The red
arrow denotes a fast drop of S(M), indicating the suppression of the
zigzag antiferromagnetic order at low temperatures, while the blue
arrow corresponds to the field where both S(M) and S(�) decrease
towards zero. (c) The calculated magnetotropic susceptibility k for
θ � 0.8◦ at various low temperatures. The sharp dip corresponds to
the second-order phase transition denoted by the blue arrow, while a
kink occurs at around B/|K| = 0.19 signposted by the red arrow as
zoomed in in the inset.

115124-4



HIGH-FIELD QUANTUM SPIN LIQUID TRANSITIONS … PHYSICAL REVIEW B 107, 115124 (2023)

B � Bc1 which corresponds to a first-order phase transition.
From the magnetotropic quantities τ and k, we determine the
transition fields at θ = 0.7◦ and 0.8◦ and show them also in
Fig. 1. Besides, we also computed the matrix product oper-
ator (MPO) entanglement of the system, which provided an
accurate estimate of transition fields in accordance with the
results above (see Appendix C). With these finite-temperature
simulations, we show that the high-field torque magnetometry
measurements can be used to sensitively detect the two QPTs
associated with the intermediate QSL phase in future experi-
mental studies.

IV. GAPLESS NATURE OF THE HIGH-FIELD QSL
IDENTIFIED FROM THERMODYNAMICS

As indicated by the dome-like feature in Figs. 2(a) and 2(c),
there exist an intermediate QSL regime below the emergent
low-temperature scale T ′′

L . To further reveal the nature of this
intermediate phase, we push the calculations of Cm and S/ ln 2
to longer YC4 cylinders with L up to 12.

In Fig. 4(a), we find the high- and low-temperature scales
TH and T ′′

L change only slightly as we elongate the system
from L = 6 to L = 12. The height of the peak at T ′′

L gets low-
ered, while the Cm values for T < T ′′

L are actually enhanced,
which gives rise to a shoulder-like structure for the largest
system size L = 12 as indicated by the grey arrow below
T/|K| � 0.03. The corresponding entropy curves are shown
in Fig. 4(b), where we see that there are a considerable amount
of low-temperature entropies below T/|K| � 0.03, indicating
the strong spin fluctuations and large spin excitation density
of states. In the inset of Fig. 4(b), we subtract the results of
two YC4 lattices with different (adjacent) lengths, e.g., the
[8 − 6] represent results obtained by subtracting YC4 × 6 × 2
data from the YC4 × 8 × 2. The obtained entropy results
reflect the bulk property in the central columns and suffer
less severe boundary effects, and a power-law behavior of
entropy S ∼ T α can be clearly seen, which indicates that the
high-field QSL has gapless low-energy excitations and there
are considerable entropies released only below the temper-
ature T � 0.03|K|. Overall, the thermodynamic results here
along the tilted angle point to the conclusion of a gapless
QSL, consistent with previous DMRG results (restricted to
out-of-plane fields) [32].

V. CONCLUSION AND DISCUSSIONS

In the present work, we calculated the experimentally rel-
evant thermodynamic properties, i.e., magnetic specific heat,
magnetocaloric effect characterized by the Grüneisen param-
eters, magnetic torque, and the magnetotropic susceptibility
of the primary candidate Kitaev magnet α-RuCl3 based on
the realistic K-J-�-�′ model and through the highly accurate
XTRG method. Recently, a high-field magnetization measure-
ment on α-RuCl3 up to 102 T witnessed two phase transitions
enclosing an intermediate phase [30], in agreement with the
prediction based on the model calculations [32]. Here we
calculated further thermodynamic properties that provide a
comprehensive angle-field phase diagram and useful guide
for future experimental studies. For θ < 4◦, we find two
field-induced quantum phase transitions evidenced by var-

FIG. 4. (a) The computed specific heat Cm on various YC4 ×
L × 2 geometries with different lengths L ranging from 6 to 12
under a field B/|K| = 0.38 along θ = 0.8◦ away from the c∗-axis.
The high- and low-temperature scale TH and T ′′

