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Assignment of excitonic insulators in ab initio theories: The case of NiBr2
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In this work we perform a detailed first-principles analysis of the electronic and optical properties of NiBr2

within the state-of-the-art GW +BSE scheme to determine whether this system displays negative excitonic
energies, which would identify it as an (half) excitonic insulator. Particular attention is paid to the convergence of
the GW band structure and to the consistency between approximations employed in the ground-state calculations
and approximations employed in the linear response calculations. We show that these two issues play a crucial
role in identifying the excitonic nature of NiBr2.

DOI: 10.1103/PhysRevB.107.115121

I. INTRODUCTION

The seminal paper [1] of Jerome and coworkers predicted
the realization of the broken-symmetry excitonic insulator
(EI) phase in materials where the exciton binding energy over-
comes the fundamental band gap. The phase transition from a
symmetric state to the lower-symmetry EI would be purely
electronically driven. A very rich activity followed, with var-
ious research groups trying to find signatures of the EI phase
in different classes of materials, ranging from semimetals to
small gap semiconductors and nanostructures [2–16].

The determination of the EI phase is mostly quantitative,
rather then qualitative, i.e., it relies on the relative value of
the excitonic binding energy versus the fundamental band
gap. Therefore accurate numerical simulations are essential.
Moreover, the broken-symmetry phase is often associated to
an instability of the crystal structure, and a distortion to-
wards a lower symmetry phase [9,14,17]. It then becomes a
chicken and egg question whether it is the lattice distortion
that drives the electronic phase transition or vice versa, and
whether or not one should speak about excitonic instability
at all in many cases. The structural and the electronic phase
transitions cannot be disentangled experimentally, making a
direct proof of the EI existence a nontrivial problem, with
different experimental groups often reaching opposite con-
clusions. This is why ab initio numerical simulations are the
key instrument to be used. Indeed, while indications of the EI
phase from experimental measurements have been collected,
in most works the assignment of the EI phase is based on
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ab initio numerical simulations, either as support of experi-
mental data or as purely theoretical/computational works.

The state-of-the-art approach to model excitons in ab initio
simulations is the so-called Bethe-Salpeter equation (BSE),
computed on top of an accurate band structure including
quasiparticle GW corrections, within the so-called GW +BSE
scheme. Then, numerically, a material is foreseen to be an
excitonic insulator if the BSE binding energy overcomes the
GW band gap. This approach has been used in several works
[7,8,11,12,18]. Recently, following this approach, a possible
EI phase was identified by Jiang et al. [18] for the magnetic
layered NiBr2. NiBr2 is quite unique for two reasons. First
of all, it has a very large band gap (about 4 eV), compared
to other materials explored so far. This would suggest that
the EI phase could be ruled out from the beginning, since
typical exciton binding energies range from few meV to few
hundreds meV in bulk materials. Second, NiBr2 is magnetic,
thus leading to an interplay between charge and spin degrees
of freedom. As a result, the EI phase was predicted to be
realized in one spin channel only. The authors referred to this
case as a half-EI (HEI).

The GW +BSE scheme is a well-established numerical
scheme, and it works surprisingly well in describing the
optical properties of a wide range of materials, ranging
from bulk insulators and semiconductors, to layered and
two-dimensional (2D) materials, 1D materials, such as car-
bon nanotubes, up to isolated systems such as clusters and
molecules. In NiBr2, similarly to other EI candidates, the
GW +BSE scheme results in solutions of the excitonic Hamil-
tonian with slightly negative energies (few meV below zero).
However, the validity of the GW +BSE scheme to correctly
capture poles with energy close, or even below, zero should
be questioned from the beginning for various reasons. First,
it is well known that the results of the GW +BSE scheme
depend on the starting point, i.e., on the functional employed
in the initial density functional theory (DFT) calculation. For
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example, if the initial band structure is computed starting
from a DFT calculation using the PBE or the PBE0 ap-
proximation, one should refer to it as GW @PBE+BSE or
GW @PBE0+BSE, respectively. Although a change of the
functional might only result in small energy shifts, this could
be enough to move an energy eigenvalue of the BSE across
zero. Second, in this protocol approximations employed in the
ground-state calculations are not consistent with the approx-
imations used in the linear response part. As a consequence,
for example, the GW @DFT+BSE scheme, if used to com-
pute excitations in the spin flip channel, fails in reproducing
the Goldstone sum rule for magnons, i.e., it fails to give a
zero-energy pole in magnetic materials [19]. This failure is
independent of the DFT flavor, the corresponding error can
be large, and it clearly shows that the scheme is not reliable
for poles with energy close to zero. A similar inconsistency is
also at the origin of the incorrect long-wavelength limit of the
plasmon energy within GW @BSE [20].

