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Open-system spin transport and operator weight dissipation in spin chains
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We use nonequilibrium steady states to study the effect of dissipation-assisted operator evolution (DAOE) on
the scaling behavior of transport in one-dimensional spin chains. We consider three models in the XXZ family:
the XXZ model with staggered anisotropy, which is chaotic; XXZ model with no external field and tunable
interaction, which is Bethe-ansatz integrable and (in the zero interaction limit) free-fermion integrable; and the
disordered XY model, which is free-fermion integrable and Anderson localized. We find evidence that DAOE’s
effect on transport is controlled by its effect on the system’s conserved quantities. To the extent that DAOE
preserves those symmetries, it preserves the scaling of the system’s transport properties; to the extent it breaks
those conserved quantities, it pushes the system towards diffusive scaling of transport.
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I. INTRODUCTION

Quantum out-of-equilibrium dynamics is at the heart of
various areas of physics from condensed-matter to high-
energy physics and even quantum information science. The
dynamics of conserved quantities is particularly interesting
within this broad nonequilibrium setting. In the solid-state
context, measurements of transport of conserved quantities
like energy and charge provide a useful window into the un-
derlying dynamics of these complex systems. In particular, the
scaling behavior of a system’s transport properties, whether it
is diffusive, subdiffusive, or superdiffusive, as well as details
like the nature of the scaling function, is intimately connected
with the strength of the system’s interactions [1], the presence
of kinetic constraints and higher-form symmetries [2–12], and
its integrable or chaotic nature. Recent experimental devel-
opments in various platforms including cold-atom systems
[13–18], quantum magnets [19], superconducting quantum
circuits [20], and heavy-ion collisions [21] are also shedding
light on the subject. Along with those experimental results,
new theoretical approaches have been developed to tackle the
major challenge of calculating and interpreting the observed
transport phenomena. Due to the breadth of the subject, the-
oretical developments include a range of approaches from
general frameworks to techniques for specific situations (re-
views include [22–30]).

These new approaches are especially important for
strongly interacting systems where the physical interpretation
of transport phenomena is not well understood. Numerical
approaches are indispensable since there is often no simple
analytical technique available. Tensor network algorithms,
especially matrix product state methods, can access trans-
port physics close to the thermodynamic limit [31–33]. For
other commonly considered problems (e.g., ground states
of gapped local Hamiltonians and short-time evolution),

matrix product state methods are reliable because the states
in question have low entanglement. For short-time evolution
in particular, time-evolving block decimation (TEBD) [34,35]
constitutes a controlled approximation. But matrix product
state methods become expensive for systems with slow dy-
namics (e.g., subdiffusive transport [36,37]) or high amounts
of entanglement. Some alternate techniques have been sug-
gested [38–49]. Many of those methods modify the dynamics
to a nonunitary time evolution not unlike a Lindblad dynam-
ics. By doing so, they cut off (notionally) less relevant parts of
the dynamics while preserving the essential transport physics.
From a tensor network perspective, one important outcome
of the modification is to reduce the amount of entanglement
while preserving the physics of interest. Developing a princi-
pled theory of when and why these methods work is an active
line of research [50–52].

One of these new tensor network methods, dissipation-
assisted operator evolution (DAOE) [44], employs an artificial
dissipation based on operator weight to overcome the entan-
glement barrier in unitary simulations. Here operator weight
refers to the number of nonidentity single-qubit operators
contained in a many-body operator; suppressing high-weight
operators, that is, suppressing many-point correlations, sup-
presses many-body entanglement. Because the conserved
quantities and their currents are local operators, the arti-
ficial dissipation does not directly modify those quantities
or currents. In a chaotic system, the expectation values of
conserved quantities and currents determine the state of
the system, so one expects the artificial dissipation not to
substantially modify the system’s state or dynamics. More-
over, because DAOE directly manipulates the operator weight
distribution, it is possible to study the influence of opera-
tor growth [53–58] on transport physics. Figure 1 gives a
schematic of DAOE as implemented with matrix product
operators.
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FIG. 1. Schematics of the combined method of the boundary-
driven open quantum system and DAOE. It describes one period of
the artificial dissipation superoperator application. The gradation of
|ρ〉〉 from red to blue is for the spin imbalance by the Markovian
spin-bath setting.

We investigate the effect of operator weight dissipation on
the scaling behavior of spin transport in one-dimensional lat-
tice models by combining two sources of nonunitarity: DAOE
and boundary-driven open-system dynamics. The physical
quantity of interest is the scaling exponent relating the average
spin current to the system size. Diffusive transport gives one
characteristic value of the exponent, and the exponent allows
us to characterize the transport away from the diffusive case.

First, as a benchmark, we apply the method to the
anisotropic XXZ model with a staggered field, which is
chaotic and possesses normal diffusive relaxation of the spin
current. We find that for any operator dissipation parameters,
the normal diffusive transport is maintained. Next, we study
the clean XXZ model in three different regimes. In the weak
interaction regime, the modified transport shows superdif-
fusive transport up to the system size we calculated (N ∼
256), whereas the unitary limit is believed to exhibit ballistic
transport [59–62]. At the isotropic point (� = 1) where the
nondissipative transport exhibits a superdiffusive relaxation,
the transport under DAOE is still superdiffusive but the scaling
exponents vary depending on the operator cutoff length. In
the strong interaction regime (� > 1), the unitary system’s
diffusive transport is retained for all operator cutoff lengths up
to the largest system size. Lastly, we treat the disordered XY
model. There we observe behavior consistent with coherent
transport on length scales given by the DAOE cutoff length
and diffusive transport on longer length scales; we explain this
in terms of DAOE’s effect on Anderson orbitals.

Taken together, these results point to the following con-
clusions. First, as a technical point, DAOE can be usefully
combined with open-system dynamics. This introduces a
need to extrapolate to the physical limit, but the nonequilib-
rium steady state (NESS) is generally easier to obtain and
more stable in the presence of artificial dissipation. Second,
DAOE tends to push the dynamics towards diffusive trans-
port, all other things being equal. It maintains diffusivity for
generic chaotic models and typically breaks integrability in
nonchaotic models. Third, how well DAOE captures the un-
derlying unitary dynamics depends sensitively on the number

and nature of the symmetries it preserves. We elaborate on
these points in the discussion.

The rest of the paper is structured as follows. In Sec. II
we introduce the model and the framework for analyzing spin
currents. Next, in Sec. III we describe the methods combining
DAOE with open-system dynamics. In Sec. IV we present
our main results which include various one-dimensional spin
models and crossovers between different transport types.
Lastly, we discuss the results and possible future directions
in Sec. V.

