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Symmetry-resolved entanglement is a useful tool for characterizing symmetry-protected topological states. In
two dimensions, their entanglement spectra are described by conformal field theories but the symmetry resolution
is largely unexplored. However, addressing this problem numerically requires system sizes beyond the reach
of exact diagonalization. Here, we develop tensor-network methods that can access much larger systems and
determine universal and nonuniversal features in their entanglement. Specifically, we construct one-dimensional
matrix product operators that encapsulate all the entanglement data of two-dimensional symmetry-protected
topological states. We first demonstrate our approach for the Levin-Gu model. Next, we use the cohomology
formalism to deform the phase away from the fine-tuned point and track the evolution of its entanglement features
and their symmetry resolution. The entanglement spectra are always described by the same conformal field
theory. However, the levels undergo a spectral flow in accordance with an insertion of a many-body Aharonov-
Bohm flux.
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I. INTRODUCTION

Symmetry-protected topological states (SPTs) are charac-
terized by a symmetric bulk state that does not host fractional
excitations. Still, they are topological in the sense of carrying
anomalous edge states at their boundary with a trivial state or
different SPTs. In two dimensions, the edges are described
by a one-dimensional conformal field theory (CFT) [1–5].
The presence of these states is dictated by a specific struc-
ture in their entanglement. Yet, unlike topologically ordered
(fractional) states, the entanglement entropy of SPTs does not
contain a topological term. Instead, the topological nature of
these states may be revealed by resolving the entanglement
entropy according to symmetries or by studying entanglement
spectra (ES).

The entanglement entropy of a system with global symme-
tries can be decomposed according to the associated quantum
numbers [6–9]. Specifically, it is given by the sum of entropies
for each choice of these quantum numbers in one subsystem.
The Rényi moments of the symmetry-resolved entanglement
are experimentally measurable [10–13] as also demonstrated
for one-dimensional SPT states [14,15] on IBM quantum
computers. For such states, each symmetry sector contributes
equally to the total entropy [16]. This equipartition corre-
sponds to exact degeneracies in the ES [17,18]. These have
been recognized as the source of the computational power of
one-dimensional SPTs [19] within measurement-based quan-
tum computation [20].

The ES generalizes the entanglement entropy and contains
additional universal information. For two-dimensional (2D)
topological states with a chiral edge, the Li-Haldane conjec-
ture [21,22] states that the levels of the ES correspond to the
conformal field theory that describes a physical edge. Extrapo-
lating to the nonchiral case, one may expect that the ES of SPT
phases have the same universal properties as their nonchiral

edge CFTs, such as the central charge c. For example, for
SPTs stabilized by a ZN symmetry, the free-boson CFT with
c = 1 was found to describe the edge [1,2]. While the ES
should correspond to the same CFT as that of the physical
edge, the two may differ by nonuniversal parameters such
as the compactification radius. Other nonuniversal properties
include effective fluxes, which change the boundary condition
of the one-dimensional (1D) edge.

Our motivating questions are as follows: How does the ES
decompose according to symmetry in 2D SPTs? How does
this decomposition fit into the CFT? What are its universal
properties, and how does the ES vary within a given SPT
phase? Previous work by Scaffidi and Ringel exploring the
emergent CFT in the ES of SPTs was limited to small system
sizes [4]. It could, in principle, have performed a symmetry
resolution, which does not require large systems. By contrast,
distinguishing universal from nonuniversal properties upon
continuous variation of the ground states, as we find, does
require large system sizes.

In order to address these issues in this work, we de-
velop an efficient numerical method [23,24] to calculate the
ES of short-range entangled states in two dimensions. Our
method is summarized in Fig. 1 and described in Sec. II.
It uses a quantum circuit representation to construct gapped
one-dimensional models that exhibit the same entanglement
properties as the 2D SPTs in question. In particular, they
allow us to extract the entanglement spectra of large systems
and their symmetry resolution using tensor-network methods
[25–28].

In Sec. III, we apply this approach to the Levin-Gu model
[2] on an infinite cylinder with circumferences as large as
L = 150. In agreement with previous studies of much smaller
systems [4], we observe the spectrum of a CFT with central
charge c = 1. Specifically, the ES can be organized in terms
of primary states and their descendants. We find that all the
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FIG. 1. Schematics of our method: (a) We analyze a state |�〉
given as a quantum circuit representation as in Eq. (1). The entan-
glement between subsystems A and B is created by a unitary UAB

acting within a finite distance from the entanglement cut (dashed
line). (b) We consider an SPT on a cylinder consisting of regions
A and B.

descendant states have the same subsystem symmetry quan-
tum numbers as the corresponding primary state. We also
identify an unexpected subtlety in the ES of the Levin-Gu
model: it distinguishes cylinders whose circumference is a
multiple of three from all others. We attribute this effect to
the lattice and show that it translates into a flux insertion of
the corresponding CFT.

In Sec. IV, we apply our method to explore more generic
states. We construct a continuous family of wave functions
within one SPT phase using the framework of cohomologi-
cal classification [29]. The ES of these states reveal a direct
relation between so-called coboundary transformations and
certain fluxes affecting the many-body SPT states.

In Sec. V, we further elaborate on the gapped one-
dimensional models derived in Secs. III and IV. We demon-
strate that they can be used to obtain the central charge
of the SPT edge very efficiently without reference to ES.
Restricting the edge Hamiltonian to terms that act within a
single subsystem results in a critical chain that is described
by the same CFT as the SPT edge. The central charge of
such one-dimensional chains can be readily extracted from
the scaling of the entanglement entropy, which satisfies the
Calabrese-Cardy formula [30].

II. DIMENSIONAL REDUCTION AND
TENSOR-NETWORK APPROACH

Before specifying to 2D, consider a d-dimensional space.
The two subsystems A and B share a (d − 1)-dimensional
boundary ∂A = ∂B. By virtue of their finite depth circuit
representation [31], any SPT state can be written as

|�〉 = UAUBUAB|0〉. (1)

Here |0〉 is a site-factorizable product state, i.e., the ground
state of a trivial gapped Hamiltonian H0 that is the sum
over one-site operators. The unitaries UA and UB act only
on subsystems A and B, respectively. UAB acts in a (d − 1)-
dimensional region denoted CAB extending a finite distance
from ∂A; see Fig. 1(a). Consequently, the ES is fully encoded

FIG. 2. (a) The resulting 1D edge Hamiltonian corresponding
to Fig. 1(b) with the underlying triangular lattice is a zigzag chain
containing both A (even) and B (odd) sites. (b) We construct a MPS
of the ground state of Hedge living on A and B. (c) The reduced density
matrix of subsystem A is constructed as an MPO by contracting the
odd sites (∈ B) of two copies of the MPS state.

in UAB. Indeed, the reduced density matrix of region A is given
by

ρA = TrB|�〉〈�| = UATrB(UAB|0〉〈0|U †
AB)U †

A . (2)

Up to the unitary transformation UA, which does not affect
the ES, ρA acts nontrivially only in the interface region CAB.
Consequently, the ES can be fully encoded by a state |ψedge〉
that lives only in CAB. We define this edge state via UAB|0〉 =
|ψedge〉 ⊗ |0〉A

⋃
B\CAB such that the operator

ρedge = TrB|ψedge〉〈ψedge| (3)

exhibits the same spectrum as ρA. The “edge density matrix”
ρedge acts nontrivially only on a (d − 1)-dimensional region
within subsystem A. It is the central object in this paper, which
we construct using tensor-network methods; see Fig. 2(c).