Surprisingly, these issues have been discussed very little
in the literature when addressing the existence of possible EI
phases. In the present paper we use the quite unique case of
NiBr2 to address this deficiency. We show that NiBr2 is an
extreme case where one should be very careful in propos-
ing the existence of an EI phase, since the state-of-the-art
GW @DFT+BSE scheme is so much affected by the starting
point that even qualitatively results can change completely.
These findings are not specific to the case of NiBr2 but can be
extended to the analysis of a wide range of materials.

The paper is organized as follows. In Sec. II we define in
a clear way what an EI phase (or an EI instability) is, and
discuss the numerical protocols, which properly address the
existence of the EI phase in general. In particular we discuss
why one has to be consistent in the approximations used to
describe the ground state and the response of the system. In
Sec. III we present the results of our numerical simulations
and discuss the band structure (Sec. III A) as well as the
absorption spectrum (Sec. III B) of ferromagnetic NiBr2 using
various approximations. We finally draw our conclusions and
perspectives in Sec. IV.

II. THEORETICAL PROTOCOL

The EI phase has two fundamental key properties: (i) it
is a broken-symmetry phase of electronic nature, and (ii)
it is described by introducing the long-range electron-hole
interaction in the simulations. These are the two essential
requirements that any numerical simulation predicting an EI
phase should take into account.

Let us define the electronic Hamiltonian H , which also
includes the potential of the atoms in a chosen crystal lat-
tice structure, and its eigenvalues (at fixed electron number)
Eλ, with E0 the ground-state energy. We can define a cor-
responding point symmetry group S and a group of discrete
translations T , such that [H, S] = 0 and [H, T ] = 0. We call
�ST the phase space of electronic states, which respect such
symmetry groups, � the global phase space, and �S (�T )
the phase space, which respects the S (T ) group alone. We
have � ⊇ �S ⊇ �ST (� ⊇ �T ⊇ �ST ). The excitonic insu-
lator phase arises from a spontaneous symmetry breaking. In
the present paper we will focus on the spontaneous symmetry

breaking with respect to the S group, in line with the study
carried out in Ref. [18]. We notice that NiBr2 is an indirect
gap material (although with a very small difference between
direct and indirect gap, as we shall see), and possibly finite
momentum excitons are those of minimum energy. Indeed
the existence of a spin spiral/cycloidal spin structure has
been predicted [21–23], which could be explained as due
to an instability connected to finite momentum excitons. It
would be interesting to address this issue in a future work.
Accordingly, we define EST

0 as the global energy minimum
over �ST , and ET

0 as the global energy minimum over �T .
A broken-symmetry phase ground state exists if and only if
ET

0 < EST
0 .

Standard ab initio simulations compute the ground state
with the symmetry specified by the crystal lattice structure of
the system, within a given approximation for the exchange
and correlation (XC) energy; we indicate the corresponding
total energy as E

ST,XCg

0 , with XCg referring to the XC ap-
proximation used in the ground state. There are then two
options available to check if a broken-symmetry state with
energy E

