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Exciton condensation in strongly correlated quantum spin Hall insulators
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Time-reversal symmetric topological insulators are generically robust with respect to weak local interaction
unless symmetry-breaking transitions take place. Using dynamical mean-field theory, we solve an interacting
model of quantum spin Hall insulators and show the existence at intermediate coupling of a symmetry-breaking
transition to a nontopological insulator characterized by exciton condensation. This transition is of first order.
For a larger interaction strength, the insulator evolves into a Mott one. The transition is continuous if magnetic
order is prevented, and notably, for any finite Hund’s exchange, it progresses through a Mott localization before
the condensate coherence is lost. We show that the correlated excitonic state corresponds to a magneto-electric
insulator, which allows for direct experimental probing. Finally, we discuss the fate of the helical edge modes
across the excitonic transition.
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The concept of symmetry protected topology has intro-
duced a new paradigm for the description of electronic band
structures [1,2]. The early identification of topological states
in semiconducting quantum wells [3,4] and three-dimensional
chalcogenides [5–8] boosted intense research activity that
finally reached a mature symmetry groups classification for
weakly interacting insulators and semimetals. The discovery
of topological properties in more correlated materials [9,10],
such as monolayers of early transition-metal dichalcogenides
(TMDs) [11–13] or some Fe-based compounds [14–18],
raised interest in the role of the ever-present electron-electron
interaction in topological phases of matter.

The electron localization tendency brought in by strong
correlations can generically lead to dramatic modifications
of the band-structure topology [19]. Contrary to naive ex-
pectations, Coulomb repulsion can, in some cases, favor the
formation of a nontrivial electronic state [10,20], trigger the
existence of novel purely interacting topological phases [21],
or drive a dynamical change in the thermodynamic charac-
ter of the topological quantum phase transition [22–25]. Yet,
the most impactful effect of strong electronic correlations is
often the emergence of ordered phases. At strong coupling,
the existence of large spin exchanges and spin-orbit coupling
paves the way to magnetically ordered states. For weaker in-
teraction strength, the situation can get more intriguing since
diverse degrees of freedom are equally active and possibly
cooperate with the nontrivial topology of the electronic bands.
In these conditions, different instabilities compete, and it be-
comes hard to predict the electronic properties of a correlated
topological insulator.

One of the most interesting effects of electronic interaction
in systems hosting a small energy gap is to induce in-gap ex-
citons [26–32]. Although excitons have been studied for long,
recent evidence supporting the existence of excitonic phases
in TMD monolayers [11–13,33] gave a strong impulse to the

investigation of excitons in topological insulators [26,28,30].
For instance, the anomalies observed in the topological Kondo
insulator SmB6 have been predicted to be caused just by
excitons [34–38].

Here, we show that exciton phase transition generically
occurs due to electronic correlations in a model quantum
spin Hall insulator (QSHI). In particular, using a nonperturba-
tive approach based on dynamical mean-field theory (DMFT)
[39–41], we demonstrate that, in the presence of a sufficiently
strong interaction, the QSHI becomes unstable towards an
excitonic phase with an in-plane spin polarization [28,42] that
breaks the time-reversal, spin U (1), and parity symmetries
[30] that protect topological order. The transition between the
QSHI and the excitonic insulator (EI) is of first order within
DMFT. The excitonic phase shows a finite magnetoelectric
susceptibility [43,44], which allows a direct experimental
identification of such a state of matter.

The rest of the paper is organized as follows. In Sec. I, we
introduce the interacting QSHI model and briefly recall the
method used to solve it. In the following Sec. II, we discuss the
excitonic phase transitions occurring for generic values of the
parameters, distinguishing the two cases corresponding to the
presence or the absence of Hund’s exchange. We summarize
part of the findings in terms of the phase diagram in Sec. III.
In Sec. IV we discuss observables consequences of the exci-
tonic transition in the QSHI. Finally, in Sec. V, we draw the
conclusions of our paper and discuss some perspectives.