The presence of an onsite symmetry generated by
S = SA ⊗ SB implies that [ρA, SA] = 0. It follows that
[ρedge,U †

A SAUA] = 0. As a result, the symmetry-resolved ES is
obtained by diagonalizing ρedge simultaneously with the edge
symmetry operator

Sedge = U †
A SAUA. (4)

It is convenient to think of the pure state |ψedge〉 as the
ground state of a local edge Hamiltonian

Hedge = UABH0U
†
AB, (5)

which has the same (gapped) spectrum as H0. Hedge acts on
the support of CAB, which contains the union of two adjacent
(d − 1)-dimensional regions in A and B. Accordingly, Hedge

can be separated as

Hedge = HA + HB + HAB. (6)

We remark that, unlike the standard “entanglement Hamilto-
nian” HE defined by ρA = e−HE , the edge Hamiltonian Hedge
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acts on both subsystems. However, in Sec. V, we argue that
HE and HA describe a CFT with the same universal properties
dictated by the bulk SPT phase.

III. SYMMETRY-RESOLVED ES OF THE
LEVIN-GU MODEL

Next, we focus on the paradigmatic 2D Levin-Gu model
and demonstrate our method for the computation of the ES
and its symmetry resolution. The Levin-Gu state admits a
quantum circuit form [32]

|�LG〉 = UCCZUCZUZ |+〉, (7)

where UCCZ , UCZ , and UZ are, respectively, the products of
CCZ , CZ , and Z gates acting on all triangles, edges, and
vertices, and |+〉 is the ground state of H0 = −∑

i Xi. We con-
sider a cylinder geometry as displayed in Fig. 1(b). Next, we
use this quantum circuit form to derive a 1D Hamiltonian that
encodes the ES of this 2D model, exemplifying the general
prescription of Sec. II.

A. Gapped 1D edge Hamiltonian

The Levin-Gu state provides an explicit example of Eq. (1).
In this case,

UA =
∏

triangles∈A

U i jk
CCZ

∏
links∈A

U i j
CZ

∏
sites∈A

U i
Z , (8)

and similarly for UB. The triangles and links that connect
the two subsystems identify the interface region CAB as a
zigzag chain with i even ∈ A and i odd ∈ B; see Fig. 2(a). The
corresponding entangling gates are

UAB =
∏

i

U i−1,i,i+1
CCZ

∏
i

U i,i+1
CZ ≡ UCCZ

AB UCZ
AB . (9)

The edge Hamiltonian of Eq. (5) is then given by

Hedge = UABH0U
†
AB = UCCZ

AB HclusterU
CCZ
AB , (10)

where Hcluster = UCZ
AB H0UCZ

AB = −∑
i Zi−1XiZi+1 is the 1D

cluster Hamiltonian. A more explicit form of Hedge is readily
obtained by virtue of the identity

U i jk
CCZXiU

i jk
CCZ = 1

2 Xi[I + Zj + Zk − ZjZk]. (11)

We thus obtain Hedge as a sum of tensor products of one-qubit
operators,

Hedge =
∑

i

1

4
Xi[I − Zi−2 + Zi−1 + Zi+1 − Zi+2

+ Zi−2Zi−1 + Zi−1Zi+1 + Zi+1Zi+2

− Zi−2Zi+1 − Zi−1Zi+2 − Zi−2Zi+2

+ Zi−2Zi−1Zi+1 + Zi−2Zi+1Zi+2

+ Zi−2Zi−1Zi+2 + Zi−1Zi+1Zi+2

− Zi−2Zi−1Zi+1Zi+2]. (12)

We construct a matrix product state (MPS) of the ground state
of Hedge, denoted |ψedge〉 and depicted in Fig. 2(b), using the
ITENSOR and JULIA libraries [33]. The ground state |ψedge〉
converges with bond dimension χ = 9 for periodic boundary
conditions. Subsequently, we construct the matrix product

operator (MPO) for ρedge by contracting the B sites of the outer
product |ψedge〉〈ψedge|; see Fig. 2(c). Finally, an excited-state
density matrix renormalization group (DMRG) calculation on
ρedge yields the ES.

B. Symmetry resolution

The Z2 symmetry operator of the Levin-Gu model is X =∏
i Xi. To see that the Levin-Gu state is an eigenstate of X and

determine its eigenvalue, we use the quantum circuit form [cf.
Eq. (7)] along with the identities

XZiX = −Zi,

XU i j
CZ X = −U i j

CZZiZ j,

XU i jk
CCZX = −U i jk

CCZU i j
CZU jk

CZU ki
CZZiZ jZk . (13)

The third identity implies, in particular, that

XUCCZX = (−1)T UCCZ , (14)

where T is the number of triangles. The product over all
triangles includes each link and each site an even number of
times such that all Z and CZ factors cancel. Similarly, the
product over all links includes each site an even number of
times, and thus

XUCZX = (−1)LUCZ , (15)

where L is the total number of links. It follows that

X |�LG〉 = (−1)T +L+V |�LG〉, (16)

where V is the total number of vertices (i.e., sites). For a
perfect triangular lattice without a boundary, (−1)T +L+V = 1.

According to Eq. (4), the edge symmetry operator is given
by SLG

edge = U †
A XAUA, where XA = ∏

i∈A Xi and UA is given
by Eq. (8). Unlike the case of the full system, the product
over all triangles in subsystem A involves the links along
the edge only once. Consequently, commuting XA across UA

using Eq. (13) produces uncanceled Z and CZ factors. Con-
sequently, SLG

edge acts nontrivially near the edge and we write

U †
A XAUA = SLG

edge ⊗ ∏
i∈A\∂A Xi. The first factor only acts on

∂A, which contains all even sites. It is given by

SLG
edge =

∏
i=even

Xi

∏
i=even

U i,i+2
CZ Zi, (17)

up to an additional overall factor (−1)TA+LA+VA = 1 account-
ing for the total number of triangles, links, and vertices in
subsystem A. As we can see, in addition to the onsite factor∏

i=even Xi, there is a nononsite factor [1]. The latter is the
manifestation of the nontrivial SPT. In fact, it is this fac-
tor, which is classified [1] by the third cohomology group
H3(Z2,U (1)) = Z2. One can rewrite the edge symmetry op-
erator as

SLG
edge =

∏
j=even

Xj

∏
j=even

ei π
4 (Z j Z j+2−1), (18)

which shows explicitly that the onsite and nononsite factors
commute.

Having constructed the edge symmetry (18), we confirm
that the eigenstates |ψi〉 of ρedge that we obtained from DMRG
satisfy SLG

edge|ψi〉 = si|ψi〉, where si = ±1 is the symmetry
eigenvalue.
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Entanglement Hamiltonian

The above algorithm yields the eigenvalues λi of the re-
duced density matrix ρedge, from which we obtain a list of
quasienergies ξi = − log λi, being the eigenvalues of the en-
tanglement Hamiltonian defined by ρedge = e−HE . According
to the Li-Haldane conjecture [21], in topological systems, the
latter displays the spectrum of a physical edge. In the present
SPT, this spectrum is known to be a nonchiral free-boson CFT
[1].