T,XCg

0 < E
ST,XCg

0 exists: (i.1) to perform a second
ground-state simulation without symmetry or (i.2) to com-
pute the spectrum of the neutral excitations of the material,
ωλ = (Eλ − E0), at zero transferred momentum.1 In the latter
case there is no need to impose symmetry breaking. Indeed,
neutral excitations are computed from the solution of the
linear response function χ (ω). The excited-state energies, Eλ,
and the corresponding wave functions, �λ, which appear in
the Lehmann representation of χ (ω), do not belong to �ST in
general. More precisely, given the space symmetry group S,
the states �λ can be classified as degenerate multiplets of the
irreducible representations Rλ

S of the space group. Symmetry
operations of �ST can in general send a state of a given
multiplet into any other state of the same multiplet. Because
of that, the states of a monodimensional representation Rλ

S
are singlets, i.e., nondegenerate, and belong to �ST . Instead,
states of a multidimensional representations RI

S do not belong
to �ST , and they must be considered together to obtain a
closed subspace with respect to the symmetry operation of
the group S. If a multiplet of states has energy lower than the
ground state, then a spontaneous symmetry breaking would
be favored, with an emerging ground state composed by a
random linear combination of the states in the multiplet.

If option (i.1) is chosen, the same level of approxima-
tion must be used in the ground-state calculation with and
without symmetry. Comparing E

T,XCg1

0 and E
ST,XCg2

0 , with
XCg1 and XCg2 two different XC approximations used in
the ground state, does not have any validity. Moreover, the
long-range electron-hole interaction needs to be considered.
In some works the EI phase has been studied on the ba-
sis of calculations using the local density approximation
(LDA) or the generalized gradient approximation (GGA),
i.e., XCg = LDA/GGA [14,24]. While also within these ap-
proximations a symmetry-broken phase could be obtained,

1The finite momentum excitations would describe the breaking of
the translational symmetries as well. We do not consider this case
here.
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such phases should not be labeled as EI, since LDA/GGA
completely miss the long-range behavior of the electron-hole
interaction. Indeed, it is well known that time-dependent DFT
(TDDFT), within the LDA or GGA approximations (TDLDA
or TDGGA), cannot describe excitons in the excited states,
and thus these approximations cannot capture the EI phase in
the ground state either.

In case option (i.2) is chosen, the total energy of pos-
sible broken-symmetry phases can be obtained by defining
ET,XC

λ = E
ST,XCg

0 + ω
ST,XCe
λ , with ωST,XC

λ = ET,XC
λ − EST,XC

0
a zero-momentum neutral excitation of the system, using
consistent approximations between ground-state (XCg) and
excited-state (XCe) calculations. Then the criteria to establish
the existence, for some λ0, of a broken-symmetry phase be-
comes ω

ST,XCe
λ0

< 0. In such situation we can identify ET,XC
λ0

=
ET,XC

0 as the global ground-state energy. The state-of-the-art
scheme to describe excitons in the ab initio framework is BSE.
ω

XCe
λ < 0, with XCe referring to the XC approximation used

for the BSE kernel, is then often used as the gold standard to
predict the existence of the excitonic insulator phase. Within
this approach the essential consistency condition at the core
of option (i.2) would rely on the use of a one-body Green’s
function, which is a self-consistent solution of the Dyson
equation for a given self-energy approximation and on the use
of the same level of approximation for the self-energy and the
BSE kernel [19].

However, in practical calculations, this consistency
condition is violated since the state-of-the-art is the
GW @DFT+BSE scheme. Within this scheme the BSE ker-
nel is obtained from the Hartree plus screened-exchange
self-energy (HSEX) approximation, i.e., XCe = HSEX,
while XCg = GW @DFT. Ideally, one would use full self-
consistency including vertex corrections in the ground state
and the corresponding (frequency-dependent) kernel in the
BSE. This is, however, time consuming and, moreover, it
would require a dynamical kernel in the BSE, which is not
yet a standard feature. There is also a more fundamental
problem, which is related to the fact that by including higher-
order corrections to GW there are more and more ways of
iterating the equations and hence an increased danger of run-
ning into unphysical solutions [25–27]. One can then stick
to the GW approximation, but, again, this would require a
BSE with a dynamical kernel. To be consistent within the
standard BSE implementations possible choices for the self-
energy are HSEX and COHSEX (Coulomb hole+screened
exchange), with or without a fixed screened Coulomb in-
teraction in the self-consistent procedure [19,28,29] (if one
neglects second-order corrections in W in the BSE kernel).
For example fully self-consistent COHSEX has been shown
to substantially reduce the violation of the Goldstone-mode
condition (see, e.g., Ref. [28]). Even ignoring this point and
assuming that GW is a good starting point for a BSE cal-
culation, at least an eigenvalue self-consistent GW (evGW )
procedure should be carried out. However, this would not
eliminate the starting point dependence, which, as we will see,
is of crucial importance in the present study. However, both
self-consistent HSEX and evGW can be very demanding. An
alternative path is to use DFT with hybrid functionals, which
are computationally affordable. Hybrid functional simulations