II. MODEL AND QUANTITIES OF INTEREST

A. Model

We study spin transport in three variations of an XXZ spin
chain. The general form of the Hamiltonian is

H =
N−1∑
i=1

Hi,i+1, (1a)

Hi,i+1 = σ x
i σ x

i+1 + σ
y
i σ

y
i+1 + �σ z

i σ z
i+1

+ 1

2

(
hiσ

z
i + hi+1σ

z
i+1

)
, (1b)

where σα
i ’s are Pauli matrices, � controls the anisotropy, and

hi is the magnitude of z-directed field at site i.
The model (1) displays a rich variety of spin-transport

behaviors. At � = 0 it is free-fermion integrable, so it dis-
plays ballistic transport if the h j are uniform and Anderson
localization if the h j are random. It can also exhibit a tran-
sition between the two behaviors if the h j are appropriately
quasiperiodic [63].

For � �= 0 and h j = 0 uniform, the model is Bethe-ansatz
integrable. At half-filling it is ballistic for � � 1 and diffusive
for � > 1 [64–89]. (In [65] Sec. 6 has a useful, concise sum-
mary of this literature.) At the isotropic point � = 1, h = 0
the model is SU(2) symmetric; this symmetry appears to
protect the superdiffusive behavior, which remains even for
large SU(2)-symmetric perturbations [90].

For � �= 0 and hi random, the spin transport is not well
understood. For small to moderate disorder, the model appears
to display anomalous diffusion [36,91–97]. This anomalous
diffusion may be due to Griffiths rare region effects [98–102],
but other possible scenarios include irregular scaling of the
matrix elements [103], multifractality of eigenstates [97], and
a non-Griffiths phenomenological theory of the resistance
distribution [37]. The system may undergo a many-body lo-
calization (MBL) [104–106] transition at h ≈ 7.6, but recent
work has cast doubt on the location and indeed existence of
the transition [107–113]. Detailed reviews are available for
the MBL phases [29,114,115].

In this paper, we consider three parameter regimes: one
chaotic, one Bethe-ansatz integrable, and one Anderson lo-
calized. DAOE [44] was designed to compute transport
coefficients in the first regime, for chaotic one-dimensional
quantum systems. To test the method in this case we con-
sider the anisotropic XXZ model with anisotropy � = 0.5 and
staggered field h2i = −0.5 and h2i+1 = 0. With these parame-
ters, the model is nonintegrable and shows diffusive transport
[116].
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We then pick two cases to study anomalous transport:
the zero-field XXZ model and the disordered XX model.
The XXZ model at zero-field disorder h = 0 exhibits various
transport types as the anisotropy � increases from zero. For
weak anisotropy � < 1, one finds ballistic transport; in the
opposite regime � > 1, the model exhibits normal diffusive
transport. The critical point is at the isotropic point � = 1,
where superdiffusive but subballistic transport occurs. The
disordered XY model (� = 0, h �= 0) also displays an inter-
acting crossover in its transport. The clean limit has ballistic
transport thanks to a dual free-fermion description, whereas
any nonzero disorder brings Anderson localization in the ther-
modynamic limit [117]. But the model always possesses an
extensive number of conserved quantities, and the physical
size of these conserved quantities in the spin language varies
with the disorder strength.

B. Spin-current analysis

Suppose a system has a conserved quantity Q = ∑
i Qi, Qi

local. The corresponding local current Ji is derived from the
continuity equation and the Heisenberg equations of motion:

∂Qi

∂t
= −i[Qi, H] = −(Ji − Ji+1). (2)

The model (1) has a conserved quantity Qz = ∑
i σ

z
i , the total

z spin; the current is Ji = σ x
i σ

y
i+1 − σ

y
i σ x

i+1.
For systems exhibiting diffusive transport, the discrete

Fourier’s law 〈Ji〉 = −D(〈Qi+1〉 − 〈Qi〉) relates the current
and the corresponding charge density. Here D is the diffusion
constant in lattice units. If such a diffusive system is subject
to a bias 〈QL〉 − 〈QR〉, where 〈QL,R〉 denote fixed values of the
spin density at the left and right ends of the sample, the current
through the sample scales as

〈J〉 = −D
〈QL〉 − 〈QR〉

N
, (3)

where N is the length of the system.
More generally, if the system exhibits anomalous transport,

the above relation is modified by introducing a scaling expo-
nent χ :

〈J〉 = −Dχ

〈QL〉 − 〈QR〉
Nχ

. (4)

We assume that χ in Eq. (4) is the only scaling exponent
that characterizes the transport. Other than the normal diffu-
sive transport (χ = 1), possible types of anomalous transport
are (i) ballistic transport (χ = 0), (ii) superdiffusive transport
(0 < χ < 1), and (iii) subdiffusive transport (χ > 1). In a
localized state, this power-law ansatz does not provide a good
description of the spin transport. We can heuristically under-
stand localized systems as having χ → ∞.

III. METHODS

We extract quantum transport properties with dissipation-
assisted operator evolution (DAOE) simulations of nonequi-
librium steady states (NESS). Each method takes advantage of
nonunitary evolution to make simulating a system’s dynamics
tractable. We find that combining them gives new insights into

both the systems’ physics and the effect of DAOE on that
physics. In this section we describe the two methods.

A. Master equation and NESS

In a NESS experiment on a spin chain we attach leads with
slightly different chemical potentials to the two ends of the
system. The leads thermalize the system, so in the long-time
limit its state should have an efficient MPO representation
[118,119]. But because the leads’ chemical potentials differ,
they induce a small spin current; how this current scales with
system size characterizes the model’s transport properties (cf.
Sec. II B).

Formally the NESS is the fixed-point solution dρ∞/dt =
0 of the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)
master equation [120,121]

dρ

dt
= L(ρ) ≡ i[ρ, H] +

∑
ν

[
LνρL†

ν − 1

2
{L†

νLν, ρ}
]
. (5)

The NESS is generated by full Hamiltonian H and Lindblad
operators Lν , which model the leads. Explicitly, the Lindblad
operators are

L1,± =
√

1 ± μ σ±
1 ,

LN,± =
√

1 ∓ μ σ±
N ,

(6)

where σ± = 1
2 (σ x ± iσ y).

Under the right conditions, the GKLS equation has exactly
one steady-state solution [122], but even when this is the case,
there may still be many slowly decaying almost steady states,
especially when the jump operators only affect the edges of
the sample. We expect to have a unique NESS ρ∞ which is
accessible in the long-time limit t → ∞, but the presence of
slow modes means we must be careful about convergence in
time.

B. Artificial dissipation superoperator

Dissipation-assisted operator evolution (DAOE) [44] is a
tensor-network-based algorithm that reduces the weight of
operators longer than a given cutoff length.1 These long oper-
ators are responsible for the entanglement growth that makes
matrix product states (MPS) simulations infeasible. By gently
reducing them, DAOE makes long-time simulations possible.

DAOE is implemented by an artificial dissipation super-
operator acting on the operator Hilbert space. The operator
Hilbert space of our N-site system is spanned by a basis of
4N Pauli strings. Each element (Pauli string) S in the basis is
represented by the tensor product of single-site Pauli matrices
σ 0, σ x, σ y, σ z. The length 	S of a string S is the number of
nontrivial Pauli matrices in S . In this notation the artificial
dissipation superoperator is

D	∗,γ [S] =
{
S if 	S � 	∗,
e−γ (	S−	∗ )S if 	S > 	∗.