We match the list of quasienergies {ξ0, ξ1, . . . } in increas-
ing order to the form

ξi − ξ0 = v

L

i, (19)

where v is a free parameter corresponding to the velocity of
the CFT, L is the circumference of the cylinder, and 
i are
“scaling dimensions” of the CFT, as given below.

C. Entanglement spectrum for L divisible by 3

As discussed in detail in Appendix A, we can see that the
numerically obtained eigenvalues of the entanglement Hamil-
tonian approximate the free-boson spectrum


(�, m, R) = �2

R2
+ R2m2

4
+ integers (�, m ∈ Z), (20)

with compactification radius R = √
2. As reviewed in Ap-

pendix D, this spectrum can be viewed as an infinite set of
primary states |�, m〉. Each of these generates an infinite tower
of descendant states denoted in Eq. (20) by “integers.”

The low-lying levels of this spectrum can already be seen
to match this pattern in a short system of L = 12, as seen
in Fig. 3. Results for longer systems, shown in Appendix A,
confirm this pattern for higher-energy levels.

As required, each eigenvector of ρedge has a well-defined
subsystem symmetry. We find that the corresponding quantum
number is given by si = (−1)�+m, as predicted from a field
theory analysis [1,3]. In particular, all states generated by a
given primary field inherit its symmetry properties. In Fig. 3,
the symmetry eigenvalues si = ±1 are indicated in blue and
red, respectively.

D. Entanglement spectrum for L nondivisible by 3

Our numerical results for lengths L that are not multiples
of 3 follow a reproducible sequence different from Eq. (20).
Instead, they approximate the pattern shown in Table I (cf.
Appendix A). This sequence is captured by the modified free-
boson spectrum


(�, m) = (� − φ)2 − φ2

2
+ m2

2
+ integers, (21)

with φ = 1
3 , and the same symmetry resolution si = (−1)�+m

as before. The parameter φ can be viewed as a flux threading
the cylinder and affects the ground-state wave function like
a many-body Aharonov-Bohm effect [3]. (In Appendix C we
provide additional details that demonstrate this 3-periodicity
using correlation functions.)

FIG. 3. Entanglement spectrum of the Levin-Gu model on a
cylinder with circumference L = 12 and its symmetry resolution.
The low-lying energy levels and their degeneracies match Eq. (20),
with the second term “integers” being given by

∑
i>0 i(ni + n̄i ) with

ni, n̄i ∈ N being the ith integer (i � 1) excitation on top of the
primary field denoted (�, m). The right panel displays the ES levels
and their degeneracy according to Eq. (20). The symmetry eigenvalue
si = ±1 is denoted by blue and red, respectively.

E. Velocity of the edge CFT

So far we determined the spectra {
i} by matching numeri-
cal results to a CFT pattern of levels with unit spacing between
descendants. This removes any ambiguity in the values of 
1.
We can now extract the velocity v from the ES. Indeed, we
have ξ1 − ξ0 = v

L 
1. This gives

ξ1 − ξ0 =
{ v

2L , for L divisible by 3
v

6L , for L not divisible by 3.
(22)

These two cases are plotted in Fig. 4. We thus obtain a value
for the dimensionless velocity,

v ≈ 11.023. (23)

F. Symmetry equidecomposition in the thermodynamic limit

While the ES are different for the two symmetry sectors
(blue vs red levels in Fig. 3), the total probabilities of the
subsystem to be in either sector,

Peven/odd =
∑

i∈even/odd λi∑
i λi

, (24)

converge quickly to 1
2 upon increasing L. The red curve in

Fig. 5 shows |Peven − Peven|, which decays exponentially with
system size.

As an attempt at an analytic description of the decay of
Peven − Podd with L, we employ the CFT spectrum, although
the latter only describes the low-lying levels, whereas the
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TABLE I. ES for the Levin-Gu model on a cylinder with circum-
ference L not divisible by 3 as described by Eq. (21). We display
the degeneracy, quantum numbers (�, m), and symmetry eigenvalues
si = (−1)�+m of the low-lying states. The first descendants are de-
noted by (�, m)′. This spectrum is obtained in the thermodynamic
limit from our numerical results in Appendix A. As our numerical
methods are limited by computation time, the last row of the table
has degeneracy marked by ‘?’ due to this limited computation time.


i Deg. (�, m) si

0 1 (0,0) 1
1/6 1 (1,0) −1
1/2 2 (0, ±1) −1
2/3 2 (1,±1) 1
5/6 1 (−1,0) −1
1 2 (0,0)′ 1
7/6 2 (1,0)′ −1
4/3 3 (2,0), (−1,±1) 1
3/2 4 (0,±1)′ −1
5/3 4 ... 1
11/6 4 −1
2 7 1
13/6 7 −1
7/3 ? 1

probabilities |Peven − Peven| presumably probe the entire spec-
trum. Nevertheless, from the CFT spectrum, we find

Peven − Podd =
∑

�,m(−1)�+me− v
L (�2+m2 )∑

�,m e− v
L (�2+m2 )

=
(

θ4
(
e− v

L

)
θ3

(
e− v

L

)
)2

≈ e− Lπ2

2v , (25)

where θi are Jacobi theta functions. In Fig. 5, we plot this
difference for the velocity v = 11.023 (found in Sec. III E)
as a dashed curve. The exponent does not quite match the
numerical data, as expected. Curiously, the data can be fitted
to Eq. (25) with another value of the velocity v = 6.897 (black
curve).

IV. DEFORMED LG WAVE FUNCTIONS

The Levin-Gu wave function studied in the previous sec-
tion lies within the unique nontrivial 2D SPT phase protected
by the Z2 = {1,−1} symmetry. In this section, we would like
to explore how the ES varies within the SPT phase. We start
with a convenient but inessential simplification of the parent
LG state. Keeping only the CCZ gates in Eq. (7), we write

|� ′
LG〉 = UCCZ |+〉. (26)

We study continuous deformations of this state given by

|� ′
LG(λ)〉cob = Ucob(λ)|� ′

LG〉, (27)

with

Ucob(λ) =
∏

triangles

(
λ(Zj, Zk, 1)λ(Zi, Zj, 1)

λ(Zi, Zk, 1)λ(Zi, Zj, Zk )

)si jk

. (28)

FIG. 4. Inverse of the finite-size gap in the quasienergy spectrum
(i.e., eigenvalues of − log ρedge) as a function of system size L. From
Eq. (22), it allows to extract the velocity as in Eq. (23), which is
obtained both for L divisible (upper panel) and not divisible (lower
panel) by 3.