include (a fraction of) the long–range electron-hole interac-
tion and can be used to capture EI phases. In this case XCg =
XCe = hybrid can be used, by employing TDDFT for the
excited states. To underline this consistency, we will use here
the notation PBE0+TDPBE0 for example for the PBE0 case.
Indeed, it has been shown that hybrid functionals can capture
excitonic excited states [30] and EI phases [9]. In general the
exchange fraction entering hybrids is not properly screened,
and this could be particularly problematic in 2D materials,
since the 2D nature of the screening is completely missing.
Nevertheless, as we will see, it remains a valid approach to
demonstrate the concept of consistency we discussed above.

In this work we will adopt the protocol described in op-
tion (i.2) to identify possible EI phases in NiBr2 and we
will calculate the optical spectrum within GW @PBE+BSE,
GW @PBE0+BSE and PBE0+TDPBE0. This will allow
us to address both the starting-point dependence of the
GW @DFT+BSE scheme and to consider a proper scheme
with XCg = XCe.

III. RESULTS

We studied monolayer 1T -NiBr2 in its ferromagnetic
ground state. Density functional theory calculations were per-
formed using the QUANTUM ESPRESSO code [31] within both
the Perdew-Burke-Ernzerhof (PBE) and the PBE0 exchange
correlation functional [32]. Optimized norm-conserving Van-
derbilt pseudopotentials have been generated using ON-
CVPSP [33]. The self-consistent (SCF) simulations converged
with an energy cutoff of 80 Ry and a k-point grid of 9 × 9 × 1
(the direct band gap at � has been converged to 0.01 eV).

We then used the DFT wave functions ψKS
nk (r) and energies

εKS
nk to perform GW and BSE simulations. For the PBE case

we recomputed ψKS
nk (r) and εKS

nk with a non-self-consistent
(NSCF) calculation on a 19 × 19 × 1 k-point grid in the Bril-
louin zone. For the PBE0 case instead we used a 9 × 9 × 1
k-point grid. This is due both to the higher computational
cost of PBE0 and to the fact that, with the code used in the
present work (QUANTUM ESPRESSO), it is not possible, in the
case of hybrid functionals, to use different k-point grids in the
NSCF and SCF calculations. As we shall see, this restriction
does not affect our conclusions. We computed the one-shot
GW quasiparticle (QP) corrections on top of DFT using the
Yambo code [34,35]. Dynamical screening effects have been
taken into account using the Godby-Needs plasmon-pole ap-
proximation (PPA) [36]. Both in DFT and, successively, in
GW and BSE, we used a slab model with a 40 a.u. vacuum
thickness. Moreover, the Coulomb cutoff technique [37] has
been used to ensure no interactions between periodic images.
In the GW step, we used a cutoff of 40 Ry for the input
variable FFTGvecs, which determines the size of the real-
space grid and the energy cutoff for the wave functions; an
energy cutoff four times bigger, i.e., of 320 Ry, for VXC and
for the exchange part of the self-energy 
x; finally an energy
cutoff of 10 Ry for the screening and the correlation parts of
the self-energy 
c We included a total of 200 bands in the
screening and 500 in the evaluation of the self-energy. Note
that to guarantee converged results we use the extrapolation
procedure explained in the Supplemental Material [38]. In
the optical response we took into account excitonic effects
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FIG. 1. Spin-resolved band structure (majority- and minority-spin channels are reported in blue and red, respectively) for GW @PBE (left)
and GW @PBE0 (right) are reported with a continuous line. The DFT band structures used as starting point for the GW correction are reported
with a dashed line. Energy zero is at the top of valence band.

