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High-temperature self-energy corrections to x-ray absorption spectra
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Effects of finite-temperature quasiparticle self-energy corrections on x-ray absorption spectra are investigated
within the finite-temperature quasiparticle local density GW approximation up to temperatures T of order the
Fermi temperature. To facilitate the calculations, we parametrize the quasiparticle self-energy using low-order
polynomial fits. We show that temperature-driven decrease in the electron lifetime substantially broadens the
spectra in the near-edge region with increasing T . However, the quasiparticle shift is most strongly modified
near the onset of plasmon excitations.
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I. INTRODUCTION

The advancement of free electron laser sources enables
routine ultrafast pump-probe experiments. Electrons can be
optically excited and measurements can be done at intervals
much shorter than the electron-phonon relaxation time [1–9].
This enables the study of nonequilibrium states, in which the
electron temperature Te and the ion temperature Ti are quite
different in extreme conditions such as very high temperatures
and densities.

Various calculations of x-ray absorption spectra (XAS) at
finite temperature (FT) have been carried out in recent years.
These studies involve temperatures that range from low tem-
peratures (LT) up to a few hundred K, to the warm dense
matter (WDM) regime at high temperatures (HT), where T
is of order the Fermi temperature TF [2,3,10–16]. A standard
LT approach is to apply Fermi’s golden rule with initial and
final states calculated using conventional density functional
theory (DFT) and Fermi occupation factors. While the long
lifetime nonthermal electrons have been observed in some
experiments, the majority of the measurements in the picosec-
ond range are well described by thermalized electrons. For the
study of nonthermal electrons, see Refs. [1,5,7–9].

Since DFT is a ground-state theory, FT quasiparticle
corrections to DFT are essential for HT excited-state calcu-
lations [17,18]. However, even at extreme temperatures, e.g.,
many thousands of K, self-consistent field calculations of the
core-hole state have typically been done with ground-state
exchange-correlation functionals εxc[ρ] [4,11,15,19]. This
ground-state approximation can be unreliable in that its va-
lidity depends strongly on the system state and its properties.
Some properties are only weakly sensitive to the temperature
dependence of exchange and correlation, at least for tem-
peratures well below the WDM regime. Others, such as the
electrical conductivity and x-ray absorption spectra (XAS),
are strongly temperature dependent [20,21]. Even so, the use
of temperature-dependent free-energy exchange-correlation
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functionals fxc[ρ, T ] [21–27] alone ignores effects such as
inelastic losses. For example, the electron inelastic scattering
effect, which results in an energy-dependent broadening, is
often included via a postprocessing step by convolution of
the absorption cross section using an empirical model (e.g.,
Seah-Dench formalism [28,29]), or the imaginary part of the
self-energy [30]. However, the FT dependence of the energy-
dependent broadening is typically neglected.

Another common approach for XAS calculations has
been the use of the real-space multiple scattering (RSMS)
method, which is also referred to as the real-space Green’s
function (RSGF) approach [31]. This approach is the real-
space analog of the Korringa-Kohn-Rostoker (KKR) approach
[32–36]. The method treats excited quasiparticle states via an
energy-dependent self-energy, and also takes into account the
dynamic response of the system to the suddenly created core
hole. The self-energy can be viewed as an energy-dependent,
nonlocal analog of the exchange-correlation potential in
Kohn-Sham DFT [37]. The FT generalization of the self-
energy can be done formally via the Matsubara formalism.
For example, Benedict et al. [38] used the approach to in-
vestigate the effect of T on the spectral function in jellium
and aluminum, e.g., on optical properties of solid-density Al.
Alternatively, as discussed by Kas et al. [39], the FT self-
energy can be calculated using a generalization of the Migdal
approximation [40], analogous to the FT GW approximation
of Hedin [41].