I. MODEL AND METHODS

We consider an interacting two-orbital Hubbard model
on a two-dimensional square lattice [3,22], described by the
Hamiltonian,

H =
∑

k

ψ
†
kH (k)ψk + Hint, (1)
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with the spinor ψ
†
k = [c†

k1↑, c†
k2↑, c†

k1↓, c†
k2↓] and where c†

kασ

creates an electron on orbital α = 1, 2 with spin σ =↑,↓ at
momentum k. Orbitals 1 and 2 transform as the � = 0 and � =
1 spherical harmonics, respectively [3], and, more specifically,

(2,↑) ≡ (� = 1, �z = +1,↑),

(2,↓) ≡ (� = 1, �z = −1,↓)

are the jz = ±3/2 components of j = 3/2 spin-orbit
multiplet.

We introduce the 4 × 4 matrix basis �αa = σα ⊗ τa, where
σα=0–3 and τa=0–3 are Pauli matrices, including the identity, in
spin, and orbital subspaces, respectively. The noninteracting
Hamiltonian matrix reads

H (k) = M(k)�03 + λ sin(kx )�31 − λ sin(ky)�02, (2)

where M(k) = M − ε(cos kx + cos ky), M � 0 being the en-
ergy separation between the two orbitals, ε is the hopping
amplitude, and λ is the interorbital hybridization that lacks an
on-site component because of inversion symmetry. Hereafter,
we take ε = 1 as our unit of energy λ = 0.3 and assume two
electrons per site, i.e., half-filling. The noninteracting Hamil-
tonian is invariant under time reversal symmetry T , inversion
symmetry P , U (1) spin rotations around the z axis, and the
fourfold C4 spatial rotations around z. Any space-isotropic and
spin-SU (2) symmetric two-body potential projected onto the
local basis set inevitably yields interaction terms that are only
invariant under inversion and spin U (1). Here, we assume the
local interaction,

Hint = 1

4

∑
r

(2U − 3J )N̂2
r − JŜ2

zr + 2JT̂ 2
zr, (3)

where the operators,

N̂r = ψ†
r �00ψr , Ŝzr = 1

2 ψ†
r �30ψr , T̂zr = 1

2 ψ†
r �03ψr ,

with ψr as the Fourier transform of ψk, are, respectively, the
density, the spin polarization along z, and the orbital polariza-
tion at lattice site r. The interaction (3) enforces Hund’s first
rule of maximum spin. However, it is not the most general
symmetry-allowed one [30], which may also include the pair-
hopping process c†

r1↑c†
r1↓cr2↓cr2↑ + H.c.. This term opposes

against Hund’s first rule, but, physically, cannot prevail over
the latter. Therefore, neglecting pair-hopping processes as we
do in Eq. (3) is not expected to qualitatively alter the physics
but has the great advantage of making the interaction much
easier to deal with numerically.

We solve the model nonperturbatively by single-site
DMFT [39]. Within DMFT, the self-energy is approximated
by a momentum-independent but frequency-dependent matrix
function in spin and orbital space, which is obtained from
the solution of an effective quantum impurity problem, which
we address using the exact diagonalization method. In this
approach, the effective bath is discretized in terms of Nb levels.
The low-energy spectrum and the zero-temperature dynamical
correlation functions of the impurity Hamiltonian are obtained
using a Lanczos-based algorithm. More details can be found
in Ref. [45]. In this paper, we used Nb = 8 and checked
the stability of the solution with respect to Nb for selected
values of the model parameters. A symmetry-invariant self-
energy matrix is diagonal with spin-independent elements.