via the Bethe-Salpeter equation [39,40]. The BSE absorption
spectrum has been calculated using a static screening con-
verged using the same parameters of the GW calculation. We
used a cutoff of 4 Ry for the electron-hole exchange and 10
Ry for the screened interaction. We included bands 7–23 to
obtain a converged spectrum up to 10 eV.

In the following we demonstrate that the occurrence of
negative energy solutions of the BSE strongly depends on the
choice of the approximations used in the ground state and for
the BSE kernel. In particular the lack of self-consistency in the
GW band structure and of consistency between ground-state
approximations and BSE kernel approximations can lead to a
questionable EI phase.

We notice that, besides the consistency between the ap-
proximations used for the ground state and for the linear
response and the role of the starting point, another possible
source of error is the static approximation for the screening
adopted in standard BSE calculations, which may not be justi-
fied in cases where low-energy excitations or negative energy
instabilities are sought [41,42]. We will not address this issue
in the present work, since, at least for extended systems, there
is not yet implementation of the BSE with a dynamical kernel.

A. Band structure

The starting point for a BSE calculation is a single-particle
band structure obtained correcting the DFT energies. The
approximation chosen for the DFT determines the quality of
the screened interaction W , which is computed within the
RPA approximation using Kohn-Sham energies. This results
in the so-called W0 screened interaction. W0 enters the one-
shot GW or G0W0 approach, which is usually employed for
the band structure. The one-shot GW is also employed in the

present work. Even without invoking self-consistency, GW
calculations can be problematic in 2D materials. We found,
indeed, that, for the system under study, particular attention
has to be paid when converging the GW quasiparticle correc-
tions. See also the discussion in the Supplemental Material
[38] (see, also, Refs. [43,44] therein).

In Fig. 1 we show PBE and PBE0 spin-resolved band
structures, separated in majority (M) and minority (m) spin
channels. The corresponding GW @PBE and GW @PBE0
band structures are also shown. In all cases the band gap is
indirect, with 0.83 eV at the PBE level compared to 3.79 eV
at the PBE0 level, and it is due to transitions from the majority
valence band maximum (VBM) at � towards the minority
conduction band minimum (CBM), which is at roughly half-
way along the �M high symmetry line. Also the direct band
gaps within PBE0 (4.45 eV and 6.52 eV for m-m and M-M
spin channels, respectively) are significantly larger than the
ones obtained using PBE (1.33 eV and 4.09 eV for m-m and
M-M spin channels, respectively). This is expected due to
the fraction of HF exchange taken into account in the PBE0
functional.

Moving to GW , one would naively expect that, despite the
starting-point dependence, the GW @PBE and GW @PBE0
gaps should be close to each other, with GW @PBE approach-
ing the expected self-consistent GW result from below, i.e.,
with the GW corrections opening the PBE gap, and with
GW @PBE0 from above, i.e., with the GW corrections closing
the PBE0 gap. However, this is clearly not the case as shown
in Fig. 1. GW @PBE opens the PBE gap from 0.83–2.62 eV.
Direct band gaps are increased to 2.91 eV and 5.01 eV for the
minority and majority spin channels, respectively. However,
GW @PBE0 also opens the PBE0 gap from 3.79–5.75 eV.
Direct band gaps are 6.56 eV and 7.41 eV for the minority
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TABLE I. Indirect and direct band gaps (in eV).