(7)

1NB in this context length means number of nontrivial Pauli opera-
tors. This is in contrast to diameter, or distance between leftmost and
rightmost nontrivial Pauli operator, which [51] and (implicitly) [50]
argue is the relevant quantity in spatially local systems.
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Periodically applying this superoperator generates a nonuni-
tary quantum evolution that can be heuristically understood
as a global “bath.” Just as a bath (consider in particular the
depolarizing channel) reduces the expectation value of a string
of 	 nontrivial Pauli operators by an amount ∝	, the DAOE
superoperator (7) reduces the expectation value of a string of
	 nontrivial Pauli operators by an amount ∝max(	 − 	∗, 0).

DAOE as presented in [44] uses the above artificial oper-
ator dissipation to modify the Heisenberg picture dynamics
of observables. For example, starting from an initial state
ρ0 with some spatially varying profile for the average spin
density tr(Sz

rρ0), the spin diffusivity can be extracted from
the time-dependent spin profile tr[Sz

r (t )ρ0] where Sz
r (t ) is the

Heisenberg evolution of Sz at site r. DAOE is then used to
modify the dynamics of Sz

r (t ) to render it more tractable to an
entanglement-constrained tensor network simulation, with the
true physics obtained from an extrapolation in γ .

However, more than just modifying the particular dynam-
ics with the introduction of γ , DAOE significantly alters the
basic rules of quantum evolution. This is most easily seen
in the Schrödinger picture formulation, where the fact that
DAOE reduces expectation values of long operators with-
out reducing expectation values of short operators means it
can break positivity of density matrices. Consider applying
D	∗=1,γ to the density matrix of the two-site state |↑↑〉: it
becomes

1
4D	∗=1,γ

[
I + σ z

1 + σ z
2 + σ 1

z σ 2
z

] = I + σ z
1 + σ z

2 + e−γ σ 1
z σ 2

z

(8)

which has one negative eigenvalue 1
4 (e−γ − 1).

Crucially, the Heisenberg and Schrodinger pictures remain
equivalent even in the presence of DAOE’s artificial operator
dissipation.2 In the Heisenberg picture, the time evolution of
some operator A by a Lindbladian L becomes

A(t ) = [D	∗,γ e−iLτ ]t/τ A(0) . (9)

But the DAOE superoperator, like the Lindblad time-evolution
superoperator eiLτ , is linear; indeed D	∗,γ is Hermitian under
the trace inner product 〈A, B〉 = trA†B. So the operator expec-
tation value 〈A(t )〉 obeys

trA(t )ρ(0) = trAρ(t ), (10)

where A is the Schrödinger picture operator and

ρ(t ) = [D	∗,γ ρ(0)eiLτ ]t/τ . (11)

Hence, the Schrödinger and Heisenberg pictures give identical
dynamics, so we can speak of DAOE “failing to preserve pos-
itivity.” Moreover we can use NESS simulations to examine

2Not all schemes have this property. The Liouvillian graph scheme
of [51], like DAOE, gives a linear effective evolution, so Heisenberg
and Schrödinger evolutions are, as in DAOE, identical. But DMT
[41] is strongly nonlinear, because it uses the SVD of a correlation
matrix to determine what correlations to discard. (This nonlinearity is
likely responsible for DMT’s success in treating nearly free-fermion
[43] and integrable Kardar-Parisi-Zhang (KPZ) [18,134] transport.)
The method of Kvorning, Herviou, and Bardarson [45] is also non-
linear because it approximates long-range correlation functions by
products of local expectation values.

how DAOE changes a system’s dynamics, with full confidence
that the results apply to Heisenberg-picture experiments like
those of [44].

Given the significant modifications that DAOE makes to
the quantum dynamics, it is important to understand when
and why DAOE gives a good approximation of the transport
coefficients. Reference [50] analyzes the “operator backflow”
process, in which information contained in large-diameter,
nonlocal operators flows into the subspace of short opera-
tors as the system evolves. For chaotic models, combinatoric
scattering amplitude arguments and numerical experiments
confirm the exponential suppression of the backflow process
contribution to correlation functions between local operators.
Consequently, the estimated error of DAOE-produced trans-
port coefficients is also exponentially small in such systems.

But this backflow analysis will not go through for inte-
grable systems. In the language of [51], the backflow analysis
assumes that the dynamics of long operators is chaotic. But in
the integrable system the tower of local conserved quantities
will strongly constrain that dynamics: it cannot be treated
as chaotic. Additionally, the interplay of DAOE with more
complex non-Abelian symmetries and with integrability has
not yet been studied. Some of our results below address these
open problems.

C. Tensor network implementation

Both NESS and DAOE can be efficiently realized in the
language of tensor networks. In this formalism, a vector in the
operator Hilbert space directly expresses the corresponding
density matrix; we call such a vector a superket state |ρ〉〉.
Physical operators can act on ρ in two ways, “bra-side” and
“ket-side”; formally these are the left and right regular rep-

resentations of GL[(C2)⊗n]. Two different physical operators
X,Y can act on ρ by |XρY 〉〉 = Y T ⊗ X |ρ〉〉; formally, this is

a representation of (GL[(C2)⊗n])
⊗2

. In this representation the
Lindbladian operator in Eq. (5) is

L = −i(I ⊗ H − HT ⊗ I )

+
∑

ν

(
L∗

ν ⊗ Lν − 1

2

(
I ⊗ L†

νLν + LT
ν L∗

ν ⊗ I
))

. (12)

Since the operator Hilbert space has a tensor product struc-
ture we can implement superket-superoperator calculations
with standard MPS equipment. The time evolution of the
superket is performed by the standard time-evolving block
decimation (TEBD) algorithm [34,35] with second-order
Suzuki-Trotter decomposition of the time-evolution operator
eLt [33,123,124]. We use the Trotter time step δt = 0.1 for our
numerical simulations and check convergence in the Trotter
step in Appendix B.

We interleave the TEBD Lindbladian evolution with pe-
riodic application of the DAOE superoperator (cf. Fig. 1).
We take the DAOE period τ = 1. For small γ , the ratio γ /τ

controls the effective dissipative dynamics; in principle, one
would like to take τ small. The DAOE superoperator D	∗,γ
has an exact MPO representation of bond dimension 	∗, so ap-
plying it to a matrix product density operator is not infeasible.
But D	∗,γ does not conveniently commute with the terms in
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FIG. 2. (a) Spin profile and (b) spin-current profile extracted from the modified NESS of the chaotic anisotropic XXZ model with
(L, 	∗, γ ) = (60, 3, 0.4) at different times. The inset in (b) shows the time evolution of the spin current at the center of the chain.

the Lindbladian (12), so we cannot fold it into Suzuki-Trotter
decomposition leading to TEBD, and we treat it separately. At
time t ∈ [Nτ, (N + 1)τ ], the initial superket |ρ(0)〉〉 is evolved
into

|ρ(t )〉〉 = eL(t−Nτ )(D	∗,γ eLτ )N |ρ(0)〉〉. (13)

We call the resulting state the modified NESS to stress the
dissipation of long operator contributions.