Deviations from such a matrix structure signal the onset
of symmetry breaking [24,28,42,46–50]. The noninteracting
model has a topological quantum phase transition between a
QSHI for M < 2 and a trivial band insulator (BI) for M > 2.
In the presence of a finite Hund’s exchange J and for large
U , see Eq. (3), a high-spin Mott insulator sets in [22,49,51]
and describes two electrons localized on each site and forming
a spin Sz = ±1 configuration, thus, with vanishing orbital
polarization Tz = 0.

II. THE EXCITONIC PHASE TRANSITION

In order to asses the possible instability of the model to-
wards an excitonic phase, it is instructive to start from the
atomic limit with two electrons per site. The Hamiltonian in
the two-electron subspace reads

Hat =
∑

r

−JŜ2
zr + 2JT̂ 2

zr + 2MT̂zr.

The eigenstates can be labeled by the eigenvalues Sz, Tz, and
�z, respectively, of the operators Ŝzr, T̂zr, and

�̂z = n2↑r − n2↓r,

with nασr = c†
ασrcασr. Thus, the states |(�z, Sz, Tz ), r〉 have

eigenvalues E (�z, Sz, Tz ),

E (0, 0,+1) = 2J + 2M,

E (0, 0,−1) = 2J − 2M,

E (+1,+1, 0) = E (−1,−1, 0) = −J,

E (+1, 0, 0) = E (−1, 0, 0) = 0. (4)

For 3J > 2M, the atomic ground state is the high-spin doublet
with Sz = ±1, otherwise is state |(0, 0,−1), r〉 with two elec-
trons in orbital 2. Our aim is to study the competition between
those states, and, therefore, we hereafter drop the other three
states, |(0, 0,+1), r〉 and |(±1, 0, 0), r〉.

Moreover, we define a pseudospin operator Ir =
(Ixr, Iyr, Izr ) through

Iz,r|(+1,+1, 0), r〉 ≡ Iz| + 1, r〉 = | + 1, r〉,
Iz,r|(0, 0,−1), r〉 ≡ Iz|0, r〉 = 0,

Iz,r|(−1,−1, 0), r〉 ≡ Iz| − 1, r〉 = −| − 1, r〉,
so that the three states become the components of an I = 1
pseudospin. In this subspace, the following equivalences hold

ψ†
r �11ψr ≡

√
2Ixr, ψ†

r �21ψr ≡
√

2Iyr,

ψ†
r �12ψr ≡ −

√
2[Iyr, Izr]+, ψ†

r �22ψr ≡ −
√

2[Ixr, Izr]+,

ψ†
r �03ψr ≡ 2

(
1 − I2

zr

)
, ψ†

r �30ψr ≡ 2Izr,

whereas ψ†
r �αaψr with all other � matrices different from the

identity have vanishing matrix elements.
The atomic Hamiltonian projected onto the subspace |0, r〉

and |±1, r〉 becomes, dropping constants,

Hat � 
E
∑

r

(
1 − I2

zr

)
, 
E = 3J − 2M.

Our interest is studying how the hopping processes beyond
the atomic limit modify the level crossing between |±1, r〉
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and |0, r〉 when 
E changes sign. For that, we treat those
processes at second order in perturbation theory and, after
projection onto the above subspace, we find an effective
Heisenberg Hamiltonian for the I = 1 pseudospins,

H∗ = 
E∗
∑

r

(
1 − I2

zr

)

+ J+
∑
〈rr′〉

⎛
⎝2IzrIzr′ −

∑
a=x,y

IarIar′

⎞
⎠

+ J−
∑
〈rr′〉

⎛
⎝KzrKzr′ −

∑
a=x,y

KarKar′

⎞
⎠, (5)

where Kar = IarIzr + IzrIar, whereas


E∗ = 
E + 8J−, J± = 1 ± λ2

4U
.

