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Polarization and orbital magnetization in Chern insulators: A microscopic perspective
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We derive macroscopic expressions for the polarization and orbital magnetization of a Chern insulator in its
zero-temperature ground state using a previously developed formalism for treating microscopic polarization and
magnetization fields in extended media. In the limit of a topologically trivial insulator, our results reduce to those
of the “modern theories of polarization and magnetization.” In a Chern insulator, however, we find a generically
nonvanishing microscopic free current density, the macroscopic average of which vanishes. Moreover, the
expression that we obtain for the polarization is qualitatively similar to that of the “modern theory,” while
the expressions for the orbital magnetization fundamentally differ; the manner in which they differ elucidates
the distinct philosophies of these theoretical frameworks.
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I. INTRODUCTION

At the start of the last century, the electrical conduction of
metals was understood as arising from the response of “free
charges,” while in insulators with solely “bound charges”
only a change in the polarization could arise were an electric
field applied, and no persistent current would result [1]. In
the successor quantum treatment developed in the 1930s [2],
metals were associated with partly occupied energy bands,
where an electric field could induce current flow through a
redistribution of Bloch electrons in the Brillouin zone, while
insulators were associated with occupied bands that are ener-
getically separated from unoccupied bands by a band gap, and
no such redistribution could occur. The link with the earlier
picture of insulators was only established near the end of the
last century, with the “modern theories of polarization and
magnetization” [3,4]. Here the electronic polarization of an
insulator is associated with the dipole moment of Wannier
functions, some localized near each lattice site, constructed
from superpositions of the occupied (cell-periodic) energy
eigenfunctions, and the change in this polarization as an elec-
tric field is applied can be calculated.

Yet it is currently appreciated that this narrative is too
naive. In a so-called Chern insulator, for example, the zero-
temperature electronic ground state is such that there is a set
of N occupied energy bands separated from the unoccupied
bands by an energy gap, and in that sense it is an “insulating
phase.” But even in the absence of an applied magnetic field,
such insulators break time-reversal symmetry internally, and a
current can be induced by an applied electric field, albeit one
perpendicular to the electric field. In a two-dimensional Chern
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insulator, the (quantized) Hall conductivity is [5]

σ xy = e2

2π h̄
CV ,

where e = −|e| is the electron charge, and CV ∈ Z is identi-
fied as the (first) Chern number, which is given by

CV = 1

2π

N∑
n=1

∫
BZ

dk
(

∂ξ
y
nn(k)

∂kx
− ∂ξ x

nn(k)

∂ky

)
.

Here dk = dkxdky, and the integrand involves derivatives of
the diagonal components of the non-Abelian Berry connection
ξ a(k) associated with the cell-periodic parts of the Bloch
energy eigenfunctions. The relevance of quantities like CV
caused a paradigm shift in condensed-matter theory, and it
has become appreciated that it is not simply the spectral
properties of a crystal’s band structure that are important but
also its topological properties [6]. To capture these proper-
ties, the electronic Hilbert space must be decomposed into
a family of subspaces {Hk}k∈BZ parameterized by the (first)
Brillouin zone (BZ) and spanned pointwise by a collection
of cell-periodic Bloch states {|nk〉}n∈I (corresponding to the
cell-periodic parts unk(x) ≡ 〈x|nk〉 of the Bloch energy eigen-
functions), where I ⊆ N indexes some isolated set of bands,
all of which are assembled into a mathematical structure
called a Hilbert bundle over the BZ [7]. Indeed, CV is a
topological invariant of one such Hilbert bundle (where the
index set I runs only over the occupied bands of an insulator),
and if this quantity is nonvanishing, then that Hilbert bundle is
nontrivial [8]; crystalline insulators supporting such a nonvan-
ishing CV are thus deemed “topologically nontrivial.” Another
consequence of this nontriviality is that exponentially local-
ized Wannier functions (ELWFs) cannot be constructed from
superpositions of the occupied Bloch energy eigenfunctions
alone [9,10]. Therefore the response of a Chern insulator to
an electric field cannot be addressed in the same way as that
of a topologically trivial insulator.
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And so how does one make sense of concepts like “po-
larization” and “magnetization” for Chern insulators? The
“modern theories” use adiabatically induced currents to de-
fine these quantities, where it is implicitly assumed that free
charge and current densities vanish [11]. These approaches
focus on directly identifying the macroscopic polarization and
magnetization, and extensions to treat topologically nontrivial
insulators typically involve thermodynamic arguments [12];
justification of the resulting expressions is argued through
numerical comparisons with the polarization and orbital mag-
netization of finite-sized samples [13,14]. In contrast, we
have introduced an approach based on defining microscopic
polarization and magnetization fields in generic crystalline
solids, which are constructed using ELWFs, and understand
the macroscopic fields as arising from the spatial averages
of those microscopic fields [15]. Here, polarization and mag-
netization fields serve as intermediary quantities that aid
calculation and provide physical insight, but in general only
the appropriate combinations that lead to the charge and cur-
rent densities have direct physical significance. This approach
has been implemented to study the effect of applied electro-
magnetic fields that can vary arbitrarily in space and time
[16,17], and recently we have used it to study the metallic
systems that arise from p-doping trivial insulators [18]. No-
tably, the expressions for the polarization and magnetization
in topologically trivial insulators derived within this frame-
work coincide with those of the “modern theories.”