L are indicated. The
grey arrow stress the enhancement of Cm at very low temperature
T/|K| < 0.03 as system length L increases. (b) The corresponding
thermal entropy S/ ln 2 results, with the subtracted data reflecting the
bulk property at low temperature shown in the inset. The dashed line
at T/|K| < 0.02 represents a power-law fitting with α � 1.5, serving
as a guide for the eye.

ious quantities. (i) The diverging Grüneisen parameter �B

shows a sign change behavior at high-field transition point
Bc2, suggesting a second-order phase transition. Exactly at
the same field, the magnetotropic susceptibility k features a
sharp peak. (ii) The hump in �B at around Bc1 reflects a
quantum phase transition possibly of first-order. There is also
a peak in |dτ/dB| and a kink in k, which point to the same
conclusion. On the other hand, for large θ � 4◦, only a single
phase transition from antiferromagnetic to polarized phase is
found, suggesting the absence of an intermediate QSL phase.

Moreover, it is noteworthy that, besides the conventional
candidate materials with Kitaev interactions, e.g., X2IrO3

(X = Na, Li, Cu) [51–59], X3LiIr2O3 (X = Ag, Cu, H)
with Ir4+ [60–62], XR3 (X = Ru, Yb, Cr; R = Cl, I,
Br) [56,63–78], and so on, some newly reported Kitaev
family such as rare-earth chalcohalide REChX (RE = rare
earth; Ch = O, S, Se, Te; X = F, Cl, Br, I) [79,80] cobalt
honeycomb oxides Na2Co2TeO6 [81,82], Na3Co2SbO6 [83],
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BaCo2(AsO4)2 [84], and so on, also offer a platform exhibit-
ing highly anisotropic, bond-dependent exchange couplings.
It would be worthwhile to explore their field-induced quantum
spin states along the out-of-plane direction and generally tilted
angles in the future and the present study on angle-field phase
diagram of the K-J-�-�′ model provides theoretical guide
for experimental explorations in these intriguing quantum
magnets.
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APPENDIX A: REALISTIC α-RuCl3 MODEL
AND FIELD-INDUCED PHASES

In the strongly correlated transition metal compounds,
α-RuCl3 is believed to serve as a prototypical candidate
material for the Kitaev model [13,14,38,41,68,71,85]. As it
undergoes a magnetic transition to antiferromagnetic order
at a relatively low temperature, i.e., T � 7 K [13,14,36,38],
research has taken efforts to find out the effective spin Hamil-
tonian of α-RuCl3, which includes not only the Kitaev term
K , but also the Heisenberg interactions J , J2, and J3, and
off-diagonal � and �′ couplings [56,63–72,86–88], which is
important for gaining insights into the candidate Kitaev mate-
rial. The Kitaev interaction in this compound has been widely
accepted to be ferromagnetic [15,41,56,63–70,89]. However,
the magnitudes of K and even the signs of non-Kitaev terms
were undetermined and it is very challenging to find a model
that can accurately describe the realistic α-RuCl3 [31].

We focus on the minimal K-J-�-�′ model [32,86,90,91],
especially on its field-induced properties. In our previous
work [32], we determine the parameters from fitting the
thermodynamic properties, i.e., the double-peak feature of
specific heat with two temperature scales at around 100 K and
7 K [15,36,37] and the anisotropic susceptibilities along the a-
and c∗-axes [14,39,40]. The determined parameter set is K =
−25 meV, � = 0.3|K|, �′ = −0.02|K|, J = −0.1|K|, with an
in-plane and out-of-plane Landé factor ga = 2.5 and gc∗ =
2.3, respectively. With this model, the low-temperature zigzag
antiferromagnetic order [14] and its magnetization curve can
be well reproduced, which are found in quantitative agreement
with experiments [36,38]. The transition fields that suppressed
the zigzag order are also in accordance with experimental ob-
servations, along the in-plane direction [16,19,36,38] and with
a tilted θ = 35◦ angle [20]. Besides, it was also found that
the zigzag order gets suppressed at 35 T under out-of-plane
fields (θ = 0◦), above which, and below a polarization field of