The high-temperature Green’s function approach in
Ref. [42] incorporates the FT Fermi occupation of the ini-
tial and final states, FT self-consistent electron density, FT
exchange-correlation potential, and lattice vibration effects.
However, the consequences of the FT GW self-energy for
XAS (especially at extreme-state conditions) have not been
explored in detail heretofore. Such effects are relevant to
nonequilibrium systems in which hot electrons exist within a
cold lattice for sufficiently long times to make that distinction
physically meaningful. These conditions are achievable in
transient pump-probe experiments.

Thus, the main goal of this work is to study the effects
of the FT GW self-energy on XAS. In order to facilitate the
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calculations we introduce a parametrization of the quasipar-
ticle FT GW self-energy within the G0W0 scheme [43]. As
illustrations, we apply the approach to the XAS for two
systems with T up to 5 eV (i.e., T of order 105 K). Our
calculations demonstrate that thermal broadening due to the
imaginary part of the self-energy is significant above T of
a few eV. Lattice vibrations also are strongly temperature
dependent, that behavior is dependent on the lattice temper-
ature Tl , which can differ from the electronic temperature T
in nonequilibrium states. The lattice vibrations strongly damp
the XAS fine structure at all temperatures [42].

The remainder of the paper is organized as follows.
Section II provides a brief overview of the real-space Green’s
function approach to XAS and its dependence on the self-
energy �. In Sec. III, we highlight the FT corrections to
XAS with a few examples and in Sec. IV we present a brief
summary and conclusions. Throughout we use Hartree atomic
units, qe = h̄ = m = 1, with qe = e the electron charge. Thus
energies are in Hartree and distances in Bohr, unless otherwise
noted. For temperature we use either K or eV, with 1 eV ≈
11604 K. Electron densities are expressed in Wigner-Seitz
radii rs = (3/4πρ)1/3.

II. THEORY SUMMARY

A. Finite-temperature x-ray absorption

Formally the zero-temperature x-ray absorption cross sec-
tion is defined via Fermi’s golden rule as

σ (ω) = 4π2 ω

c

∑
i, f

|〈�i|D|� f 〉|2δ
 (ω + Ei − E f ), (1)

where |�i〉 and |� f 〉 are the many-body initial and final states,
and D = ∑

i di is the many-body (dipole) interaction with
the x-ray field. Then within the single-particle (quasiparti-
cle) approximation with dipole interactions and the sudden
approximation, the zero-temperature XAS becomes

σs(ω) = 4π2 ω

c

∑
i, f

|〈i|d| f 〉|2δ
 (ω + εi − ε f ), (2)

where εi and ε f are the energies of the quasiparticle ini-
tial |i〉 and final | f 〉 levels and many-body shake-up factors
S2

0 ≈ 1 are ignored. The δ
 factor denotes a Lorentzian of
width 
, which includes both quasiparticle and core-hole
lifetime broadening. Here, the transition operator d = ξ̂ · r is
the single-particle electric dipole operator and ξ̂ is the polar-
ization of the incident photon. The one-particle states |i〉 and
| f 〉 can be obtained from Hartree-Fock theory or Kohn-Sham
DFT. For the treatment via DFT, see, e.g., Refs. [28,44,45].

For x-ray absorption, the number of final states | f 〉 required
to compute the dipole matrix element has a huge impact on
the computational efficiency of evaluating Eq. (2). The present
work uses the RSMS approach to circumvent this bottleneck.
In RSMS, the summation over the final states | f 〉 is replaced
with the retarded single-electron Green’s function G(ω) in a
basis of local site-angular momentum states |L j〉 [31],

Gj j′
LL′ (ω) =

∑
f

〈L j| f 〉〈 f |L′ j′〉
ω − ε f + iη

. (3)

In this expression, j is the index of a given site R j and L =
(l, m) are the angular momentum quantum numbers. The ini-
tial states |i〉 are calculated with the ground-state Hamiltonian
H = p2/2 + v(r) + vxc(r) + vie(r) while the final states | f 〉
are described by the quasiparticle Hamiltonian H ′ = p2/2 +
v f (r) + �(r, E ) + vie(r), where v is the self-consistent one-
electron Hartree potential, vxc is the exchange-correlation
potential, vie is the electron-ion potential, v f is the final-
state one-electron Hartree potential in the presence of a
screened core hole, and � is the dynamically screened
quasiparticle self-energy discussed in detail below. The
exchange-correlation vxc is sufficient to give a good approx-
imation to the quasiparticle ground state (initial state).