In this paper we implement this microscopic approach to
treat the polarization and magnetization of a Chern insula-
tor in its ground state. To construct the ELWFs upon which
we base our microscopic description, we employ not only
the occupied energy eigenfunctions, but include sufficiently
many unoccupied energy eigenfunctions so that such a con-
struction is permitted. We obtain different expressions for
the macroscopic ground-state polarization and magnetization
than those obtained from the “modern theories,” and we also
find that a microscopic free current density exists; the spatial
average of this quantity is found to vanish, consistent with
assumptions therein. But we argue that the nonvanishing of
this microscopic quantity, which is sensitive to the topology
of the valence bands, serves as an indicator that a particular
material is not a trivial insulator. With the ground state so char-
acterized, the stage is set for a full consideration of quantities
induced within a Chern insulator by arbitrary electromagnetic
fields.

II. POLARIZATION AND MAGNETIZATION

A. Microscopic quantities

To begin, consider a three-dimensional bulk insulator in
the independent particle approximation, occupying its zero-
temperature electronic ground state |gs〉, for which we identify
two distinct sets of cell-periodic Bloch states. The first set
consists of all of the states |nk〉 with corresponding ener-
gies Enk less than the Fermi energy EF ; suppose that there
are N such valence bands. These energy bands will gener-
ally intersect each other, and we are interested in a scenario
in which the Hilbert bundle constructed from the collection
{|nk〉}N

n=1 for each k ∈ BZ, called the valence bundle V [19],

is topologically nontrivial. In two dimensions, this occurs if
and only if the (first) Chern number CV is nonzero [7], while
in three dimensions there are a triple of such Chern numbers
Ci
V (i = 1, 2, 3), at least one of which must be nonzero [20].

The second set consists of all of the states |nk〉 associated with
sufficiently many conduction bands, which similarly span the
fibers of a Hilbert bundle called the conduction bundle C, such
that the Bloch bundle B = V ⊕ C [21], constructed from the
states associated with all of these bands (indexed by a set
J ⊆ N), is topologically trivial [22]. In two dimensions, this
means that the Chern number CC of the conduction bundle
is opposite to that of the valence bundle; that is, the second
set is defined such that CV + CC = 0. In three dimensions
we require that Ci

V + Ci
C = 0 for all i = 1, 2, 3. Notably, it

has been shown that such a set always exists, although in
general it must consist of all of the conduction bands (in which
case J = N) [23]. Hilbert bundles that are topologically trivial
admit a globally defined orthonormal basis (or frame) for their
fibers that is smooth and (in this case) periodic, a necessary
condition for the construction of a set of ELWFs [24]. In
general, for each k ∈ BZ the components of such a “Wannier
frame” (|αk〉)α∈J can be obtained by a unitary transformation
of the components of the (only locally defined) “Bloch frame”
(|nk〉)n∈J ,

|αk〉 =
∑

n

Unα (k)|nk〉, (1)

where the sum is over all n ∈ J . The corresponding cell-
periodic functions uαk(x) ≡ 〈x|αk〉 can be transformed into
a set of ELWFs via [9,22,25–27]

WαR(x) =
√

�uc

∫
BZ

dk
(2π )3

eik·(x−R)uαk(x), (2)

where α is a “type” index, �uc denotes the volume of the unit
cell � over which the cell-periodic functions are normalized,
and R is an element of a Bravais lattice � that characterizes
the underlying crystal structure of the material.