To define this transformation, one first enumerates all the
vertices, and then denotes triangles by their ordered vertices
i < j < k. Here, si jk = ±1 is the orientation of the trian-
gle [29]. The U(1)-valued functions λ are invariant under
the global symmetry, i.e., λ(Zi, Zj, Zk ) = λ(−Zi,−Zj,−Zk ).
Due to this symmetry, λ is parametrized by four independent
phases. Each choice thereof yields a different wave function
within the same nontrivial SPT phase since Ucob(λ) is a local
symmetric unitary transformation. The resulting wave func-
tion is a special case of more general cocycle wave functions,
which are reviewed in Appendix E. In that context, Ucob(λ)
are referred to as coboundary transformations.

We can see that Ucob(λ) can be incorporated into the quan-
tum circuit form of Eq. (1) with

UA(B) =
∏

triangles∈A(B)

U i jk
CCZ × U A(B)

cob (λ), (29)

where

U A(B)
cob (λ) =

∏
triangles∈A(B)

(
λ(Zj, Zk, 1)λ(Zi, Zj, 1)

λ(Zi, Zk, 1)λ(Zi, Zj, Zk )

)si jk

. (30)
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FIG. 5. Difference between the parity-resolved probabilities ob-
tained from our tensor-network methods and confirmed using exact
diagonalization for small systems, as a function of system size. Upon
increasing L we obtain equipartition. We compare with the CFT
prediction in Eq. (25) for two values of v.

Similarly, UAB = UCCZ
AB U AB

cob(λ), where

U AB
cob(λ) =

∏
triangles∈A&B

(
λ(Zj, Zk, 1)λ(Zi, Zj, 1)

λ(Zi, Zk, 1)λ(Zi, Zj, Zk )

)si jk

. (31)

A. Coboundary transformations

To explore how the ES is affected by cobound-
ary transformations, we follow a specific path through
the four-dimensional parameter space of λ. Specifically,
we take λ(1, 1, 1) = λ(−1, 1, 1) = eiθ and λ(1,−1, 1) =
λ(−1,−1, 1) = 1. This choice is arbitrary, and most other
choices lead to the same phenomenology. Next, we apply
our tensor-network methods to extract the ES of |� ′

LG(λ)〉cob,
together with its symmetry resolution. As derived in Ap-
pendix E, the edge symmetry operator (4) is affected by the
transformation.

B. Results

We first construct the state |+〉, then apply UAB to get
the MPS state on the zigzag chain CAB. Although the bond
dimension may change with coboundary transformation, we
find that, in our case, it is constant at χ = 9. Subsequently, we
construct ρedge as in Fig. 2(c), which doubles the bond due to
the partial trace. Consequently, ρedge has the bond dimension
92.

For each value of θ , we obtain the low-lying eigenvalues
and eigenvectors of the reduced density matrix. In Fig. 6, we
plot the symmetry-resolved quasienergies for the first excited
levels. Our results show how the ES evolves with θ . The
obtained parabolic shapes motivate us to make an ansatz for
the ES that corresponds to a flux insertion described by two
additional parameters. Specifically, we expect the scaling di-

FIG. 6. Parity-resolved ES for the deformed Levin-Gu wave
function (27) upon varying the variable θ controlling the coboundary
transformations. We show the first six levels as obtained from DMRG
calculation for L = 12. The symmetry eigenvalue s = ±1 is marked
in blue and red, respectively.

mensions [Eq. (19) with a suitable choice of v] to match the
shifted CFT spectrum


(�, m) = [� − φ(θ )]2

2
+ [m − ϕ(θ )]2

2
+ integers

− (φ(θ ))2

2
− (ϕ(θ ))2

2
, (32)

where φ and ϕ are the flux parameters. To assess whether
the data follow this formula, we numerically fix v, φ, and
ϕ for each θ from the first four energy levels, i.e., three
excitations ξi − ξ0. Having fixed all the parameters in our
ansatz, we compute four additional levels and find that they
are correctly predicted by Eq. (32). In Fig. 7(a), we plot the
scaled and shifted spectrum from the fit, for a small range of
θ near θ = 0. We see that the CFT indeed changes from no
flux to a finite flux that depends on φ(θ ), ϕ(θ ) as plotted in
the inset. In Fig. 7(b), we focus on the vicinity of the point
θ = π/2, which displays a degeneracy between the symmetry
sectors, and also corresponds to the form of Eq. (32) with
φ = ϕ = 1

2 . These findings corroborate our suggestion that
the coboundary transformation mediates a flux insertion.

We note that the compactification radius of the CFT that
captures the ES remains constant, independent of our transfor-
mations. There is a priori no reason for a fixed radius. Instead,
this behavior implies that our coboundary transformations
describe a limited set of transformations within the SPT phase.
On the other hand, our finding of the continuously varying
fluxes already suggests a nontrivial structure of the SPT phase
as a manifold.

V. WIRE DECOMPOSITION OF Hedge

In the previous sections we saw that the ES is sensitive to
nonuniversal details such as the system size modulo an integer
or coboundary transformations. Consequently, identifying the
gapless edge theory from the ES involves guesswork, which
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(a)

(b)

FIG. 7. The same ES as in Fig. 6, plotted in the form of the 
i

defined in Eq. (19). In (a) we focus on the vicinity of θ = 0, and in
(b) we focus on the vicinity of θ = π/2. The resulting levels match
the CFT pattern (32). φ(θ ), ϕ(θ ) are calculated for each point and
plotted in each inset. At θ = π/2, we have φ(π/2) = ϕ(π/2) = 1

2
corresponding to a fourfold-degenerate lowest level. See Appendix F
regarding the generation of the fits.

may sometimes be difficult to achieve. In this section, we
provide an algorithm to identify the gapless theory based on
the gapped edge Hamiltonian Hedge. The following decom-
position is similar to field-theoretical wire constructions of
fractional quantum Hall states [34–37], SPTs [38], or other
spin liquids [39–41].

We decompose the 1D edge Hamiltonian as

Hedge = HA + HB + HAB, (33)

where HA(B) acts only within A(B), and HAB couples A and
B. Based on the Li-Haldane conjecture [21] it was argued
[42–44] that the ES between the legs of a two-leg ladder
resembles the actual energy spectrum of each decoupled leg.
Following this relationship in reverse, we suggest to infer
the nature of the gapless theory describing the ES from the
isolated chain HA.

We remark that the study of HA reveals a number of inter-
esting properties, such as a period 3 modulation of correlation

FIG. 8. Entanglement entropy for the ground state of HLG
A in

Eq. (34) as a function of subsystem size l obtained from a MPS with
system size L = 150 and varying bond dimension χ . The numerical
result converges to the CFT result (35) with central charge c = 1.

functions and a corresponding threefold dependence on L of
the finite-size spectrum. Thus, the difference of the ES found
in Sec. III depending on whether L/3 is a integer or not has
its origin already on the level of a single chain. Additionally,
the model HA has the nice property that finite-size properties
converge very quickly to the infinite-size limit. Below, we
show results for the entanglement entropy of this 1D model.