The imaginary part of the quasiparticle self-energy � ac-
counts for the mean-free path of the photoelectron. Within the
quasiparticle local density approximation (QPLDA) [46], the
self-energy is given by [47]

�(r, E , T = 0) = vLDA
xc (ρ(r)) + �GW (ρ(r), E , T = 0)

−�GW (ρ(r), EF , T = 0). (4)

Here �GW is the GW self-energy calculated at the G0W0 level
of refinement, that is, without self-consistent iteration of G or
W [41]. For simplicity from here onward, we drop the spatial
dependence r.

For the FT generalization, we replace the T = 0 GW
self-energy with the finite-temperature GW self-energy,
�GW (T ), and introduce T -dependent Fermi occupation num-
bers, f (ε) = 1/[exp {β(ε − μ)} + 1] for the initial and final
states in Eq. (2). In addition, the ground-state exchange-
correlation potential vLDA

xc is replaced by its FT generalization
vLDA

xc (T ). Thus, the finite-temperature QPLDA self-energy is

�(E , T ) = vLDA
xc (ρ, T ) + �GW (ρ, E , T )

− Re [�GW (ρ,μT , T )]. (5)

Lastly, by using Gj j′
LL′ (ω) in Eq. (2) in place of the sum over

final states | f 〉, the FT quasiparticle cross section can be
reexpressed as [48]:

σqp(ω) = −4π2 ω

c
Im

∑
iLL′

〈i|d̂G00
LL′ (ω + εi )d̂

†|i〉

× f (εi )[1 − f (ω + εi )], (6)

Here we denote the absorbing atom by the index 0.

B. Finite-temperature self-energy �

The finite-T quasiparticle electron self-energy within the
GW approximation is defined formally [40,49] by the expres-
sion

�M
GW (k, iωm) = − 1

β

∫
d3q

(2π )3

∞∑
n=−∞

GM
0 (k − q, iωm − iνn)

×W M (q, iνn). (7)

Here GM
0 is the one-electron Matsubara Green’s function,

W M = ε−1v is the screened Coulomb interaction, and ωm =
2(m + 1)πkBT , νn = 2nπkBT are the Matsubara frequencies,
while ε is the dielectric function and v is the bare Coulomb
potential. The screened interaction W M can be expressed in
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terms of its spectral representation as

W M (q, iνn) = v(q) +
∫ ∞

−∞
dω′ D(q, ω′)

iνn − ω′ + iη sgn(ω′)
, (8)

where v(q) = 4π/q2 is the bare Coulomb potential in Fourier
representation, and D(q, ω) = (1/π )|ImW M

c (q, ω)| sgn(ω) is
the antisymmetric (in frequency) bosonic excitation spec-
trum. W M

c = W M − v is the correlation part of the screened
interaction.

Next, we approximate the exact dielectric function with
the uniform electron gas model. Our choice of the electron
gas dielectric function reflects a balance between the level
of physics included and computational feasibility. Thus, for
simplicity, we use the random phase approximation (RPA),
which is analogous to the FT generalization of the Lindhard
function [50],

ε(q, ω, T ) = 1 + 2v(q)
∫

d3k

(2π )3

f (εk−q) − f (ε)

ω − εk−q + εk + iη
, (9)

where f (ε) = 1/[exp {β(ε − μ)} + 1] is the Fermi-Dirac
occupation factor, and μ = μ(T ) is the chemical poten-
tial. The real part of ε(q, ω, T ) is obtained from the
imaginary part via a Kramers-Kronig transform. From
an analytic continuation to the real-ω axis, the FT
GW retarded self-energy �GW is given by the Migdal
approximation [40]