We work in the frozen-ion approximation, taking the ion
cores to be fixed, and neglect the electronic spin degree of
freedom; therefore in the Heisenberg picture the electron
field operators encode the only dynamical degrees of freedom
of the crystal. Their dynamical evolution, governed by the
Heisenberg equation

ih̄
∂ψ̂ (x, t )

∂t
= [ψ̂ (x, t ), Ĥ0], (3)

is generated by the Schrödinger operator

Ĥ0 =
∫

dx ψ̂†(x, t )H0(x)ψ̂ (x, t ), (4)

involving the �-periodic differential operator

H0(x) = 1

2m
(p(x))2 + V� (x). (5)

Here V� (x) is the electrostatic potential associated with the
ion cores that characterizes the crystal structure and satisfies
V� (x + R) = V� (x) for all R ∈ �, and

p(x) = h̄

i
∇ − e

c
Astatic(x), (6)
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where Astatic(x) is an “internal,” cell-periodic vector potential
that generally breaks time-reversal symmetry in the unper-
turbed crystal.

We introduce fermionic creation and annihilation operators
â†

nk and ânk (obeying the usual anticommutation relations)
for which |ψnk〉 ≡ â†

nk|vac〉, where Ĥ0|ψnk〉 = Enk|ψnk〉. The
Bloch energy eigenfunctions are defined by ψnk(x) ≡ 〈x|ψnk〉
and have related cell-periodic functions unk(x) ≡ 〈x|nk〉
through Bloch’s theorem:

ψnk(x) = 1

(2π )3/2
eik·xunk(x). (7)

Under the dynamical evolution generated by Ĥ0,

ânk(t ) = e−iEnkt/h̄ânk. (8)

We also introduce fermionic creation and annihilation
operators â†

βR′ and âβR′ (also obeying the usual anticommuta-

tion relations), for which |βR′〉 ≡ â†
βR′ |vac〉, with the ELWFs

WβR′ (x) ≡ 〈x|βR′〉 being the associated coordinate functions.
Through (1), (2) and (7) we find the relationship between
the fermionic operators generating ELWFs â†

βR′ and those

generating the Bloch energy eigenfunctions â†
nk, namely,

â†
βR′ (t ) =

√
�uc

(2π )3

∫
BZ

dk e−ik·R′ ∑
n

Uβn(k)â†
nk(t ). (9)

From the perspective of our microscopic theory, the primary
quantity capturing the difference between a “trivial” insulator
and a Chern insulator is the (electronic) single-particle density
matrix ηαR′′;βR′ (t ) [15]. In the case of an unperturbed insulator
occupying its zero-temperature ground state |gs〉 considered
here, the general definition for this quantity simplifies such
that ηαR′′;βR′ (t ) → ηαβ (R′′ − R′, t ), and moreover

ηαβ (R′′ − R′, t )

= 〈gs|â†
βR′ (t )âαR′′ (t )|gs〉

= �uc

(2π )3

∫
BZ

dk eik·(R′′−R′ )
∑

n

fnU
†
αn(k)Unβ (k), (10)

which is independent of time; fn = �(EF − Enk) is the oc-
cupation factor of the Bloch energy eigenvector |ψnk〉 and is
independent of k in the case of an insulator.

The limit of a topologically trivial insulator occurs when
Ci
V = 0 for all i = 1, 2, 3, in which case the Bloch energy

eigenfunctions associated with each set of isolated bands can
be mapped to a subset of the complete set of ELWFs. In
particular, we can require that the states |αk〉 be associated
with cell-periodic functions obtained from superpositions of
either the occupied or the unoccupied cell-periodic energy
eigenfunctions exclusively; this renders the Unα (k) block di-
agonal with “upper block” of size N × N [28]. We can then
introduce an analogous occupation factor fα associated with
|αk〉; we set the fα associated with |αk〉 to be equal to the
fn associated with the |nk〉 used in its construction. It then
follows that, in this limit,

η
(trivial)
αR′′;βR′ = fαδαβδR′′R′ ,

as expected [15,16].