FIG. 5. Finite-temperature quantities including (a) expectation
value of plaquette operator Wp, fractional entropy S/ ln 2, and
(b) emergent Curie-Weiss susceptibility χ are shown. The results
are computed with the realistic K-J-�-�′ model on YC4 × 6 × 2
lattices, under a field B/|K| = 0.38 tilted by an angle of θ = 0.8◦.
In panel (a), the entropy releases rapidly at TH and T ′′

L , corre-
sponding to the two temperature scales as indicated by the arrows.
The expectation value 〈Wp〉 arises at TH and starts to converge
at around T ′′

L . In panel (b), we show the high- and intermediate-
temperature Curie-Weiss fittings C/(T + θ ) where the constants are
determined as C � 0.31, θ � −0.22 (for high-T ) and C � 0.44, θ �
−0.54 (intermediate-T ), respectively.

100 T level, a field-induced QSL phase emerges as evidenced
by both density matrix renormalization group (DMRG) and
variational Monte Carlo (VMC) method at ground state [32].
In this work, we further extend the conclusion that the high-
field QSL phase can extend to a finite range of θ angles.

At finite temperature, the Kitaev fractional liquid (KFL)
regime (also dubbed as “fractional paramagnetic,” “Kitaev
paramagnetic,” or “Majorana metal” regime [43–46]) arises as
an emergent novel paramagnetic state in not only the original
Kitaev honeycomb model but also in the extended Kitaev
models at finite temperature [32,47]. In the KFL regime,
the short-range spin correlations are established while the
Z2 fluxes remain disordered, each carrying one-half of the
total entropies. In Fig. 5, we show the expectation value
of plaquette operator Wp = σ z

1σ x
2 σ

y
3 σ z

4σ x
5 σ

y
6 [with σγ the

Pauli matrix and the subscripts denote the six vertices of
a hexagon, see the inset of Fig. 5(a)], thermal entropy S,
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FIG. 6. The temperature-dependent specific heat curves (a) Cm

and their first- and second-order derivatives (b) dCm/dT and
(c) d2Cm/dT 2 at various fields 0.03 < B/|K| < 0.73 with a fixed
angle θ = 0.8◦ on the YC4 × 6 × 2 lattice. The curves are shifted
vertically by a value of 0.1 in (a), a value of 5 in (b), and 100 in
(c) for clarity. The characteristic temperature scales TH, TL, T ′

L, and
T ′′

L are indicated by the arrows.

and the magnetic susceptibility χ in the case under a field
of B/|K| = 0.38 tilted by an angle θ = 0.8◦. In Fig. 5(a),
we find the thermal entropy releases in two steps near the
high-temperature scale TH and the low-temperature scale T ′′

L .
TH corresponds to the establishment of short-range spin cor-
relations while T ′′

L to the alignment of Wp. Between TH and
T ′′

L there resides a KFL regime. Below T ′′
L , a gapless QSL

has been proposed [32] whose precise nature is still un-
der investigation [42]. As shown in Fig. 5(b), the magnetic

susceptibility exhibits an emergent Curie-Weiss law (with
constants different from the high-temperature Curie-Weiss
behavior) in the intermediate-temperature regime. With uni-
versal signatures in thermodynamics [32,47], we identify that
the KFL behaviors still exist under tilted fields.

In Fig. 6, we plot the specific heat Cm curves and their
first- and second-order derivatives dCm/dT and d2Cm/dT 2

under various fields B/|K| with a fixed angle θ = 0.8◦. The
temperature scales TH, TL, and T ′′

L could be determined from
the hump/shoulder positions in Fig. 6(a), or from the deriva-
tives dCm/dT = 0 in Fig. 6(b). As for the shoulder feature at
T ′

L, we identified that scale from the second-order derivatives
d2Cm/dT 2 as shown in Fig. 6(c), where the largest absolute
value corresponds to a minimal curvature radius. In Fig. 2(a)
of the main text, we plot the tendency of the characteris-
tic temperature scales by the dashed lines, which connects
smoothly to the quantum phase transition points obtained
from the ground-state DMRG calculations [30].