For some models, especially those with subdiffusive or
localized transport, the state can take a very long time to
converge to the (modified) NESS. To alleviate this problem,
we choose the initial superket as a linearly interpolated state
between the two baths at the end of the system. Explicitly,
the initial superket is chosen as |ρ(0)〉〉 ∝ exp(−∑

i μiσ
z
i ).

Since this spin profile is similar to the steady-state solution
of Fourier’s law we expect fast convergence to the modified
NESS.

After obtaining the modified NESS, we directly calculate
the expectation value of a local operator O by taking the
operator trace 〈O〉 = tr(O|ρ∞〉〉)/tr(|ρ∞〉〉). There are small
fluctuations in site i and time t of the current Ji(t ) even if
we closely approach the modified NESS due to the limitation
of our numerical methods. To avoid this issue, we average
over all sites and a small time window to estimate the average
current J which is supposed to be independent of i and t .

D. Convergence

We check the convergence of the normalized, spatially
averaged current expectation value in the following three cat-
egories.

(i) Time: We declare that the NESS has been approxi-
mately reached when the relative change in the current is less
than 10−4 per unit of time (J−1).

(ii) Bond dimension: The current varies <2% between the
bond dimension shown and a bond dimension smaller by a
factor of 1

2 or 3
4 (depending on model and parameters).

(iii) Trotter step size: For the clean models the current
varies <1% between the Trotter step shown and a smaller
Trotter step size δt = 0.025 ( 1

4 the value used in plots shown).
We allow larger tolerances for the disordered XY model: there
the worst case is 8% at the strongest disorder (h > 3.0).

The total error budget is thus less than 5% for the clean
models and 10% for the worst case of the disordered model.
In general, convergence is affected by the DAOE parameters:
it becomes worse as the dissipation strength γ decreases and
the cutoff length 	∗ increases. For a fixed set of TEBD and
DAOE parameters, we also find that it becomes harder to
obtain a reliable NESS for larger anisotropy � (disorder h) in
the clean XXZ (disordered XY) model. Details are presented
in Appendix B.

IV. RESULTS

A. Chaotic anisotropic XXZ model

First, we study spin transport in the anisotropic XXZ model
with a staggered field. We take the anisotropy � = 0.5 and
the staggered field h2i = −0.5, h2i+1 = 0; the staggered field
breaks integrability. We impose a chemical potential differ-
ence

μ = 0.1

and work at bond dimension 32. We check that the system has
in fact converged to the NESS by comparing the variance of
the spin current across sites to its average.

Figure 2 shows the spin 〈σ z
j 〉 and current 〈Jj〉 as a function

of position in the NESS of this model. It displays roughly
the expected linear profile. The zigzag pattern in 〈σ z

j 〉 comes
about because of the staggered field. Additionally, the in-
terplay of the Hamiltonian bond term with the Lindblad
operators causes 〈σ z

j 〉 to depart from the linear profile near
the boundaries. We, therefore, drop five sites at the left and
right end of the chain, so

�S = 〈
σ z

6

〉 − 〈
σ z

N−5

〉
. (14)

115118-5



YOO, WHITE, AND SWINGLE PHYSICAL REVIEW B 107, 115118 (2023)

FIG. 3. Top: Scaled average spin current with DAOE cutoff
length 	∗ = 2 for the chaotic anisotropic XXZ model with a stag-
gered field as a function of system size N . The dashed lines are
the best power law that fits the data with system size N � 100.
Although the data are not shown, similar results hold for all other
cutoff lengths. Bottom: Scaling exponent extracted from the fit. The
black horizontal solid line represents χ corresponding to the (nor-
mal) diffusion. The model parameters are in the main text.

Likewise in fits to (4) we take the length to be N − 10.
Figure 3 (top) shows J/�S as a function of system size

across dissipation strengths γ , all for cutoff 	∗ = 2, together
with power-law fits. The fits are solely to system sizes N �
100. Figure 3 (bottom) shows the power resulting from the
fit, across artificial dissipation strengths γ and cutoffs 	∗. The
powers are all close to one. They deviate more for smaller
γ because DAOE reduces large correlation functions less
quickly at smaller γ so the simulations are more computa-
tionally demanding. The simulations do converge within 3%
for NESS expectation values at bond dimension 32, but those
criteria leave room for the small deviations from the diffusive
exponent χ = 1 that we see in Fig. 3 (bottom).

To see why small-γ simulations are more difficult, and why
large-γ simulations modify transport, we can make a rough

FIG. 4. Diffusion constants of the chaotic anisotropic XXZ
model for various DAOE parameters, from fits with fixed χ = 1.
The black horizontal dashed line represents D at the unitary limit
(γ → 0) from Ref. [116].

model for the dynamics of the operator length distribution.
The Hamiltonian increases the length of a Pauli string at a rate
≈1 (in our units). DAOE, on the other hand, decreases weight
on a Pauli string of length 	 at a rate ≈γ (	 − 	∗). These
effects balance at a characteristic DAOE length scale 	DAOE ∼
	∗ + 1/γ .

But even in the unitary NESS, the boundary Lindblad oper-
ators (and the resulting spread of entanglement) limit operator
growth; this is one way to see why unitary NESS simulations
are feasible. Write ξ for the characteristic operator length of
the unitary NESS. ξ is not quite the correlation length: long
operators contribute substantially to ξ even if they have a
small weight, because there are many of them.

When γ � (ξ − 	∗)−1, DAOE does not substantially
change the operator weight dynamics because the spread
of bath entanglement keeps most operators shorter than the
characteristic DAOE length 	DAOE. The simulations are then
approximately as hard as unitary NESS simulations. When
γ � (ξ − 	∗)−1, by contrast, DAOE substantially reduces the
characteristic operator length and the simulations become eas-
ier than unitary NESS simulations.

In Fig. 4 we show the estimated diffusion coefficient
D	∗ (γ ) as a function of γ across cutoff lengths 	∗, together
with the unitary value of [116]. To extract these diffusion
coefficients we fit �S and N to Eq. (4) with fixed scaling
exponent χ = 1. D	∗ (γ ) appears linear in γ for γ � 0.05.
Linear extrapolation to γ = 0 puts the unitary diffusion coef-
ficient D(γ = 0) somewhat above the value of [116]; we again
attribute this to the imprecision of our small-γ simulations.

B. Integrable XXZ model

Next, we investigate spin transport of the integrable XXZ
model with anisotropy 0.0 � � � 2.0. We fix the magnitude
of the artificial dissipation at γ /τ = 10.0 for all cutoff lengths
	∗ ∈ {1, 2, . . . , 5}. This artificial dissipation reduces the
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FIG. 5. Scaled average spin current of the clean Heisenberg XXZ
model as a function of system size N at � = 0.5 (top) and � = 1.5
(bottom). The dashed lines are best power-law fittings corresponding
to the (modified) NESS expectation values using data for N � 100.

expectation value of operators longer than 	∗ almost to zero,
so it only allows processes involving operators with length
	 > 	∗ on timescales shorter than τ = 1.