PBE PBE0 GW
[44] @PBE @PBE [44] @PBE0

ind. gap M-m 0.83 0.88 3.79 2.82 2.62 5.75
dir. gap m-m 1.33 1.34 4.45 2.91 2.62 6.56
dir. gap M-M 4.09 3.95 6.52 5.01 5.37 7.41
dir. gap M-m 0.99 1.04 3.86 3.05 3.06 5.91

and majority spin channels, respectively. See also Table I for
a comparison of all values. This clearly points to the fact that
W PBE

0 and W PBE0
0 are different and that, accordingly, the two

G0W0 self-energies are different. One can then wonder which
result is the most reliable.

On one hand the GW @PBE is the state-of-the-art scheme
to compute quasiparticle band structure. Indeed, the PBE
screening entering W PBE

0 is usually a reasonable approxi-
mation to the physical screening due to error cancellations
between (i) the underestimated fundamental gap, and (ii) the
neglected excitonic effects. On the other hand hybrid func-
tionals such as PBE0 are expected to better approximate
quasiparticle wave functions and energies. Also simulations
based on the hybrid HSE0 functional [18,45] give a band
structure rather close to the PBE0 band structure. However,
GW @hybrids, despite being very promising [46–48], as for
example in the case of hybrid-organic perovskite materials
[47], is a scheme, which has not been much tested yet, since
the compatibility of GW codes with hybrid functionals is a
quite recent feature. By correcting the electronic gap, hybrid
functionals tend to underestimate the electronic screening,
which may result in a overestimation of the GW @hybrids gap
[46]. Indeed, in NiBr2 the underestimated screening leads to
a very strong exchange term, even bigger than the exchange
fraction entering in PBE0. As a consequence, it is more rea-
sonable to directly compare GW @PBE with hybrids such as
PBE0. The estimated experimental band gap, probed using
STS on NiBr2 thin films, down to the monolayer, ranges
between 3.4 and 4.5 eV, in good agreement with the PBE0
value [49].

Besides this evident but yet quantitative difference, there
is a more important qualitative difference between PBE and
PBE0 band structures, which is also inherited by the corre-
sponding GW band structure. Within PBE there exist three
almost flat bands in the minority channel, which are very close
in energy to the top of the valence band in the majority spin
channel. These bands are nickel 3d states [18], in particular
with t2g character, which are likely not well described within
PBE. Indeed, they are not present within our PBE0 simula-
tions, nor in the HSE0 and LDA+U results in the literature
[18,45]. Moving to GW @PBE these same states remain there,
pointing to the fact that the PBE wave functions are not well
described, and that PBE is not a good starting point. These
states also show a quite peculiar behavior in the GW sim-
ulations, and, as we shall see, they are responsible for the
very sharp difference in the spectrum of GW @PBE+BSE
compared to PBE0+TDPBE0 or GW @PBE0+BSE. In the
Supplemental Material [38] we discuss the convergence of
the GW @PBE quasiparticle corrections. We highlight the

unusual behavior of these flat Ni t2g↓ bands, and we discuss
in detail the very slow convergence compared to the energy
cutoff used in the description of the screened interaction.
The discussion agrees with previous numerical studies [50],
although this fact has been somehow overlooked in past sim-
ulations on 2D materials [18]. Indeed GW @PBE corrections
on these occupied Ni t2g↓ states lead to a situation in which
the majority and the minority VBM are very close in energy
(during the GW convergence their relative position is even
inverted). The direct gap switches character, from M-m to m-
m, and the system almost becomes a direct gap material with
an energy difference between GW @PBE direct and indirect
gap of 9 meV (compared to 500 meV in PBE, 660 meV in
PBE0, and 810 meV in GW @PBE0). The small m-m gap is
also part of the reason why negative poles will appear in the
response function calculated at the level of GW @PBE+BSE,
as we will discuss in Sec. III B.

The conclusion of this analysis is that NiBr2 is an
indirect band gap semiconductor. The indirect gap is majority-
minority, as expected in standard magnetic materials. Looking
at the direct gap, this is also majority-minority, the minority-
minority gap is slightly larger (less than 1 eV), while the
majority-majority gap is significantly larger. This behavior
is due to the empty spin-minority Ni 3d orbitals, with eg

character, which lie in between the more predominantly p-like
valence and conduction bands.