A. Spectrum of HA of the Levin-Gu model

For the Levin-Gu model, the Hamiltonian HLG
A is given in

Eq. (12),

HLG
A =

L∑
i=1

[(Zi−1XiZi+1 − Xi ) + (Zi−1Xi + XiZi+1)], (34)

where here we only focus on subsystem A, so we label its sites
by integer i (rather than even integer). The decomposition of
HLG

A into two terms is inessential for our purposes; it refers to
the fact that, individually, each term is easily seen to yield a
gapless spectrum. The fate of the full Hamiltonian is not read-
ily apparent, and we determine it numerically. Specifically, by
exploring the scaling of its ground-state entanglement entropy,
we show that HLG

A is gapless and extract the central charge c
of its field theory. In Fig. 8, we plot the entanglement entropy
S of a bipartition of this 1D chain of length L as a function of
subsystem size l . The numerical values are compared with the
analytical CFT expression [30]

S(l ) = c

3
log

(
L

π
sin

[
π l

L

])
+ κ, (35)

where c is the central charge and κ is a nonuniversal constant.
We find that c = 1 agrees very well with the numerical data.

B. Robustness of the central charge upon coboundary
transformations

The central charge c = 1 is expected to describe the edge
theory for the entire SPT phase. We now consider the 1D
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FIG. 9. Entanglement entropy, as in Fig. 8, but for the ground
state of Eq. (36), describing the wire decomposition of the deformed
Levin-Gu state, as parametrized by θ , and also symmetry resolved
to a definite parity sector. In the main panel we consider the ground
state of HA for a specific arbitrary point, θ ≈ 0.3491, and compare it
with the CFT predictions for different central charges. We see that
it matches c = 1, as expected. In the inset, we plot the fit of the
central charge for varying θ , yielding c ≈ 1 for all values of θ up
to a maximal deviation of ∼7%. The fit is generated from H θ

A of a
subsystem of size L = 105 and χ = 4L = 420.

edge Hamiltonian whose ground state is |� ′
LG(λ)〉cob. Our

aim is to show that c is independent of λ. The explicit form
of this Hamiltonian, and its decomposition as in Eq. (6), is
cumbersome. In practice, we simply have

HA(λ) = TrB(UABH0U
†
AB), (36)

where UAB depends on λ as given in Eq. (31). Using our
tensor-network methods, we perform the partial trace over
B for the MPO representing H = UABH0U

†
AB [similar to

Fig. 2(c)] to obtain an MPO representing HA. We find its
ground state and compute the entanglement entropy using
DMRG.

In Fig. 9, we show that coboundary transformations indeed
preserve a good fit with c = 1 for generic values of θ , which
parametrizes our coboundary transformation.

VI. SUMMARY

1D SPTs display degeneracies in their ES [17]. When per-
forming a symmetry resolution of the ES, these degeneracies
reflect an equidecomposition of the entanglement eigenvalues
among different symmetry sectors [14]. Here, we showed that
the gapless ES of 2D SPTs also have a natural symmetry
decomposition. The gapless spectrum is described by a CFT
and can be divided into towers of states which are descendants
of primary fields. The symmetry quantum numbers are deter-
mined by the corresponding primary states.

To demonstrate these claims explicitly for large systems on
concrete models, we developed tensor-network-based meth-
ods. Starting from a d-dimensional tensor network of a
short-range entangled state, we reduced the computation of
the ES to a (d − 1)-dimensional problem. For d = 2, on which

we focused, we ended up with effective 1D calculations that
can be dealt with efficiently.

Our construction parallels the wire construction of topo-
logically ordered phases, like the 2D fractional quantum Hall
effect (FQHE). By breaking the 2D problem into coupled
wires, the ES is universally stored in this interwire coupling
[22]. Yet, the wire construction of nonchiral SPT order [38]
has its unique features. In contrast to the wire construction of
the chiral topological ordered case, in our nonchiral case we
showed that the spectrum of the decoupled wires itself reflects
the spectrum of the edge or, equivalently [21], of the ES.

In the context of the FQHE and similar states, the wire
construction allowed to explicitly construct effective quasi-
1D synthetic realizations, e.g., using cold atoms [45–49],
which could be much easier to realize compared to their full
2D versions. In this sense, our 1D tensor-network approach
gives explicit quasi-1D models for 2D SPT order. This allows
realizations of such states and explorations of their symmetry-
resolved entanglement, e.g., on a small quantum computer,
hence generalizing many existing realizations of 1D topolog-
ical states, such as the cluster state [14].
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APPENDIX A: NUMERICAL RESULTS FOR THE
LEVIN-GU MODEL

In this Appendix, we present numerical results for the
ES of the Levin-Gu model calculated using the methods of
Secs. II and III. The lists of numerical results in Tables II and
III contain two columns for each L. The left column shows
the bare eigenvalues λi of the ES. Results for small systems
confirmed by exact diagonalization are denoted by (ED). The
second column of 
i’s denoted “CFT” is obtained from the
first column by using Eq. (19), by fixing v such that 
1 = 1

2
for L being a multiple of 3 (L = 12, 18, 24, 30), or 
1 = 1

6
for L not being a multiple of 3 (L = 14, 17, 20).

We can see that for L being a multiple of 3, the shifted and
rescaled spectrum is a good approximation of Eq. (20), and
for L’s that are not multiples of 3 the ES follows the pattern in
Eq. (21).

APPENDIX B: EXACT DIAGONALIZATION OF THE
REDUCED DENSITY MATRIX FOR THE LEVIN-GU

MODEL

1. Eigenvalues of ρA

Consider the ground state of Levin-Gu model |ψ〉 =∑
si∈{0,1}S UCCZUCZUZ |si〉, where S is the number of spins in
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TABLE II. The largest eigenvalues of the ES for L that is a
multiple of 3 obtained numerically mostly by using MPS methods
described in the text. Blank lines separate degenerate eigenvalues to
ease reading. The result of L = 12 is a result of ED to provide a
comparison of the two methods. The results are scaled in the CFT
column to match the CFT spectrum described in the text.

L = 12 (ED) CFT L = 18 CFT

0.03415 0 0.005927 0
0.02164 0.5 0.004377 0.5
0.02164 0.5 0.004377 0.500038
0.02164 0.500004 0.004376 0.500224
0.02164 0.500006 0.004376 0.500332
0.01386 0.987772 0.003241 0.995632
0.01386 0.987772 0.003241 0.995650
0.01386 0.987774 0.003241 0.995566
0.01386 0.987774 0.003240 0.996146
0.01386 0.987774 0.003241 0.995580
0.01386 0.987774 0.003240 0.996040
0.00861 1.509386 0.002376 1.507274

L = 24 CFT L = 30 CFT

0.00104116 0 0.00018325 0
0.00082965 0.5 0.00015283 0.5
0.00082933 0.500836 0.00015283 0.500048
0.00082957 0.500206 0.00015234 0.508910
0.00082866 0.502614 0.00015230 0.509600
0.00066105 1.000170 0.00012711 1.007720
0.00066145 0.998830 0.00012668 1.017110
0.00066110 1.000012 0.00012707 1.008628
0.00066109 1.000022 0.00012720 1.005916
0.00066051 1.001982 0.00012646 1.021908
0.00066053 1.001900 0.00012647 1.021750
0.00052246 1.518194 0.00010430 1.552650

the system and UCCZ ,UCZ ,UZ are as defined in the main text.
Here we focus on the reduced density matrix for subsystem
A, which is obtained by partial trace over the complement
of A, which we denote as B. Its eigenvalues give the ES of
the system. We will show how we obtain the partial trace
efficiently using numerical methods.