For each 	∗ and �, we plot the the scaled average spin
current J/�S as a function of the system size in Fig. 5
(anisotropic case � �= 1) and 8 (isotropic case � = 1).
We then display the scaling exponents χ as a function of
anisotropy � across cutoff lengths 	∗ in Fig. 6.

1. Generic anisotropic case (� �= 0, 1.0)

Figure 5 shows how the scaled average spin current de-
pends on system size N and cutoff length 	∗ for weak
anisotropy � = 0.5 (top) and strong anisotropy � = 1.5 (bot-
tom).

For weak anisotropy, the unitary system displays ballistic
transport. When strongly perturbed with DAOE it displays
two kinds of behavior: for 	∗ � 3 the system is nearly
diffusive at all length scales, while for 	∗ � 4 it displays

FIG. 6. Scaling exponents χ of the modified NESS from the
anisotropic XXZ model without the disorder. The black dashed line
represents the value without DAOE [66,125].

transient superdiffusive transport, with apparent exponent
χ < 1 at short length scales, before approaching diffusion at
long length scales. We speculate that for 	∗ � 4 even strong
artificial dissipation causes only weak scattering between
quasiparticles.

For strong anisotropy the unitary model is diffusive. When
strongly perturbed with DAOE it retains that diffusive behav-
ior in the long-system limit. At short length scales, though, it
displays apparent subdiffusive behavior with apparent expo-
nent χ > 1. This transient behavior is not monotonic in cutoff
length.

Figure 6 shows the scaling exponent χ as a function of
the anisotropy �. For 	∗ = 1 the modified NESS is diffusive
(scaling exponent χ = 1) at every anisotropy �. But for 	∗ >

1 the modified NESS’s behavior is much richer. It is ballistic
at the free-fermion point � = 0, just like the unitary NESS,
but even small interactions cause DAOE to push the system to
diffusion. (Recall that in Fig. 5 we saw the scaling exponent χ

approaching the diffusive χ = 1 as system size N increased.)
At the isotropic point, � = 1 DAOE preserves some of the
superdiffusive behavior of the unitary model. We discuss both
� = 0 and 1 further in the next sections.

In this section we have worked at large γ = 10. We briefly
discuss small γ in Appendix D.

2. Free-fermion case (� = 0)

As can be seen from leftmost point in Fig. 6, the � =
0 case retains ballistic transport provided 	∗ > 1. This has
a simple explanation in terms of the allowed NESS in the
model. Most of the free-fermion conserved quantities are quite
complex in the spin language (see Appendix A), but there is
a special exception: the local current Ji, when summed over
all lattice sites, is conserved. Moreover, because this operator
is a sum of two-site operators, it is also exactly preserved by
DAOE. So a linearized steady state of the form I + ∑

i aiJi is
an exact NESS since it is preserved by DAOE and commutes
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FIG. 7. Trace distance K (ρNESS, ρ ) between trial density matri-
ces and the local NESSs obtained as reduced density matrices of the
full NESS of the free-fermion case for various local system sizes
Nlocal. The local NESSs are extracted from the full NESS of N = 48
and χ = 32.

with H . Provided 	∗ > 1, we thus have a family of NESS
that reproduce the ballistic transport of the unitary limit. This
presumably explains the ballistic value seen in Fig. 6.

To test this presumption, we study the structure of the
NESS in more detail. In reality, we expect the true unitary
NESS to have a form like

ρNESS ∝ e− ∑
i aiJi + · · · (15)

with the ai uniform. This is the maximum-entropy state at
zero energy and an appropriate current, where the ellipsis
denotes corrections from other operators that are negligible
for our purposes. The ai are typically small, so the linearized
form in the previous paragraph is a good local approximation,
but there are non-negligible corrections to the linearized form
when the system size is larger. Figure 7 shows a comparison
of the trace distance between the postulated NESS of Eq. (15)
and the NESS obtained from DAOE. Here, the trace distance
between two density matrices ρA and ρB is defined as

K (ρA, ρB) = 1
2 tr[

√
(ρA − ρB)2]. (16)

We see that the agreement is quite good already for 	∗ = 2, 3
and further improves for 	∗ = 4, 5. This particular pattern of
improvement arises because the expansion of ρNESS only has
operators of even weight, so when 	∗ > 1 we preserve all the
weight-two operators but not weight-four operators, and when
	∗ > 3 we preserved all the weight-two and -four operators.

To summarize, when � = 0 we showed that DAOE
preserves a family of NESS exhibiting ballistic transport
whenever 	∗ > 1. We further showed in Fig. 7 that these are
the steady states realized in the actual converged simulation.
Hence, we see again that the fact that DAOE preserves the
summed current operator as a symmetry is crucial to recover-
ing the unitary physics.

FIG. 8. Scaled average spin current of the clean Heisenberg XXZ
model as a function of system size N at � = 1.0. The dashed lines
are best power-law fittings corresponding to the (modified) NESS
expectation values.

3. Isotropic case (� = 1.0)

At the isotropic (� = 1.0) point the model has an onsite
SU(2) symmetry. The unitary model is superdiffusive with ex-
ponent χ = 0.5 [62,66,126]. SU(2)-symmetric Hamiltonian
perturbations do not appear to break superdiffusion down to
diffusion [90], although this unexpected stability is believed to
be a finite-size effect. The appropriate effective field theory is
diffusive, and classical SU(2)-symmetric models generically
display diffusion [127], though some classical models show
finite-length transport faster than the asymptotic diffusion.
SU(2)-symmetric dissipation, however, gives a system with
at most logarithmic corrections to diffusion [90].

A priori, then, one expects DAOE to make the system
diffusive. For 	∗ = 1 this is what we see (in both Figs. 6
and 8): the system has diffusive transport scaling exponent
χ ≈ 1 for lengths N � 32. But for 	∗ � 2 the system appears
to converge to superdiffusive transport powers χ < 1. We
believe this convergence is only apparent: that DAOE induces
a quasiparticle scattering length longer than the system sizes
N � 256 we consider. The curious dependence of the expo-
nent on 	∗ may be a numerical signature of the contribution of
different quasiparticle types to transport.

C. Disordered XY model

Finally, we explore spin transport in the disordered XY
model under strong operator weight dissipation. We consider
a Hamiltonian

H =
∑

j

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

) +
∑

j

h jσ
z
j , (17)

where the fields h j are chosen uniformly at random [−h, h].
We consider 0.5 � h � 3.5; for larger disorders, NESS con-
vergence times are too large to be tractable. We take the
operator weight dissipation large: γ = 10.0 at time step τ =
1.0.
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FIG. 9. Probability distribution of logarithm of the scaled spin current ln (J/2μ) of the modified NESS for system size N = 16 and 32. The
disorder strength is h = 2.0 for both system sizes. Each solid and dashed line represents a continuous probability curve and the best normal
distribution fitting for the given parameter, respectively.