When 
E∗ � J+ > J−, the ground state is a Néel antiferro-
magnet with 〈Izr〉 = (−1)r. On the contrary, when 
E∗ 
−|J+|, each site in the ground state is locked into the Iz = 0
eigenstate of the pseudospin triplet, which is just the trivial
band insulator since the topological one does not survive in
the atomic limit. These two states might cross in energy when

E∗ � 0, but that crossing is avoided by the quantum fluctua-
tions brought about by J+ and J− that, in turn, compete against
each other favoring mutually exclusive symmetry-breaking
routes. Presumably, the system chooses the route with largest
coupling constant, i.e., J+. Therefore, since our aim is just to
infer the physical behavior of the Hamiltonian (5) without pre-
tending to get any quantitative result, we can safely neglect J−.
In that case, the Hamiltonian (5) describes an easy-axis XXZ
Heisenberg model with a single-ion anisotropy 
E∗, which
suggests that the transition between the Néel antiferromagnet
and the band insulator might occur through an intermediate
phase characterized by the order parameter,


(φ) = 〈Ixr + Iyr〉 = 1√
2
〈ψ†

r (�11 + �21)ψr 〉

≡ 
11 + 
21 = 
 cos(φ) + 
 sin(φ), (6)

which breaks T , inversion-symmetry P , and spin U (1) sym-
metry for any fixed value of φ ∈ [0, 2π ) [30]. This phase
actually describes a condensate of odd-parity spin-triplet ex-
citons with the spin lying on the x-y plane.

To assess whether such excitonic phase indeed
exists and does survive at intermediate coupling, we
have calculated the dynamical susceptibility χ

imp
11 (ω) =

1
N

∫
dt eiωt 〈Tt [Γ11(t )Γ11(0)]〉 forcing all symmetries within

the effective impurity problem of the DMFT [39] and where
Γαa = ψ†�αaψ [28,30] are impurity operators. Although
this quantity does not necessarily correspond to the local
susceptibility of the bulk model, nonetheless, it provides
suitable information about its instabilities. In Fig. 1, we report
the evolution of χ

imp
11 (ω), which is equivalent to χ

imp
21 (ω) by

spin U (1) symmetry as a function of energies ω and U at
M = 3.5, thus, along the path from the band to the Mott
insulator. In the weakly interacting regime, this function
displays several high-energy peaks. Increasing U leads to
redshift of the lowest-energy peak until it softens before the

FIG. 1. Evolution of the low-energy spectra of the in-plane triplet
component of the exciton-exciton susceptibility χ

imp
1 (ω) as a func-

tion of the interaction strength U . Data for J/U = 0.25 and M = 3.5.
The arrow indicate the softening of the lowest-energy peak before the
Mott insulator sets in (white solid line).

Mott transition sets in. The softening is just the signal of the
excitonic instability.

However, the conclusive proof of excitonic transition can
be obtained allowing for symmetry breaking, which we do
though forcing for simplicity, translational symmetry. Our
results are reported in Fig. 2 for J = 0.25U , left panel, and
J = 0, right panel.

A. The J > 0 case

For any M > 0’s, we observe the formation of an EI with

P1 = 〈ψ†
r �11ψr 〉 �= 0,

which is related to 〈ψ†
r �21ψr 〉 under spin U (1), see Eq. (6).

The transition from the band or topological insulators to the
excitonic one is of first order, whereas that from the EI to the
high-spin Mott insulator (hs-MI) is of second order. We cannot
exclude that also the latter transition may become first order
allowing for translational symmetry breaking, and, thus, for
an antiferromagnetic Mott insulator [24].