�GW (k, ω, T ) = �X (k, ω, T ) +
∫ ∞

0
dω′

∫
d3q

(2π )3
D(q, ω′)

×
[

f (εk−q) + N (ω′)
ω + ω′ − εk−q + iη

+ 1 − f (εk−q) + N (ω′)
ω − ω′ − εk−q + iη

]
, (10)

where �X (k, ω, T ) = ∫
[d3q/(2π )3] f (εk−q)vq is the ex-

change part of the self-energy and N (ω) = 1/[exp{βω} − 1]
is the Bose factor. The poles of the Green’s function GM

contribute to the Fermi occupations whereas the poles of the
screened interaction W M contribute to the Bose factor.

Calculations of the imaginary part of �GW (k, ω, T ) in-
volve a single integral over the magnitude of q. But to obtain
the real part, we need to perform a Kramers-Kronig trans-
form resulting in a double integral. In typical RSGF XAS
calculations [51], tens of thousands of self-energy evaluations
are required. Thus that calculation of quasiparticle self-energy
�GW (k, k2/2, T ) becomes a major computational bottleneck.
To circumvent that difficulty, we model �GW (k, k2/2, T ) via
low-order polynomial fits to numerical calculation of �GW

based on Eq. (10), on a grid up to T = 2 TF , where TF =
EF /kB. The form of the fitting functions is described in detail
in the Appendixes. A comparison between the QPLDA �GW

and the fits is shown in Fig. 1 for the homogeneous electron
gas. For simplicity, we approximate the self-energy for levels
k < kF with vxc(T ) independent of k.

III. RESULTS AND DISCUSSION

Results presented in this section show effects of using the
FT �GW (T > 0) instead of the zero T values �GW (T = 0).
Note that �GW (T = 0) depends implicitly on the electronic
temperature Te through the self-consistent electron density at
that temperature. The FT SCF calculations are carried out

FIG. 1. The real part of the �GW (dashed) and our parametriza-
tion (solid) for various densities: rs=1.0, 2.0, 3.0, 4.0 at T/TF =0.01
(blue) and 1.0 (red). For reference the LDA-vxc(T) [26] values are
denoted as dots at kF .

using an extension of the original RSMS code, which now
is implemented in FEFF10 [51,52]. For the FT exchange corre-
lation potential, we use the KSDT tabulation vLDA

xc (T ) [26,53]
for both calculations. The Fermi temperature TF used in this
section is defined based on the electron gas model with a
density equal to the interstitial density ρint = 3/4πr3

s,int of
the system under consideration. In the FEFF10 calculations,
we compute the atomic part using �GW (ρ = ρint, E = μT , T )
and the fine structure using �GW (T ).

The relaxation of core states is important in the case of
warm dense matter [11,15]. The shifts in the core energy lev-
els become significant when T � 1 eV. However, the frozen
core approximation is used in FEFF10. Therefore, we esti-
mate the core level shifts in our calculations by use of the
all-electron full-potential linearized plane wave code FLEUR

[54–56]. Within those calculations, we ignore the explicit
temperature dependence in the LDA exchange correlation
functional [57]. As a side note, FLEUR uses nonoverlapping
muffin-tin potentials whereas FEFF uses overlapping muffin-
tin potentials.

In the RSMS formalism, the decomposition of the Green’s
function G into a central atom Gc contribution and a multiple-
scattering Gsc contribution allows us to describe the XAS in
terms of the atomic background σ0 and the oscillatory fine
structure χ , i.e., σ = σ0(1 + χ ). For many XANES calcu-
lations, it is found that the atomic background matches the
experimental results better when calculated without the self-
energy corrections due to the overestimation of the exchange
within the muffin-tin (MT) potential approximation [58].
Figure 2 shows the effect of using different exchange-
correlation potentials for the atomic background. When using

115122-3



TAN, KAS, TRICKEY, AND REHR PHYSICAL REVIEW B 107, 115122 (2023)

FIG. 2. L3-edge XAS for Cu (lattice constant a = 3.61 Å [59]) at
electronic temperature T = 0.025 eV ≈ 0 TF and T =0.13 TF =2 eV.
Different atomic background potentials are used: ground-state po-
tential (solid), �GW (T ) (dots), and constant potential �GW (ρ=ρint,

E = μT , T ) (dashes). The experimental measurement at ambient
conditions is shown as black cross [60].