The disordered XY model maps to a disordered free-
fermion model (cf. Appendix A), so it is an Anderson
insulator. The system’s dynamics are determined by its An-
derson orbitals (localized single-particle eigenstates). The
Anderson orbitals have characteristic width

ξ ∼
{

24/h2, h � 2.0
1/ ln h, h � 2.0 .

(18)

To the extent that an isolated Anderson insulator transports
charge, it does so coherently: charge tunnels into an Ander-
son orbital on the left end and out from the same orbital
on the right end. Because orbitals are localized, these tun-
neling rates are small; additionally, the Anderson orbitals’
onsite amplitudes are log-normally distributed, so the tunnel-
ing rates (hence conductivities) will likewise be log-normally
distributed.

But suppose sites in the middle of the Anderson insula-
tor are connected to a bath. The bath can cause incoherent
transitions between Anderson orbitals because the dissipation
superoperator will have matrix elements between Anderson
orbital density matrices |ε j〉〈ε j |, |εk〉〈εk| for nearby orbitals
|ε j〉 , |εk〉. These matrix elements vary. But the resulting distri-
bution of local resistivities has finite moments, so the system
is diffusive, not subdiffusive.3

The DAOE projection operator Dl∗,γ of Eq. (7) likewise
causes incoherent transitions between Anderson orbitals be-
cause it likewise has matrix elements between Anderson
orbital density matrices |ε j〉〈ε j |, |εk〉〈εk|. But (at least for the
large disorder) these matrix elements are only nontrivial for
orbitals centered at sites j, k separated by at least l∗, and they
will go as the amplitude of an orbital at some site a distance l∗
away from the orbital’s center site. Charge therefore tunnels a

3Other behavior is possible. If a fraction p < 1 of sites are con-
nected to a bath, for example, the system will have runs of sites with
no dephasing; runs of a given length will be exponentially rare but
have exponentially large resistance, giving subdiffusion [133].

distance l∗ at rate �l∗ where �l∗ is a log-normally distributed
random variable with mean

μ = e−l∗/ξ (19)

and some variance σ determined by l∗ and the disorder prop-
erties. This gives a local diffusion coefficient D ∼ l2

∗�l∗ and a
resistivity

ρ ∼ D−1 ∼ (l2
∗�l∗ )−1 . (20)

We can therefore think of such a system, an Anderson insu-
lator evolved under DAOE, as a network of resistors of length
l∗ and log-normal random resistance Rj = l∗ρ distributed per
(20) and (19). The total resistance is

R =
L/l∗∑
n=1

Rn. (21)

If the system is long enough, it will behave diffusively. The
log-normal distribution has finite moments, so the resistance
will be

〈R〉 ∝ L/l∗, (22)

with the constant given by the mean of the log-normal distri-
bution, and the realization-to-realization variation will shrink
as 1/

√
L/l∗. But for short systems, the sum (21) is dominated

by the largest individual resistance, which scales as

Rmax ∼ eμ+√
cL (23)

for the mean μ of (19) and some l∗ and h-dependent c.4

Consequently, an ensemble of systems may look subdiffusive,
even across more than a decade of length, even though the
systems become diffusive in the large-size limit.

In Fig. 9 we show the distribution of logarithm end-to-end
steady-state currents for two different system lengths N = 16

4This comes from standard results on extreme values of the normal
distribution; see [135] example 1.1.7.
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FIG. 10. The geometric mean and the associated error bar of spin current of the disordered XY model as a function of system size N . Each
panel shows the result of different disorder strengths [(a) h = 0.5, (b) h = 1.0, (c) h = 3.0]. The dashed lines are the best power-law fittings
corresponding to geometric means from the last three data points.

and 32. In each case, a kernel density estimator (solid line)
matches a best-fit Gaussian (dashed line) well, and the median
and geometric mean agree closely. In each case the median
current decreases as l∗ increases, but for l∗ � 3 the decrease
is more noticeable in the N = 32 distribution than the N =
16 distribution. This indicates that at N = 16 at least we are
seeing substantial finite-size effects.

In Fig. 10 we show the geometric mean currents

Jgeom = exp 〈ln J/2μ〉 (24)

as a function of system size, across l∗ and disorder width
h. In the limit of large system size, the distribution of total
resistances will show central-limiting behavior, and approach
a Gaussian with variance increasing slower than the mean. But
at the system sizes we treat the distribution is still broad (e.g.,
in Fig. 9 the N = 32, l∗ = 5 current distribution spans about
a decade). The arithmetic mean is therefore less enlightening
than the geometric mean. The geometric mean currents appear
to show power-law scaling in system size, but this is because
our data only span slightly more than a decade.

Figure 11 shows convergence times as a function of h for
system size N = 32. We consider the simulation converged in
time when

1

J

dJ

dt
< 10−4, (25)

where time is in units of coupling, and the site-to-site variation
in current is less than the average across sites. We see a
broadly exponential increase in convergence times with h.

V. DISCUSSION

We have used nonequilibrium steady states of boundary-
driven Lindblad systems to study how operator weight
dissipation changes the scaling behavior of transport. We used
as our test cases members of the XXZ family of models
in three flavors: chaotic, integrable, and Anderson localized.
We found that operator weight dissipation pushes the system
towards diffusive transport scaling, except to the extent that
the dissipation preserves some crucial symmetry or conserved
quantity of the underlying dynamics. In the clean XXZ case
at the isotropic point (� = 1), simulations with DAOE dis-

play anomalous transport similar to the underlying integrable
dynamics, and at the free-fermion integrable point (� = 0) it
displays ballistic transport for l∗ � 2 because it preserves the
underlying model’s single-particle momentum conservation
and resulting Drude peak. In the disordered XY model, DAOE
simulations resemble the localized behavior of the underlying
system to the extent that DAOE preserves the system’s Ander-
son orbitals.

Our central result is that even quite strong operator weight
dissipation does not necessarily change the scaling behavior
of a system’s transport, provided it preserves the system’s
symmetries. From an effective field theory point of view, this
is a gratifying result. The premise of the effective field-theory
approach to hydrodynamics is that a system’s dynamics is
characterized up to some O(1) numbers by its symmetries
and related conservation laws; our work tests precisely this
contention. Moreover, since recent numerical methods for
hydrodynamics (including DAOE, but also a number of other
methods) also take this as their premise, our work offers
supporting evidence for that approach.

FIG. 11. Convergence time for various operator cutoff lengths 	∗
and the disorder strengths h for fixed system size N = 32.
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But our results for the isotropic point of the XXZ model
remain a mystery from this effective field-theory point of
view. From that point of view one would expect the operator
weight dissipation to break integrability and consequently turn
the system into a generic system characterized simply by
its symmetries, in this case SU(2); such a system would be
diffusive. We found that the superdiffusion at the isotropic
point appeared robust to operator weight dissipation, though
this may have been a finite-size effect.