The order parameter P1 as a function of U displays a bell-
like structure, which is centered at increasing values of U as
M grows. Interestingly, the peak value is attained at different
positions depending on the nature of the uncorrelated insula-
tor. For M < 2 (QSHI) the peak value is reached immediately
after the transition whereas for M > 2 (BI) the peak is well
inside the excitonic region. We also observe that the orbital

FIG. 2. Orbital polarization Tz (dashed lines) and exciton-order
parameter P1 (solid line and symbols) as a function of the interaction
strength U at J = 0.25U , left panel, and J = 0. For the J = 0 case,
we also show the order-parameter P0 corresponding to the formation
of an odd-parity spin-singlet excitonic state, which is always zero at
J = 0.25U .
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FIG. 3. DMFT phase diagrams of the interacting model as a
function of U and M. Left panel (a) for J/U = 0.25. Right panel
(b) for J = 0. The nature of the leading excitonic-order parameter is
indicated in the plot using text and color code. First-order transitions
are indicated with dashed lines. Continuous transitions are indicated
with solid lines. Transitions to/from EI are indicated in black. Gray
lines in the background indicate the transitions occurring without
allowing for exciton condensation.

polarization Tz vanishes before the Mott transition, i.e., when
P1 is still finite.

B. The J = 0 case

At J = 0, the atomic levels (4) include the ground-state
|0, 0,−1〉, followed at energy 2M above by the fourfold mul-
tiplet |±1,±1, 0〉 and |±1, 0, 0〉, and, finally, by |0, 0,+1〉 at
energy 4M above the ground state. For large U , the hopping at
second order in perturbation theory generates superexchange
processes of order 1/U . Therefore, the model at U → ∞ and
finite M describes just the band insulator with two electrons
in orbital 2. However, the situation may change if M scales
as 1/U . In that case, and if we discard the highest-energy
atomic level |0, 0,+1〉, the superexchange processes mix the
atomic ground-state |0, 0,−1〉 with the first excited multiplet
on nearest-neighbor sites. Similar to the J > 0 case, these
processes may lead to finite expectation values of the local op-
erators that have finite matrix elements between the |0, 0,−1〉
and the fourfold multiplet | ± 1,±1, 0〉 ⊕ | ± 1, 0, 0〉. We al-
ready showed that at λ �= 0 the mixing between |0, 0,−1〉
and the doublet | + 1,+1, 0〉 ⊕ | − 1,−1, 0〉 stabilizes the
order parameters P1 = 〈ψ†

r �11ψr 〉 and its spin-U (1) partner
〈ψ†

r �21ψr 〉.
Similarly, the order parameters P0 = 〈ψ†

r �01ψr 〉 and its
C4 partner 〈ψ†

r �32ψr 〉, which, thus, break C4 and inversion
symmetries, are favored by the mixing between |0, 0,−1〉 and
doublet |+1, 0, 0〉 ⊕ |−1, 0, 0〉 at λ �= 0.

Our explicit DMFT calculations predict that, at M ∼ 1/U ,
P1 is always stabilized except at very small M, where the
order parameter P0 prevails, see the right panel of Fig. 2. We
further observe that at J = 0 the transition from the QSHI to
the EI is still first order, whereas that from the EI to the BI is
continuous.

C. Phase diagrams

We summarize our DMFT results in the two U vs M
phase diagrams at J > 0 and J = 0, respectively, left and right
panels in Fig. 3. In both cases, the noninteracting QSHI-BI
transition point at M = 2 transforms at weak coupling into a

critical line determined by the condition,

Meff ≡ M + 1
4 Tr [�03�(ω = 0)] = 2,

where �(ω) is the self-energy matrix. The critical line corre-
sponds to a second-order phase transition up to a critical value
of the interaction Uc. For U > Uc, the transition turns first
order [22,23,52], thus, without crossing a Dirac-like gapless
point.

For J > 0 and large enough U , the ground state describes
a high-spin Mott insulator. An extended EI region with the
P1-order parameter intrudes between the QSHI and the hs-MI,
see Fig. 3(a). Remarkably, the EI phase entirely covers the
discontinuous topological transition occurring between the BI
and the QSHI. The transitions from either the BI or the QSHI
to the EI are of first order, whereas the transition from the EI
to the hs-MI is continuous.