�GW (T ), the absorption near the edge is overestimated. At
the same time, use of a ground-state potential neglects the
temperature dependence in the atomic background. To remedy
the problem, we introduce a constant effective potential for
the atomic background �GW (ρ = ρint, E = μT , T ). Our mod-
ification also improves the agreement with the experimental
measurement at low temperature T ≈ 0 TF .

For brevity from here onward, we refer to the combina-
tion of �GW (ρ = ρint, E = μT , T ) for the atomic background
and �GW (T ) for the fine structure simply as �GW (T ). The
pre-edge is dominated by the atomic background and thus is
sensitive to the choice of exchange potential. At T = 0.13
TF = 2 eV, the pre-edge amplitude is reduced by ≈30% due
to the temperature correction of �GW (T ). More pump-probe
experimental XAS measurements for T ≈ TF are required to
validate the FT self-energy effect for the atomic background.
Nonetheless, the FT self-energy corrections are important for
the description of HT fine structure.

As a first example, we consider the FT K-edge x-ray
absorption near-edge spectrum (XANES) for aluminum
(fcc Al, lattice constant a = 4.05 Å [59]). Aluminum is a
prototypical nearly free electron system in the sense that the
electronic density of states (DOS) in the conduction band has
a nearly square-root-like dispersion at the bottom of the band.
Figure 3 shows the comparison of the Al K-edge spectrum
at different temperatures including or excluding explicit
electronic T -dependent effects in the self-energy, namely,
using �GW (T = 0) or �GW (T > 0). When restricting the
temperature T solely to that which is introduced through
the density [�GW (T = 0) case], we observe the broadening
of the edge and almost no shift in the edge position. The
decrease in occupation of the 3p final states below the
chemical potential in the K-edge transition 1s → 3p leads to

FIG. 3. K-edge XAS for fcc aluminum (a = 4.05 Å) using differ-
ent self-energies: T -independent GW self-energy �GW (T = 0) (solid
curves) and T -dependent GW self-energy �GW (T > 0) (dots) for
T = 0, 0.08, 0.16, and 0.42 TF .

increasing pre-edge absorption and edge broadening [11,42].
In addition, the thermal excitation of the valence electron
changes the valence occupation, resulting in a blue shift of
the valence energy levels because there are more unoccupied
states above the chemical potential. The relaxation of the core
level compensates for the shift in the valence density [11].
On the other hand, for T up to about 0.08 TF = 1 eV, the
finite-temperature self-energy correction is negligible, and
the temperature-independent electron self-energy model is a
good approximation. However, as temperature grows to order
≈0.42 TF = 5 eV, the fine structure is smoothed by the large
broadening (≈3 eV) associated with shortened electronic
excitation lifetime. The shift in quasiparticle energy due
to the finite-temperature self-energy correction is small for
the near-edge region, and only becomes significant between
10 eV and 20 eV above the chemical potential.

As a further illustration of the explicit T dependence of
the FT quasiparticle self-energy, we compute the quasiparticle
energy correction �k = εqp − εk at rs,int. Here, the quasiparti-
cle energy εqp is the solution to εqp(k′) = εk + �[k′, εqp(k′)]
and k = √

2(E − μT ) is the photoelectron wave number. We
compare the real part of � in Fig. 4 and imaginary part in
Fig. 5 for different self-energies at rs,int: �GW (T = 0) and
�GW (T > 0). Note that the real part of � shows a strong
temperature dependence between 5 eV and 20 eV near the
plasmon onset. For the imaginary part of �, the broadening
effect becomes important above T = 0.08 TF = 1 eV.