One interesting direction is to extend the method to
fermionic systems where the length and/or weight of a
fermionic operator string can be defined in a similar way to the
spin case. As an application, it would be interesting to revisit
free-fermion integrable or near-integrable models with tech-
nology, without the extra complications of a Jordan-Wigner
transformation. This sort of operator weight dissipation might
be applied to nonlocal models like the Sachdev-Ye-Kitaev
(SYK) model as well, although tensor network methods are
not currently available in that case (but see [128] for recent
progress in the context of sparse models).

It is also interesting to compare and contrast DAOE with
more physical models of dissipation. For example, for vari-
ous one-dimensional spin models, strong enough dephasing
results in normal diffusion for various original transport types
including ballistic transport to localization [129–133]. We find
that the effect of operator weight dissipation on open-system
dynamics is closely tied to the symmetries it preserves.
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APPENDIX A: CONSERVED QUANTITIES IN
THE XY MODEL

Here we review the well-known construction of conserved
quantities in the XY model obtained via Jordan-Wigner trans-
formation to a noninteracting fermion problem.

In an XY chain of finite length, one can define fermion
creation and annihilation operators as

c†
r =

∏
r′<r

σ z
r′
σ x

r + iσ y
r

2
(A1)

and

cr =
∏
r′<r

σ z
r′
σ x

r − iσ y
r

2
. (A2)

For r �= r′, it follows directly that

{cr, c†
r′ } = 0, (A3)

and for r = r′, we have

{cr, c†
r } = 1

4

{
σ x

r − iσ y
r , σ x

r + iσ y
r

} = 1. (A4)

The Hamiltonian

H = −J
∑

r

(
σ x

r σ x
r+1 + σ y

r σ
y
r+1

)
(A5)

in the fermion representation becomes

H = −J
∑

r

(c†
r+1cr + c†

r cr+1). (A6)

From this representation, it is clear that we have an extensive
set of conserved quantities given by

nk = c†
kck, (A7)

where

ck =
∑

r

eikr

√
N

cr . (A8)

It is instructive to convert these conserved quantities back
into the spin language. First, we write them in terms of the
position basis creation and annihilation operators

nk =
∑
r,r′

e−ik(r−r′ )

N
c†

r cr′ . (A9)

Next, we need the following identity for c†
r cr′ valid for r > r′,

c†
r cr′ = σ x

r + iσ y
r

2

⎡
⎣ r−1∏

r′′=r′+1

σ z
r′′

⎤
⎦σ x

r′ + iσ y
r′

2
. (A10)

Hence, a pair of fermion operators separated by 	 sites gets
mapped to a diameter (and weight) 	 + 2 spin operator. The
conserved quantities are in turn superpositions of all possible
pairs of fermion operators.

In the spin language, all nontrivial conserved quantities
aside from the charge and energy are superpositions that in-
clude many high-weight operators. Therefore, any DAOE-like
scheme will necessarily badly damage all such nontrivial con-
served quantities. The noninteracting character of the model is
strongly modified, so it is not surprising that the results tend
toward a more generic diffusive behavior.

This analysis must be modified, however, in the presence
of quenched disorder. This is because such disorder tends to
localize the fermions, and the conserved quantities, which are
local in momentum space at zero disorder, are expected to
evolve with increasing disorder towards operators which are
more local in position space. Indeed, in the extreme limit
of very strong disorder, it is just the fermion number on
every site that is conserved. In this case, DAOE will not
disrupt such local conserved quantities and we can expect
the physics of localization to be better captured than the
physics at weak disorder. This is essentially what is observed
in Fig. 9.

APPENDIX B: NESS CONVERGENCE

1. NESS convergence for different initial states

In the main text, we assumed that the systems in our study
are under the appropriate conditions of the GKLS equation to
find the corresponding NESS. Although we have not deter-
mined explicit forms of operators in Ref. [122], we tested
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FIG. 12. Numerically exact calculations for the XXZ model with
� = 0.5 and system size of N = 9. Each colored line corresponds to
a random product initial state.

the uniqueness of NESS with numerical experiments. Here,
we prepared different random product density operators as
initial states for the XXZ model with � = 0.5. The numeri-
cally exact calculation for a small system size suggests that
those random states converge to the same NESS (Fig. 12).
We believe that similar behaviors are expected for the gen-
eral XXZ model with different Hamiltonian parameters and
larger systems with truncations resulting in approximated
NESSs.

2. Clean XXZ model

In this section, we present the convergence of the mod-
ified NESS with bond dimension and Trotter time step for
nondisordered models in our study. In our simulations, we

consider that the convergence with the time is achieved if
the relative error of spin current in one characteristic time
[J (t − 1) − J (t )]/J (t ) is below 10−4.

First, the convergence with Trotter step size is represented
in Fig. 13(a). In the main text, we used δt = 0.1 for all nu-
merical calculations. We find that δt = 0.1 results show only
2% difference compared to the smallest δt = 0.025 cases. It
suggests that our choice of the Trotter time step correctly de-
scribes the given model’s physics, given that a smaller Trotter
step normally helps the simulation have a better approxima-
tion.

Next, the convergence with the bond dimension is shown
in Fig. 13(b). According to our general observation, achiev-
ing the NESS convergence becomes more difficult as the
anisotropy parameter � gets stronger. It is notable that the
hardest case among our simulation parameter (N = 256,
� = 2.0, and 	∗ = 5) with χ = 64 case also converges
very well, demonstrating that the relative error is less than
2% in comparison with the next largest bond dimension
χ = 48. The result implies that DAOE-assisted NESS con-
verges with a relatively smaller bond dimension for the clean
XXZ model.

3. Disordered XY model

In the main text, we encountered apparent subdiffusive
transport in the disordered XY model. In this slow dynamical
regime, accessing an accurate NESS with a reliable conver-
gence is difficult to achieve due to both expensive space
and time computational complexities. Here, we describe the
convergence of the modified NESS with respect to several
simulation parameters.

Since a finite time evolution always approximates NESS
in a practical calculation, accomplishing a tolerable error is
the most important aspect of the simulation. Figure 14(a)
illustrates time evolution of scaled spin current of the modified
NESS up to t = 1000. Similar to the nondisordered case, we

FIG. 13. (a) NESS convergence with Trotter time step. All data are extracted with bond dimension χ = 32 for 	∗ = 1 and χ = 64 for
	∗ = 5. (b) NESS convergence with bond dimension. Here, the Trotter step size is fixed at δt = 0.1.
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FIG. 14. Convergence in time to an approximate NESS of the disordered XY model with parameters N = 32, h = 3.0, and 	∗ = 5.
(a) Current divided by bias as a function of time showing four different bond dimensions. We see approximate convergence in bond dimension.
(b) Site-by-site variation of the current normalized by the average current as a function of time. (c) Change in current after one coupling time
as a function of time. Our convergence criterion is that this normalized change is less than 10−4. This is achieved after approximately t = 800.

set the same convergence criteria we employed for the clean
XXZ model.