B. Optical properties

We now turn our attention to the optical properties of
NiBr2. In Fig. 2 the GW @PBE+BSE absorption spectrum
is reported together with the GW @PBE0+BSE and the
PBE0+TDPBE0 spectra. All spectra are dominated by an
intense excitonic peak, which we label E0. All methods de-
scribe E0 as an exciton mostly located nearby � in the
BZ (see Fig. 3) and corresponding to a transition from p
bands εpk↓ to d (eg) bands εdk↓ in the spin minority channel.
At energy larger then E0 the spectral intensity is strongly
reduced and eventually it goes up again at even larger
energy. The position of the E0 peak shifts from 3.3 eV
(GW @PBE+BSE), to 3.6 eV (PBE0+TDPBE0), and to
4.1 eV (GW @PBE0+BSE). The E0 energy is always lower
compared to the (εdk↓ − εpk↓) energy difference. We de-
fine its binding energy bE0 = mink(εdk↓ − εpk↓) − E0. bE0 ≈
1 eV in both GW @PBE+BSE (1.1 eV) and PBE0+TDPBE0
(0.9 eV), while bE0 = 2.4 eV for GW @PBE0+BSE. This
discrepancy is again due to the underestimated RPA screen-
ing obtained using the PBE0 starting point. This leads to
an overestimation of the band gap, which is here compen-
sated by an overestimation of the binding energy and results
in a peak position not very different from GW @PBE+BSE
and PBE0+TDPBE0. As for the band structure case, the
conclusion here is that it is better to directly compare
GW @PBE+BSE to PBE0+TDPBE0.

The qualitative behavior of the spectrum is instead sig-
nificantly different at energy below E0. All methods show
poles at energy well below E0, due to transitions between
occupied and flat bands in the minority spin channel, which
we identify as d (t2g) states (see Supplemental Material [38]),
and the empty spin minority d (eg) states. However, within
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FIG. 2. Imaginary part of the macroscopic polarizability cal-
culated within GW @PBE+BSE (top panel), GW @PBE0+BSE
(middle panel), and PBE0+TDPBE0 (bottom panel). The results
obtained within the corresponding independent particle approxima-
tion, i.e., ignoring electron-hole interaction, are also reported (dashed
lines). Curves are vertically shifted for clarity. Bright and dark exci-
tons energies are reported as vertical ticks.

GW @PBE+BSE, this leads to a series of three bright excitons
to appear, which we label Di in Fig. 2 following the choice
done in Ref. [18]. These peaks are located at 1.67 eV (D1),
1.98 eV (D2), 2.21 eV (D3). As already pointed out, the
description of the occupied t2g states is questionable in PBE,
and so are the absorption features related to them. Indeed the
series of the D peaks is missing within GW @PBE0+BSE
and PBE0+TD-BPE0, where all d (t2g) → d (eg) transitions
are dark. This is probably due to the fact that the PBE starting
point mixes d and p bands character, while PBE0 does not.

Beside these aspects, we are here interested in discussing
whether or not NiBr2 is an HEI. We thus need to turn our
attention to the lowest-energy solutions among the d (t2g) →
d (eg) transitions. As discussed, the occupied d (t2g) states are
very close to the valence band maximum within GW @PBE,
while they are deeper in energy within PBE0 and GW @PBE0.
As a consequence the GW @PBE+BSE approach produces
negative eigenvalues. There is a doubly degenerate dark ex-
citon at −0.17 eV (X1,1) and a nondegenerate exciton at
−0.16 eV (X1,2). These two excitons share a similar physics

GW@PBE+BSE GW@PBE0+BSE PBE0+TDPBE0

FIG. 3. Band contribution to the main excitonic peak E0: (left
panel) GW @PBE+BSE, (middle panel) GW @PBE0+BSE, (right
panel) PBE0+TDPBE0. Note that the plotted band structures are the
DFT ones. We also report the excitonic wave function in reciprocal
space.