At J = 0, we observe an EI region between the QSHI
and the BI at small M < 0.5. The QSHI-to-EI and EI-to-BI
transitions are, respectively, of first and second orders. For
very large U , the EI phase appears at M scaling as 1/U . As
we mentioned, the exciton condensate with order-parameter
P0, breaking C4, and inversion symmetries for very small M,
whereas for larger values, the order-parameter P1 prevails,
breaking inversion, time-reversal, and spin U (1). The transi-
tion between P1 and P0 is expected to be first order.

III. MAGNETO-ELECTRIC NATURE
OF THE EXCITONIC INSULATOR

In the EI phase with the P1-order parameter, the breakdown
of the symmetries protecting the nontrivial topology of the
QSHI, i.e., time-reversal T , inversion P , and spin U (1) (yet
not the product PT ), dramatically changes the response to
an electromagnetic field. Specifically, the triplet in-plane spin
polarization nature of the excitonic-order parameter forbids a
direct coupling to the electric field and, independently, to the
magnetic field. However, the lack of both T and P symmetries
allows the system to couple to the product of magnetic and
electric fields, i.e., a linear magnetoelectric (ME) response
[53]. Here, we show that the EI admits a finite ME suscep-
tibility and, thus, corresponds to a ME insulator. Notably, this
state should not be expected to be multiferroic because of the
absence of magnetic and electric orders [53].

In order to study the ME properties, we evaluate the electric
dipole response to a magnetic perturbation. Using Green’s-
Kubo formalism and neglecting vertex corrections, we obtain
the following expression:

�ab
q (νm) =

∑
k,n

Tr [G(k, iωn)pa(k)G(k + q, iωn + iνm)Mb]

βνm
,

(7)

where a, b = 1, 2 ≡ x, y are the in-plane directions, Ma =
1
2�a0 is the a component of the spin operator, pa(k) is the
momentum operator along a, iωn, and iνm are, respectively,
fermionic and bosonic Matsubara frequencies and

G(k, iωn) = [iωn + μ − H (k) − �(iωn)]−1

is the interacting Green’s function matrix. Given the multior-
bital nature of the Hamiltonian (2), the momentum operator
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FIG. 4. Static and uniform limit of the magnetic-electric suscep-
tibility as a function of the interaction strength U across the exciton
phase transition. Data are for different values of M as indicated in the
panels and for (a) J/U = 0.25 and (b) J/U = 0.00.

should be evaluated using a generalized Peierls approxima-
tion [54–59]. The latter includes additional contributions,
stemming from on-site interorbital processes that are dipole
allowed. Specifically,

pa
αβ (k) = ∂aHαβ (k) + i�αβ (k)da,

where �αβ (k) = [Eα (k) − Eβ (k)], Eα (k) are the eigenvalues
of the noninteracting Hamiltonian (2), and �d = (�02, �32) is
the dipole operator.

In the following, we consider the static ν → 0, and uniform
q = 0 limit of the ME susceptibility. Our results are presented
in Fig. 4 where we show the evolution of �11

q=0(ν = 0) as a
function of U for finite and zero values of J . Since the contri-
bution of the group velocity ∂ka Hαβ (k) vanishes by symmetry,
the ME response is entirely determined by the intra-atomic
dipole transitions, which have finite expectation values in the
EI phase. Indeed, �11

q=0 is finite only within the EI phase
and vanishes otherwise. The magnetoelectric susceptibility
shows the same dome structure of the order-parameter P1 as
a function of U . The results at J = 0 reported in Fig. 4(b)
point out that the ME response vanishes when P0 �= 0 as
expected by symmetry. In the EI phase with P1 �= 0, the ME
susceptibility is finite, and its peak value shifts to lower U with
increasing M.

At J > 0, see Fig. 4(a), we observe a substantial change in
the magnitude of the ME response. For M < 2, thus, starting
from the QSHI, the susceptibility is globally small, whereas
for larger M, the weight of �11

q=0 increases with seven times
larger peak values. Remarkably, for any given J the largest
ME response is reached in the proximity of the quantum
critical point, which without allowing for P1 �= 0 separates
the continuous from the first-order topological quantum phase
transition [22,24].