As a second example, we present results for a noble transi-
tion metal (fcc copper, lattice constant a = 3.61 Å [59]) for
which the d bands are essentially full. Unlike the K edge,
the L edge probes the highly localized d bands of Cu near
the chemical potential. At high temperatures, the pre-edge
peak increases in amplitude due to the decreasing d-state
occupation [15,42]. Figure 6 shows the L3,2-edge XAS up
to T = 0.30 TF = 5 eV. Unlike the Al K-edge case, the
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FIG. 4. The quasiparticle corrections Re �k for aluminum at
temperatures T = 0, 0.08, 0.16, and 0.42 TF . The calculations used
KSDT vxc(T ) and different self-energies: �GW (T = 0) (solid), and
�GW (T > 0) (dashed).

L3,2-edge transition 2p → 3d has two peaks near 935 eV and
955 eV due to the spin-orbit splitting. These correspond to the
2p3/2 → 3d5/2 and 2p1/2 → 3d3/2 transitions. Ignoring the
temperature dependence of �, the absorption edge is sensitive
to the change in occupation as a function of temperature
because the highly localized d bands of Cu are below the
chemical potential. The pre-edge peak near 930 eV increases
as electron occupation below the chemical potential decreases
with temperature.

FIG. 5. The quasiparticle corrections Im �k for aluminum at
temperatures T = 0, 0.08, 0.16, and 0.42 TF . The calculations used
KSDT vxc(T ) and different self-energies: �GW (T = 0) (solid), and
�GW (T > 0) (dashed).

FIG. 6. L3,2-edge XAS for Cu (a = 3.61 Å) finite electronic tem-
perature T = 0, 0.06, 0.14 and 0.30 TF , where the structure reflects
that of the unfilled d bands. The solid curves denote the �GW (T = 0)
self-energy results while the dashes represent the �GW (T > 0) self-
energy results.

The temperature dependence of Im �GW (T ) results in
changes to pre-edge peaks at T � 0.13 TF = 2 eV. Conse-
quently, the estimation of temperature based on the pre-edge
area method or direct spectrum fitting will deviate more from
the �GW (T = 0) model as temperature increases.

IV. SUMMARY, CONCLUSIONS, AND OUTLOOK

Our parametrization of the FT GW electron self-energy
enables efficient calculations of XAS at finite T , from LT of a
few hundred K, up to the WDM regime with T at least 10 eV.
Our strategy uses the QPLDA G0W0 level of refinement for the
self-energy, with the RPA dielectric function in conjunction
with the KSDT finite-T LDA exchange-correlation functional.
Specifically, the FT self-energy for a system is approximated
using the uniform electron gas with density equal to that
of the local density. This is a significant simplification, as
direct calculations using the exact loss function of the sys-
tem for the entire energy range of typical XAS experiments
would be computationally formidable. A finite-temperature
SCF procedure for the XAS calculations is carried out in the
complex energy plane in terms of the FT one-electron Green’s
function. The procedure includes the FT exchange-correlation
potential, approximated here by the KSDT parametrization.
Important FT XAS effects include the smearing of the absorp-
tion edge and the presence of peaks in the spectrum below
the T = 0 K Fermi energy. The FT exchange-correlation po-
tential has only a small effect on XAS at low temperatures
T 	 TF compared to the effect of Fermi smearing. The FT
self-energy is also important for XAS, accounting for both
temperature-dependent shifts and final-state broadening. To
illustrate its efficacy, the approach was applied to calculations
of XANES for crystalline Al and Cu at normal density. Above
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T > 0.1 TF , the fine structures experience substantial broad-
ening in the K edges, corresponding to a reduction of the
quasiparticle lifetime with increasing T .