and are labeled as X1 in Fig. 2. Other two dark excitons located
at 0.59 (X2,1) and 0.68 eV (X2,2) are indicated with X2. Both X1

and X2 are associated with transitions between t2g and eg bands
in the minority channel (see Supplemental Material [38]). The
X1 poles in particular are the ones which were used to claim
the possible existence of an HEI ground state in Ref. [18].
Instead, within GW @PBE0+BSE and PBE0+TD-BPE0 no
negative eigenvalues appear and therefore there is no EI phase.
Since the qualitative behavior of these three approaches is the
same, and, as discussed in Sec. I, the existence of a possible EI
phase is mostly quantitative, we have now to address the ques-
tion: which result is the most reliable? Both GW @DFT+BSE
schemes are based on a one-shot GW calculation and plagued
by inconsistencies between the approximation used for the
ground state and the approximation used for the excited states.
This points to the fact that, as far as this quantitative question
is concerned, PBE0+TDPBE0 is the scheme to rely on. For
NiBr2 it should be noticed that the GW @DFT+BSE inconsis-
tency is not so drastic. Indeed the physics of both the ground
state and the excited states is determined by the same screened
interaction W . However, the state-of-the-art GW @PBE+BSE
is affected by a bad description of the occupied d bands in the
current study, which is here crucial to address this quantitative
answer. GW @PBE0+BSE suffers from a PBE0 screening,
which is likely underestimated, although errors induced in
the band structure are canceled by the overestimation of the
binding energy, thus affecting in a less severe way the final
position of the BSE peaks. We also notice that in Ref. [18],
the HEI phase is also supported by HSE0+BSE simulations
where, however, the inconsistency between ground-state and
excited-states approximation is more problematic. Indeed it
is noteworthy that BSE should be performed with quasiparti-
cles, while HSE0 is more appropriate in a density functional
context. TDHSE0 would be more methodologically sound.
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In conclusion, our analysis of the band structure and the
of the optical spectral features indicates that PBE0+TDPBE0
gives a good overall description of NiBr2. Since this scheme
does not produce any negative-energy pole in the optical ab-
sorption, we conclude that NiBr2 is not an HEI. This is the
most important result of this work.

IV. CONCLUSIONS AND PERSPECTIVES

In this work we addressed the study of excitonic insula-
tor phases within common ab initio theoretical approaches
such as time-dependent density functional theory and the
Bethe-Salpeter equation of many-body perturbation theory.
We discussed the fact that in order to correctly capture this
phase a theoretical approach should be able to describe two
important features, i.e., an electronic-driven broken sym-
metry and the long-range electron-hole interaction. That is
why TDDFT within the common LDA/GGA approximations
(which miss the long-range electron-hole interaction) cannot
correctly describe this phase. The BSE is more appropriate,
but, in order to correctly describe an electronic-driven broken
symmetry, it should be used within consistent approximations.
We discussed that this corresponds to use the same level of
approximation for the self-energy used in a self-consistent
ground-state calculation and for the kernel of the BSE.

For the specific case of ferromagnetic NiBr2, by comparing
the optical spectrum and the energy position of the lowest-
energy dark excitons obtained with different schemes, we
arrived at the conclusion that the PBE0+TDPBE0 scheme
is the most reliable, also because it uses the same level of
approximation for the ground state and for the excited states.
Within PBE0+TDPBE0 all dark poles have a positive en-
ergy, which indicates that NiBr2 is not an HEI, contrary to
previous assignments. Moreover, we find that the occurrence
of negative energy peaks in the GW @PBE+BSE is due to

the starting-point dependence of the GW scheme, rather than
to the inconsistency between ground-state and excited-state
approximations. Indeed, the PBE starting point gives a ques-
tionable description of the t2g states, which leads, within
GW @PBE, to t2g bands located too high with respect to the
occupied p states. This does not happen within PBE0 and
GW @PBE0 (and also with respect to other approximations
studied in the literature such as HSE0 and PBE+U ). More
in general, our study points to the fact that using consistent
approximations in ab initio theories is of crucial importance
in order to have reliable results.
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