A similar trend is observed for the DAOE-NESS combined
approach in accordance with the theory of DAOE, which
states that artificial dissipation significantly reduces the re-
quired bond dimension to express a quantum state in question.
One can also confirm that bond dimension χ = 64 shows
good convergence for the simulation with the longest cutoff
length 	∗ = 5. Meanwhile, the shortest cutoff length 	∗ = 1
simulation only requires χ = 16 to find a NESS convergence
to a similar level (data not shown). Because the entangle-
ment growth is more suppressed when applying DAOE with
a shorter cutoff length, the quantum state can be efficiently
represented with a smaller bond dimension. Meanwhile, a
larger disorder and a longer cutoff length result in a shorter
convergence time (Fig. 11) for fixed system size, as expected.
Roughly, the convergence time is an exponentially growing
function of both 	∗ and h. This trend severely limits the
accessible parameter regime of the study. However, we could
not find any clear relation between bond dimension and con-
vergence time.

Typically, site-to-site fluctuation of local spin current
remains even though the average value converges. This site-
to-site fluctuation also tends to slightly decrease by employing
a larger bond dimension, however, it hugely depends on the
disorder strength. This is measured by the scaled standard
deviation σ/J [Fig. 14(b)]. The number of samples M for
each case is therefore determined by the statistical uncer-
tainty σ/J

√
M, which is around 0.1 for the most difficult

cases. For example, the h = 3.0 case has σ/J ∼ 0.6, and
it follows that the required M is around 25 to meet our
criteria.

It is clear that a smaller Trotter step δt results in a more ac-
curate NESS approximation, but choosing an appropriate δt is
necessary to reduce the total time complexity. In the main text,
we used the second-order Suzuki-Trotter decomposition in the
TEBD algorithm with δt = 0.1. The Hamiltonian contains at
most two-site operators, this even-odd type decomposed time
evolution is expected not to change the physical properties
of the model. The characteristic NESS convergences with the
Trotter step are shown in Fig. 13(a) for both shortest (	∗ = 1)

and longest (	∗ = 5) operator cutoff lengths. The spin current
seems to converge as we use smaller δt . The relative differ-
ence for the smallest δt = 0.025 case is about 1% and 8%
for 	∗ = 1 and 5, respectively, compared to our usual value
δt = 0.1 for the main text.

4. Weakly dissipated NESS

In the main text, we frequently treat transport of the mod-
ified NESS under strong operator weight dissipations where
subsequent dynamics is mostly governed by short operators.
Analogous to the original study in Ref. [44] and diffusive case
in the main text, it is deserving to explore the behavior of the
modified NESS near the unitary limit. In particular, a reliable
NESS calculation for a system with strong disorder and slow
dynamics is notoriously hard. To investigate the potential im-
provement of NESS quality in subdiffusive transport physics,
we choose the XY model with the Fibonacci disorder, which
is realized by the deterministic disorder. In this model, the
Fibonacci sequence gives the disorder h or −h for each site
(see [136,137] for a detailed construction). Previous studies
suggest that the model has varying anomalous transport; the
scaling exponent χ monotonically increases as the disorder
strength gets stronger. Here, we apply time-dependent γ ∼
1/t , trying to recover the unitary dynamics at a late time,
otherwise, the setup is the same as in the main text.

Figure 15 shows the time-evolving 〈J (t )〉/2μ for three
dissipation strengths for the model with h = 2.0 whose
(nondissipative) transport is subdiffusive (χ ∼ 1.17). The
expectation value is sensitive to the (stronger) early time dissi-
pation before overcoming the entanglement barrier and slowly
relaxing to the unitary dynamics. It appears that there remains
the accumulative effect of the early time despite the rapid de-
crease in dissipation. Meanwhile, stronger dissipation results
in smaller scaled standard deviation of the expectation value
σ/〈J〉 (inset of Fig. 15). The result shows a clear improvement
of convergence time in the strongest γ case as well. We have
no clear relation of the tradeoff between the accuracy and the
quality of convergence, however, the result offers a potential
usage of this approach to approximate the unitary dynamics
for such systems.
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FIG. 15. Convergence of the scaled average spin current 〈J〉/2μ

obtained from the modified NESS with weak dissipations for the XY
model with the Fibonacci disorder (N = 89 and h = 2.0). The inset
shows corresponding scaled standard deviation σ/〈J〉 of 〈J〉.

APPENDIX C: OPERATOR WEIGHT DISTRIBUTION FOR
SMALL SYSTEMS

The transport coefficients D and χ experience both non-
monotonic and monotonic behavior in 	∗ depending on the
system in question. Among many possible factors, the oper-
ator weight distribution of the NESS can be directly related
to those phenomena. For a small system size (N = 12), it is
possible to obtain the exact operator weight distribution of the
NESS for several different parameters presented in the main
text (Fig. 16). In general, the trivial operator has most of the
operator weight distribution and the distribution exponentially
decreases in length. However, nonmonotonic distribution is
observed for the ergodic systems, especially for short oper-
ators, which might be responsible for similar behaviors in
the transport coefficients. On the other hand, the distribution
has an exponential decrease trend for the localized models.

FIG. 16. Operator weight distribution for several parameters hav-
ing different transport types as a function of length l .

FIG. 17. Plot of diffusion constant D of the anisotropic XXZ
model with � = 1.5 from various dissipation strengths γ . D is
extracted by using the best 1/L fitting curve, which is obtained
from the system size 60 � L � 100. Bond dimension is 64 and the
convergence in the bond dimension is about 2%. Other simulation
parameters are similar to the main text. The black dashed line is
the diffusion constant calculated by similar NESS setting without
dissipation in [125].

The decreasing trend strengthens as the disorder increases,
suggesting that the reinforced subdiffusive transport in a short
length scale is connected to the operator weight distribution
and the localization length. This investigation supports our
rough analysis of the resultant nonmonotonic or monotonic
behavior of the transport coefficients in 	∗ of the (modified)
NESS.

APPENDIX D: ENERGY DIFFUSION COEFFICIENTS FOR
THE XXZ MODEL AT � = 1.5

In Sec. IV B 1 we discussed how DAOE affects transport
in the integrable anisotropic XXZ model at large artificial
dissipation γ = 10. The XXZ model is diffusive for � > 1; in
this Appendix we extract diffusion coefficients for the model
at � = 1.5.

Figure 17 shows the diffusion coefficient as a function of
γ for l∗ = 2, 3. Curiously, the diffusion coefficient is closer to
the true value for l∗ = 2 than for l∗ = 3. We attribute this to
the interplay between two effects. One the one hand, DAOE at
any l∗ breaks the subtle integrability effects that give the true
diffusion coefficient D ≈ 2.2. Evidently, doing so increases
the diffusion coefficient. On the other hand, the DAOE su-
peroperator at l∗ = 2 specifically decreases the energy current
because the energy current operator has nontrivial compo-
nents consisting of three Pauli matrices, giving a correction to
the general DAOE-caused increase of the diffusion coefficient.
We expect that a better understanding would start with the
effect of DAOE on the � = ∞ kinetic picture of [64,138]
(cf. [1]).
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