IV. SLAB GEOMETRY AND EDGE STATES

Finally, we explore the evolution across the QSHI-to-EI
phase transition at J > 0 in a slab geometry, i.e., with open
boundary conditions along, say, the y axis, and periodic in
the perpendicular direction. In this geometry, the electrons
at the boundary experience an effectively larger interaction
strength because of the reduced coordination. This effect be-
comes detectable near the phase transition. In the top panel

FIG. 5. Top panel: Excitonic-order parameter profile as a func-
tion of the site index along the y axis and across the QSHI to the EI
transition. Bottom panels: Evolution of the low-energy band structure
across the QSHI to the EI transition. Data are for a slab geometry
with periodic boundary conditions along the x and open along the
y axis with Ly = 50 sites. Other model parameters are M = 1 and
J = 0.25U .

of Fig. 5, we show the evolution of the P1-order parameter
across the QSHI-EI first-order transition with M = 1. Before
the transition, a finite value of the order parameter appears
at the boundary and fast decays in the bulk interior. This
behavior is akin to a wetting phenomenon [60,61]. Indeed, the
first-order phase transition between QSHI and EI entails phase
coexistence, namely, that both insulators can be minima of the
free energy, although one of them is the global minimum, and
the other just a local one.

Suppose that the QSHI is the thermodynamic stable phase.
At the surface, the effective correlation strength is enhanced.
It follows that if the system is not too far from the first-order
transition, the surface can seed the nucleation of a wetting
layer made by the metastable excitonic insulator. Depending
on the static dielectric constants of the topological insulator
εQSHI and of the excitonic one εEI, theory predicts partial
or total wetting if, respectively, εQSHI < εEI or vice versa
[62–65]. Since the order parameter (6) is not directly coupled
to the electric field, and the gap grows across the QSHI-to-EI
transition, we expect εQSHI > εEI, and, thus, total wetting.
If that is indeed the case, we predict that the surface of a
sufficiently correlated QSH insulator may be wet by a layer of
excitonic insulator, lacking edge states but displaying magne-
toelectricity, whose depth grows and diverges at the first-order
transition.

Increasing U above the value of the bulk transition drives
the sudden formation of a finite-order parameter throughout
the whole sample as expected for a first-order transition. In
this case, the order parameter near the boundary is instead re-
duced with respect to the bulk, consistently with the behavior
of P1 vs U for M < 2, see the left panel in Fig. 2.

Further insights can be gained investigating the fate of
the helical edge states, see the bottom panels of Fig. 5. The
plots show the low-energy electronic band structure of the
interacting system across the QSHI-to-EI transition. At small
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coupling U = 3.3, well inside the QSHI (left panel), gapless
helical edge states well separated from the bulk spectrum are
visible. However, at U = 4.1 (middle panel), where the bulk
is still a QSHI but an EI wetting layer has formed, see the
top panel of Fig. 5, edge states still exist but are gapped. On
the contrary, for U = 4.5 (right panel) where also the bulk
is an EI, the edge states have disappeared inside the bulk
continuum.

V. CONCLUSIONS

In conclusion, we have investigated a canonical model of
interacting quantum spin Hall insulators and showed that for a
strong enough electronic correlation the system gets generally
unstable towards an excitonic insulator that breaks time-
reversal and inversion symmetries as well as the residual spin
U (1) rotations. This state further evolves into a magnetic Mott
insulator upon increasing the interaction strength where in-

version and spin-U (1) symmetry are recovered. We explicitly
show that the excitonic insulator has nonzero magnetoelec-
tric susceptibility and, thus, is a good candidate platform for
the realization of correlated multiferroic materials. Another
remarkable phenomenon that we uncovered is the possible
existence of an excitonic insulator wetting layer in a quantum
spin Hall insulator.
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