Let us now focus on the Hamiltonian dynamics of the
resulting edge. The ground state is

|�LG〉 =
∑

sA,sB,sAB

UCCZ (sA, sB, sAB)UCZ (sA, sB, sAB)

×UZ (sA, sB, sAB) |sA, sB, sAB〉 . (B1)

As in the main text, by splitting the U ’s pieces acting uniquely
on A, B or on the boundary AB, we are able to ignore and
cancel the A, B bulk parts, respectively. Hence, we have that
the reduced density matrix entries are

ρsA,s′
A

=
∑

sB

U AB
CCZ (sA, sB)U AB

CCZ (s′
A, sB)

×U AB
CZ (sA, sB)U AB

CZ (s′
A, sB), (B2)

where U AB are the unitaries that act on both subsystems A
and B, sA,B are binary strings representing the spins on the
boundaries of A, B, and we use the standard (Z) basis of spins.

TABLE III. The largest eigenvalues of the ES for L that is not
a multiple of 3 obtained numerically mostly by using MPS methods
described in the text. The result of L = 17 is a result of ED to provide
a comparison of the two methods. The results are scaled in the CFT
column to match the CFT spectrum described in the text.

L = 14 CFT L = 17 (ED) CFT

0.018205 0 0.007651817 0
0.015989 0.166666 0.006876625 0.166666
0.012325 0.500964 0.005552095 0.500502
0.012324 0.501028 0.005552092 0.500503
0.010847 0.665022 0.004995132 0.665447
0.010847 0.665024 0.004995132 0.665447
0.009456 0.841195 0.004470445 0.838606
0.00837 0.997875 0.004036603 0.997891
0.008375 0.997212 0.004036602 0.997891
0.007323 1.169509 0.003619472 1.168084
0.007321 1.169927 0.00361947 1.168085
0.006485 1.325660 0.003264707 1.329045
0.006483 1.325973 0.003264706 1.329045
0.006338 1.355135 0.003225258 1.348014
0.005654 1.501629 0.002925212 1.500374
0.005655 1.501508 0.002925211 1.500374

L = 20 CFT L = 31 CFT

0.00321689 0 0.000134971 0
0.00293769 0.166666 0.000127297 0.166666
0.00244834 0.501161 0.000113078 0.503877
0.00244611 0.502827 0.000113039 0.504854
0.00223668 0.667140 0.000106617 0.671371
0.00223563 0.667999 0.000106650 0.670488
0.00203912 0.836892 0.000100668 0.834815
0.00185763 1.008016 0.0000941542 1.025287
0.0018588 1.006858 0.0000942865 1.021286
0.00169606 1.175047 0.0000887601 1.193246
0.0016941 1.177177 0.0000888650 1.189886
0.00155797 1.330952 0.0000843737 1.337537
0.00155589 1.333401 0.0000843754 1.337478
0.00154704 1.343873 0.0000843887 1.337029
0.00141089 1.512986 0.0000789565 1.526459
0.00141119 1.512589 0.0000788018 1.532042

The structure of ρA further decomposes into the product of
matrix M and its Hermitian conjugate M†. Let us define M =∑

sA,sB
U AB

CCZ (sA, sB)U AB
CZ (sA, sB) |sA〉 〈sB| as the matrix repre-

senting the action of the unitaries on the edge qubits for a
specific choice of sA and sB. It is then clear that ρA = MM†,
as the summation over the B edge spins is performed by the
matrix multiplication, and the dagger matches the B part to
reproduce ρA. Hence, to obtain the eigenvalues of ρA, we only
need to compute M, which is more efficient than computing
ρA.

Moreover, we deduce the eigenvalues of ρA from the matrix
M. We verified numerically that [M, M†] = 0 (we have yet
to have an analytical proof for this). Hence, by the spectral
theorem the eigenvalues of ρA are simply the absolute value
squared of the M eigenvalues. The terms in M are much easier
to compute, and thus our method overall is about 2L times
faster than the naive way of calculating ρA as we do not sum
over sB, where 2L is the number of spins on the boundaries.
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2. Symmetry resolution of ρA

In order to obtain the symmetry-resolved entanglement,
one needs to calculate how the symmetry acts in the Gu-Levin
basis. Gu-Levin basis |σ 〉 is defined as the summation over
all configurations in A with a specific configuration σ for the
boundary spins, where each such configuration gets a sign
(−1)NA where NA is the number of domain walls calculated
with |↑〉 ghost spins on the boundary. We conjecture (the proof
can be done by induction) that XA |σ 〉 = (−1)D+1 |σ̄ 〉 where D
is the number of domain walls on the boundary of A divided
by 2. Therefore, we see that the symmetry acts nontrivially on
the boundary, as we expect for SPT phases.

To obtain the symmetry-resolved blocks of ρA, we ap-
ply the projection I±XA

2 on both sides of ρA. This is done
by computing ρA = AA† and then computing I±XA

2 ρA
I±XA

2 =
1
4 [ρA + XAρAXA ± ρAXA ± XAρA] element by element using
the action of XA in the Levin-Gu basis. Similarly, one can
get the momentum k from the translation symmetry TA with
similar projections. Therefore, the ES is constructed with
its symmetry resolution using ED for systems up to length
L = 12.

APPENDIX C: CORRELATIONS IN HA

In this Appendix, we further explore manifestations of the
threefold periodicity. In the main text we argued that the ES
is described by a c = 1 CFT for all system sizes L, but with
different fluxes for L = 3n or L �= 3n. Here, we explore the
ground-state properties of the Hamiltonian HA derived from
Eq. (34) for the Levin-Gu model to understand the origin of
this threefold periodicity.

The model HA belongs to the family of Hamiltonians

H = −
[∑

i

cos(α)(Xi − Zi−1XiZi+1)

+ sin(α)(−Zi−1Xi − XiZi+1)

]
, (C1)

which interpolates between gapless models. For α = 0 or α =
π
2 , this Hamiltonian maps onto an XY model. Consequently,
these cases are described by c = 1 CFTs. The point α = π

4
recovers Eq. (34). It corresponds to the Levin-Gu case, which
is also a c = 1 CFT, as we have seen in Sec. V A. We note
that this 1D model has an interesting phase diagram as a
function of α that may be worth exploring in detail. For our
purposes, we now focus on the Levin-Gu case and show that
the ground state of this Hamiltonian has period-three features
in its correlation functions.

We study the correlation functions 〈σiσ
′
j〉 − 〈σ ′

i 〉〈σ ′
j〉,

where σ, σ ′ = X,Y, Z are the different Pauli matrices. To ob-
tain these correlations, we use the MPS procedure. References
[27,50,51] showed that the MPS always exhibits an expo-
nential damping of the correlation functions, which may not
approximate ground states with algebraic correlations (e.g.,
|i − j|−α). Hence, the MPS method introduces exponential
errors in the large |i − j| regime. These errors are circum-
vented by increasing the bond dimension χ . Additionally, as
we simulate only finite systems, we have finite-size effects.

FIG. 10. Different correlation functions for the ground state of
the Hamiltonian HLG

A for system size L = 150. All these correlations
exhibit threefold periodicity.