Going forward, a computationally efficient approximation
beyond the uniform electron gas dielectric function would
be to use a many-pole model [61,62], which is an extension
of the Hedin-Lundqvist single plasmon-pole model [63,64].
Ab initio dielectric functions also can be obtained from
modern electronic structure codes. Such a finite-temperature
generalization of the many-pole model is currently under de-
velopment.
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APPENDIX A: MODEL FOR Re �GW

The real part of the finite-temperature GW self-energy,
Re �GW (T ), is parametrized using low-order polynomials.
The parametric variables are the Wigner-Seitz radius rs, re-
duced momentum x = k/kF , and reduced temperature t =
T/TF . Below the variable X represents the array denoted

FIG. 7. Our parametrization (solid) to the real part of �GW (T )
(gray, dash-dotted) for rs = 0.02, 0.5, 1.0, and 7.0 (blue to red).

X = (rs, x, t ).

Re �GW (X )

EF
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0(t ) + α1(t )β1(rs)x
+α2(t )β2(rs)x3/2

+α3(t )β3(rs)x2

+α4(t )β4(rs)x5/2, x < κ (rs, t )

α̃1(t )β̃1(t )x−1

+α̃2(t )β̃2(t )x−2

+α̃3(t )β̃3(t )x−3, x � κ (rs, t )

. (A1)

Here αi(t ) = αi1 + αi2t + αi3t2 and α̃i(t ) has the same form.
Similarly βi(rs) = βi1rs + βi1r3/2

s + βi1r2
s and β̃i(rs) has the

same form. The function κ is defined as:

κ (rs, t ) = (1 + tanh[a1rs − α1(t )])

× (a2 log[rs]
2 + α2(t )) + α3(t ), (A2)

where it is fitted to the position of the cusp defined as

cusp =
⎧⎨
⎩

min(1.5, arg minxRe �GW ), 0.2 < rs � 5
min(1.5, arg maxx∂xRe �GW ), rs > 5
1, rs � 0.2

.(A3)

The resulting Re �GW parametrization is shown in Fig. 7. The
absolute mean error for our parametrization is ≈0.007 EF . A
list of the parameters in these fits is given in the Supplemental
Material [65].

FIG. 8. Our parametrization (solid) to the imaginary part of
�GW (T ) (gray, dash-dotted) for rs = 0.02, 0.5, 1.0, and 7.0 (blue
to red).
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APPENDIX B: MODEL FOR Im �GW

The imaginary part of the finite-temperature GW self-
energy, Im �GW (T ), is parametrized by

Im �GW (X )

EF
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1(rs)xt + η2(rs)xt
3
2

+η3(rs)x2t + η4(rs)x2t
3
2

+η5(rs)x
3
2 t + η6(rs)x

3
2 t

3
2

+η7(rs)x + η8(rs)x2

+η9(rs)x
3
2

+ Im �GW (rs,x=1,t )
EF

, x < λ(rs, t )

σ
(∑5

i=1 η̃i(rs)βi(t )x−i

+ η̃6(rs)β6(t )x−1/2
)
, x � λ(rs, t )

, (B1)

where ηi(rs), η̃(rs) = ηi1rs + ηi2r3/2
s + ηi3r2

s and σ is the stan-
dard deviation of the data points used. The function λ(rs, t ) is

given by

λ(rs, t ) =
(

1 + tanh

[
rs − 1

2

p1

])
(p2rs + η1(t )) + η2(t ) (B2)

and Im � at the Fermi level, kF , is parametrized by:

Im �GW (rs, x = 1, t )

EF
= ν1(t )r

1
2
s + ν2(t )rs + ν3(t )r

3
2
s , (B3)

where νi(t ) = νi1t + νi2t3/2 + νi3t2. The fittings of Eq. (B1),
Eq. (B2), and Eq. (B3) are done for two temperature regions:
t < 0.5 and t � 0.5, and two density regions: rs < 0.2 and
rs � 0.2.

The final model is a linear combination of the left and
right regions in Eq. (B1). The left region is weighted by the
Fermi function w = 1/{1 + exp[15(k − 1.1λ(rs, t ))]} and the
right side by 1 − w. In addition, to prevent spurious negative
values at very low t , we clip any negative values to be zero.
The resulting parametrization is shown in Fig. 8. The absolute
mean error for our parametrization is ≈ 0.006 EF . A list of the
parameters in these fits is given in the Supplemental Material
[65].
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