APPENDIX B: EXPONENTIAL TENSOR
RENORMALIZATION GROUP METHOD

The exponential tensor renormalization group (XTRG)
method [33,34] exploited in this work carries out the finite-
temperature many-body simulations down to low temperature
exponentially fast, which has been shown to be a highly
efficient and very powerful tool in solving various two-
dimensional (2D) spin lattice models [34,35,47,92], realistic
quantum magnets [32,93–95], and correlated fermion sys-
tem [96,97]. Below we synopsize the main idea of such a
method and provide some benchmark results on the realistic
K-J-�-�′ model.

In XTRG, we start with the high-temperature density ma-
trix ρ(τ0) with the initial τ0 ≡ |K|/T = 0.0025 through a
series expansion in thermal tensor networks [33], i.e.,

ρ(τ0) = e−τ0Ĥ �
Nc∑

n=0

(−τ0)n

n!
Ĥn, (B1)

where Nc is the expansion order (often smaller than 10 in
practice) and the ρ(τ0) could converge to machine precision.
Given the density matrix ρ(τ0) represented in the form of a
matrix product operator (MPO), we keep squaring the MPO
via tensor network contractions and thus cool down the system
exponentially as ρ(τn) = ρ(τn−1) · ρ(τn−1) where τn = 2nτ0

(n � 1). Based on this, various thermodynamic properties can
be computed, including free energy f , internal energy u, mag-
netic thermal entropy S, static spin-structure factors S(k), and
so on. We perform in parallel the simulations with interleaved
data points along the temperature axis and interpolate data
between those sampling points.

For the YC4 × 6 × 2 geometry considered in the main
text, we compare in Fig. 7 the low-temperature magnetization
curves (θ = 0.8◦ case) calculated by the XTRG method with
the DMRG results [30], where we find the T/|K| = 0.0085
data converge well with the DMRG data. This confirms that
the XTRG calculations can approach the low-temperature
regime in close vicinity of the ground state.
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FIG. 7. The low-temperature magnetization curves with field ap-
plied along θ = 0.8◦ of the α-RuCl3 model. When the temperature
is sufficiently low, the results converge to the ground-state curve
computed with DMRG [30] on the same YC4 × 6 × 2 geometry.

APPENDIX C: MATRIX PRODUCT OPERATOR
ENTANGLEMENT

The phase transitions can be detected sensitively by
the entanglement entropy of the matrix product operator
(MPO) [34]. Regarding the MPO as a supervector, we can take
a Schmidt decomposition of the purified “wave function” and
compute the entanglement entropy SE between the two parts
of the system. Here we study its field-dependent behaviors
for θ = 0.8◦ and 5◦, on the YC4 × 6 × 2 lattice with the
calculated results shown in Fig. 8.

The MPO entanglement entropy SE is expected to diverge
at the second-order quantum critical point (QCP) in the low-
temperature limit. In finite-size calculations, it instead exhibits

FIG. 8. The bipartite MPO entanglement entropies SE under var-
ious fields B applied along θ = 0.8◦ and θ = 5◦, at a low temperature
T/|K| = 0.0085. A drop and a peak features can be seen at, respec-
tively, the low and high transition fields Bc1 and Bc2 for θ = 0.8◦

(denoted by the red and blue arrows). For the θ = 5◦ case, there is
only a single peak in the SE curve located at Bc.

a peak near the QCP. In Fig. 8, we show the low-temperature
SE versus magnetic fields B and find for the θ = 0.8◦ case
there exists a peak near Bc2. This is indicated by the blue
arrow, with the determined field value consistent with that
obtained from �B data in Fig. 2(e). In addition, it can be
seen that SE first shows an almost steady behavior at the
low-field antiferromagnetic phase, then drops abruptly near
Bc1 as indicated by the red arrow, reflecting that the low-field
phase transition is likely of first order. For the θ = 5◦ case,
there is only a single peak for SE versus B as shown in Fig. 8,
where a prominent peak at Bc clearly signals the QCP between
the zigzag and spin-polarized phases.
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