In Fig. 10 we show 〈σ1σ
′
1+ j〉 − 〈σ ′

1〉〈σ ′
1+ j〉 as a function of

j, for a system of size L = 150 and bond dimension χ = 450.
The threefold periodicity is evident in all four correlation
functions. This behavior explains the origin of the same pe-
riodicity seen in the ES in the main text as function of L.

To better understand these correlation functions, we sep-
arately analyze each of the three components with threefold
periodicity. In Fig. 11, we show them on a logarithmic scale.
All nonzero correlation functions are consistent with a power-
law decay. Some of the correlation function yields exponents
close to unity, but others follow more unusual power laws with
exponents ≈0.85.

APPENDIX D: FIELD THEORY

References [1,3] provide a field-theory description of the
physical edge of an SPT together with the action of the
symmetry. We will accommodate the results of the symmetry-
resolved entanglement within this field theory.

The field theory is constructed naturally by generalizing
the Z2 symmetry to a ZN symmetry. The edge theory consists
of a pair of fields φI (x) (I = 1, 2), where 1

2π
∂xφ2(x) is the

canonical momentum conjugate to φ1(x). The ZN symmetry
in the pth phase (p = 0, 1, . . . , N − 1) of H3(ZN ,U (1)) =
ZN is

S(p)
edge = e

i
N (

∫ L
0 dx ∂xφ2+p

∫ L
0 dx ∂xφ1 ). (D1)

We can recognize the product of two commuting factors, as in
Eq. (18).

With the mode expansion

φI (x) = φ0I + K−1
IJ PφJ

2π

L
x + i

∑
n �=0

1

n
αI,ne−inx 2π

L , (D2)

where [φ0I , PφJ ] = iδIJ , [αI,n, αJ,m] = nK−1
IJ δn,−m, one ob-

tains the canonical quantized fields with the commutation
relations

[φI (x1), KI ′J∂xφJ (x2)] = 2π iδII ′δ(x1 − x2), (D3)
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(a) (b)

(c)

FIG. 11. Power-law fits for selected correlations on log-log scale for the Levin-Gu case for a system size L = 150 and bond dimension
χ = 450. The fits (a)–(c) are generated from the j modulo 3 = 0, 1, 2 points, respectively. The correlations match power laws.

where KIJ = (σ x )IJ . The winding numbers (Pφ1, Pφ2) are inte-
gers denoted (l, m) and determine the edge symmetry S(p)

edge =
e

2π i
N (Pφ2+pPφ1 ).
Under inversion of the edge coordinate φ1 → φ1 and φ2 →

−φ2, allowing us to define right- and left-moving fields
φR,L = φ1 ± φ2. Based on this symmetry, the most general
quadratic Hamiltonian can be written in terms of a pair of
parameters as

H = v

∫
dx

(2π )2

(
1

R2
(∂xφ1)2 + R2

4
(∂xφ2)2

)
. (D4)

Substituting the mode expansion yields

H = v

L

[(
�2

R2
+ m2R2

4

)
+

∑
n>0

n(a†
nan + b†

nbn)

]
, (D5)

where the bosonic creation and annihilation operators an, bn

with canonical commutation relations are related to the αI,n by
a rescaling and Bogoliubov transformation. The primary edge
states are labeled by (�, m) and have the symmetry S(p)

edge =

e
2π i
N (m+p�). One obtains infinite towers of states above these

states generated by creating bosonic excitations.

APPENDIX E: 2D COCYCLE WAVE FUNCTIONS

In this Appendix, we apply our tensor-network methods
for 2D cocycle wave functions. In contrast to the main text,
we denote the group elements by Z2 = {0, 1}, with “0” repre-
senting the identity, to match standard notation in the literature
[29]. The Gu-Levin Z2 wave function studied in the previous
section lies within the unique nontrivial 2D SPT phase. It
corresponds to a specific cocycle wave function. Within the
cohomological formalism, coboundary transformations allow
us to move in the SPT phase and explore how the ES varies
within the SPT phase.

1. Cocycle wave functions

We begin by briefly reviewing the construction of the co-
cycle wave function [29]. Consider a 2D triangular lattice on
the 2-sphere. The Hilbert space at each site is spanned by
the symmetry group elements |g〉, g ∈ G = Z2 = {0, 1} (with
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FIG. 12. The triangulated 3D lattice used to construct the cocycle
wave function. Region A corresponds to the top part of the 2D
surface, with one site in the “bulk” gA and L sites at the boundary.
Similarly, subsystem B contains only one site in the bulk gB. The 3D
lattice has one site in its interior, denoted g∗.

an obvious generalization to ZN ). The onsite action of the
symmetry is Sh|g〉 = |hg〉 with h ∈ G. The trivial symmetric
ground state is given by |+〉 ≡ ⊗i( 1√|G|

∑
g |g〉).

The ideal SPT wave function is constructed as follows. We
are interested in placing an SPT on the 2-sphere. In order
to write its wave function we consider the 2-sphere as the
boundary of a 3-ball. We minimally triangulate this (d + 1)-
dimensional space; to be specific we consider Fig. 12 [see
Fig. 6(a) in Ref. [16]]. Here, we place only one site, g∗ = 0,
in the interior of the 3-ball. The remaining sites are located
on the 2-sphere, and the corresponding states are denoted
{gi}. Region A consists of the upper hemisphere and includes
i = even = 2, . . . , 2L on the zigzag chain in Fig. 1(c) and one
extra site gA in the bulk of A. Similarly, region B in the lower
hemisphere includes the sites with odd i and one extra site in
the bulk of B corresponding to a state gB.

The SPT state is written as |�〉 = ∑
{gi} ψ ({gi})|{gi}〉,

where the wave function ψ ({gi}) is constructed using 3-
cocycles, which reside on the tetrahedra, as explained next.

2. Cochains, cocycles, and coboundaries

3-cochains, ν3(g0, g1, g2, g3), are U(1)-valued func-
tions of d + 2 = 4 G-valued variables g0, g1, g2, g3,
|ν3(g0, g1, g2, g3)| = 1, which satisfy ν3(g0, g1, g2, g3) =
ν3(hg0, hg1, hg2, hg3) for any h ∈ G.

3-cocycles are special cochains satisfying∏4
i=0 ν

(−1)i

3 (g0, . . . , gi−1, gi+1, g4) = 1, namely,

ν3(g1, g2, g3, g4)ν3(g0, g1, g3, g4)ν3(g0, g1, g2, g3)

ν3(g0, g2, g3, g4)ν3(g0, g1, g2, g4)
= 1.

A 3-coboundary is a special 3-cocycle that is a “derivative”
of a 2-cochain λ2(g0, g1, g2),

(dλ2)(g0, g1, g2, g3) = λ2(g1, g2, g3)λ2(g0, g1, g3)

λ2(g0, g2, g3)λ2(g0, g1, g2)
. (E1)

It automatically satisfies the cocycle condition.

In our construction in Fig. 12, all tetrahedra consist of four
vertices, containing gi, g j, gk , which reside on the 2-sphere,
and g∗ which resides in the interior of the 3-ball. Each 3-
cocycle ν3 corresponds to a wave function

ψ ({gi}) = N
∏

i jk∈


ν
si jk

3 (gi, g j, gk, g∗), (E2)

where gi, g j, gk, g∗ run over the vertices of all tetrahedra in
Fig. 12. Here, si jk = ±1 is determined by the clockwise or
anticlockwise chirality of the triangle dictated by increasing
order i < j < k. Here g∗ can be chosen arbitrarily [29] to be
g∗ = 0.

The cochain condition guarantees that |�〉 = ∑
{gi} |{gi}〉 is

symmetric under the symmetry group G. Coboundary trans-
formations of this state are like local unitary (LU) operators
that transform one state into another within the same SPT
phase. Two cocycles that belong to a different cohomology
sector, as classified by H3(G,U (1)), are not connected by a
finite depth circuit of LUs. The case of G = Z2 has exactly
two sectors H3(G,U (1)) = Z2.

3. Deformed Levin-Gu states

We choose the following 3-cochain:

ν3(gi, g j, gk, 0) = CCZ (gi, g j, gk )
λ2(g j, gk, 0)λ2(gi, g j, 0)

λ2(gi, gk, 0)λ2(gi, g j, gk )
,

(E3)

where CCZ (gi, g j, gk ) = −1 if gi = g j = gk = 1 and
CCZ (gi, g j, gk ) = 1 elsewhere. Here λ2 is a 2-cochain
parametrized by four independent phases λ2(gi, g j, 0)
(i, j = 0, 1).

The cocycle wave function (E2) has the form of Eq. (1)
where UA, UB, and UAB are diagonal in the basis |{gi}〉,
UA,B,AB = ∑

{gi} UA,B,AB({gi})|{gi}〉〈{gi}| and given by

UAB({gi}) =
∏2L−2

i=1 ν
(−1)i

3 (gi, gi+1, gi+2, 0)

ν3(g1, g2L−1, g2L, 0)

× ν3(g1, g2, g2L, 0),

UA({gi}) =
∏2L−2

i even=2 ν3(gi, gi+2, gA, 0)

ν3(g2, g2L, gA, 0)
,

UB({gi}) =
∏2L−3

i odd=1 ν−1
3 (gi, gi+2, gB, 0)

ν−1
3 (g1, g2L−1, gB, 0)

. (E4)

4. Symmetry operator

The total symmetry operator

X =
∑

{gi},gA,gB

|{1 − gi}, 1 − gA, 1 − gB〉〈{gi}, gA, gB| (E5)

separates into X = XAXB. The effective symmetry acting on
ρedge is U †

A XAUA. Using Eqs. (E4) and (E1), we see that UA

factorizes into a product of CCZ gates familiar from the
Levin-Gu model, and an additional factor U λ2 associated with
the coboundary transformation

UA =
∏
i jk

U i jk
CCZ × U λ2 . (E6)
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The latter factor U λ2 consists of a product over many 2-
cochains λ2 acting on various triangles. It can be divided into
two factors as U λ2 = U λ′

2U λ′′
2 :

(i) U λ′
2 : The 2-cocycles λ(gi, g j, gk ) act only on tri-

angles in A within the 2-sphere. Due to the cochain
condition λ(gi, g j, gk ) = λ(1 − gi, 1 − g j, 1 − gk ), we have

U λ′
2

†
XAU λ′

2 = XA.
(ii) U λ′′

2 : The 2-cocycles λ(gi, g j, 0) act on triangles on the
surface defined by a membrane extending into the 3-ball from
∂A,

U λ′′
2 =

∑
{gi}

∏2L−2
i even=2 λ2(gi, gi+2, 0)

λ2(g2, g2L, 0)
|{gi}〉〈{gi}|. (E7)

Since the symmetry operator X does not act on the interior of
the 3-ball, these are nontrivial.

As a result, we obtain

U λ′′
2

†
XU λ′′

2

= X ×
∑
{gi}

∏2L−2
i even=2

λ2(gi,gi+2,0)
λ2(1−gi,1−gi+2,0)

λ2(g2,g2L,0)
λ2(1−g2,1−g2L,0)

|{gi}〉〈{gi}|. (E8)

As a result, the edge symmetry operator is

Sedge =
∏

i∈even

Xi

∏
i∈even

Zi

∏
i∈even

U i,i+2
CZ

×
∑
{gi}

∏2L−2
i even=2

λ2(gi,gi+2,0)
λ2(1−gi,1−gi+2,0)

λ2(g2,g2L,0)
λ2(1−g2,1−g2L,0)

|{gi}〉〈{gi}|. (E9)

This formula is used to determine the parity eigenvalue in
Figs. 6 and 7.

APPENDIX F: FLUX PARAMETERS FIT

To fit the parameters φ(θ ), ϕ(θ ) to the ES, we solve a
system of linear equations. After scaling and shifting the
ES, it matches Eq. (32). To find the scaling coefficients
and φ(θ ), ϕ(θ ), we write linear equations for the scaled
levels a(ξi − ξ0). To obtain a, φ, ϕ, we construct explicit
equations for the levels (l, m) = (±1, 0), (0,±1), which we
denote ri. By simple algebra, one gets linear equations for
a, φ, ϕ by equating the scaled ES to the CFT spec-
trum such that a(ξr1 − ξ0) = 0.5(1 − φ)2 − 0.5φ2 = 0.5 − φ.
Hence, we get four equations:

a = 0.5 − φ

ξr1 − ξ0
= 0.5 + φ

ξr2 − ξ0
= 0.5 − ϕ

ξr3 − ξ0
= 0.5 + ϕ

ξr4 − ξ0
. (F1)

Assuming no degeneracies exist, there are enough linear equa-
tions. We now write it in a matrix form⎛

⎜⎜⎝
1 1

ξr1 −ξ0
0

1 −1
ξr2 −ξ0

0

1 0 1
ξr3 −ξ0

⎞
⎟⎟⎠

⎛
⎜⎝

a

φ

ϕ

⎞
⎟⎠ =

⎛
⎜⎜⎝

1
2(ξr1 −ξ0 )

1
2(ξr2 −ξ0 )

1
2(ξr3 −ξ0 )

⎞
⎟⎟⎠. (F2)

Solving these equations, we get a, φ, ϕ for each θ value.
These equations require a guess for the indices r1, r2, r3, and
one has the freedom to choose three of the four available
equations.

Let us focus on the results in Fig. 7. For θ near 0 in
Fig. 7(a), we choose r1 = 1, r3 = 2, r4 = 3 and solve their
corresponding equations. Similarly, for θ near π

2 in Fig. 7(b),
we choose r1 = 2, r2 = 4, r3 = 1. In both cases the results
show a linear behavior for φ(θ ) and quadratic behavior for
ϕ(θ ).

φ, ϕ have symmetries due to the CFT spectrum. Specif-
ically, φ → −φ and ϕ → −ϕ do not change the ES as
changing m, l accordingly m → −m, l → −l preserves the
ES. Similarly, φ → φ + 1, ϕ → ϕ + 1 still keeps the ES the
same as m → m − 1, l → l − 1, respectively. These symme-
tries allow us to choose 0 � φ, ϕ < 1.
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