In earlier work [15,16] we showed that, under the frozen-
ion approximation, the total microscopic charge and current
densities of an extended system with electronic degrees of
freedom minimally coupled to an arbitrary electromagnetic
field can be written as

ρ(x, t ) = −∇ · p(x, t ) + ρF(x, t ), (11a)

j(x, t ) = ∂ p(x, t )

∂t
+ c∇ × m(x, t ) + jF(x, t ), (11b)

where p(x, t ) and m(x, t ) are microscopic polarization and
magnetization fields, and ρF(x, t ) and jF(x, t ) are free charge
and current densities. Under that approximation, ρ(x, t ) =
〈ρ̂(x, t )〉 + ρ ion(x) and j(x, t ) = 〈 ĵ(x, t )〉, with ρ̂(x, t ) and
ĵ(x, t ) the electronic charge and current density operators
arising from the conserved Noether current. To identify the
quantities on the right-hand side of (11), we first decomposed
ρ(x, t ) and j(x, t ) as a sum of spatially localized contribu-
tions, one associated with each lattice site R ∈ �. The static
charge density ρ ion(x) describing the distribution of ion cores
naturally decomposes as

ρ ion(x) =
∑

R

ρ ion
R (x), (12)

where, for example, taking the ions to be pointlike,

ρ ion
R (x) =

∑
N

qNδ(x − R − dN ).

The sum is over ion cores in the unit cell, with qN denoting
the charge of the N th ion core located at R + dN . To identify
localized portions of the (expectation values of the) electronic
charge and current densities, we utilize a complete set of
ELWFs with respect to which they are decomposed as a sum
of “site” electronic charge and current densities,

〈ρ̂(x, t )〉 =
∑

R

ρel
R (x, t ), (13a)

〈 ĵ(x, t )〉 =
∑

R

jR(x, t ). (13b)

And, indeed, the “site” quantities ρel
R (x, t ) and jR(x, t ) are

nonvanishing only for x “near” R; they can be written in terms
of the single-particle density matrix as

ρel
R (x, t ) =

∑
αβR′R′′

ρβR′;αR′′ (x, R; t ) ηαR′′;βR′ (t ), (14)

jR(x, t ) =
∑

αβR′R′′
jβR′;αR′′ (x, R; t ) ηαR′′;βR′ (t ), (15)

involving the previously introduced [15] “generalized elec-
tronic site-quantity matrix elements” ρβR′;αR′′ (x, R; t ) and
jβR′;αR′′ (x, R; t ). From the “site” charge and current densities,
site polarization and magnetization fields can be defined in a
manner similar to that of atomic and molecular physics. In
particular, the site polarization field is taken to be

pR(x, t ) =
∫

dy s(x; y, R)
(
ρel

R (y, t ) + ρ ion
R (y)

)
, (16)
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where we have introduced a “relator” [15], defined by the
distributional expression

s(x; y, R) =
∫

C(y,R)
dz δ(x − z), (17)

with C(y, R) denoting an arbitrary continuously differentiable
curve that begins at R and ends at y. The total microscopic
polarization field is then defined as

p(x, t ) ≡
∑

R

pR(x, t ). (18)

Meanwhile, the site magnetization field is expressed as a sum
of two contributions: The familiar, “atomiclike” site magneti-
zation field is

m̄i
R(x, t ) = 1

c

∫
dy αib(x; y, R) jb

R(y, t ), (19)

where we have defined another “relator” [15],

αi j (x; y, R) = εimn
∫

C(y,R)
dzm ∂zn

∂y j
δ(x − z); (20)

here and below, superscript indices indicate Cartesian compo-
nents, and repeated Cartesian components are summed over.
But unlike in an isolated atom or a molecular crystal, there
is generally a local nonconservation of electronic charge and
current densities associated with each site,

∂ρel
R (x, t )

∂t
+ ∇ · jR(x, t ) 
= 0, (21)

which arises because, although the total electronic charge-
current density is conserved by construction, ELWFs asso-
ciated with different R ∈ � may have common support at a
given point x. This results in an additional “itinerant” contri-
bution to the total magnetization field,

m̃i
R(x, t ) = 1

c

∫
dy αib(x; y, R) j̃b

R(y, t ), (22)

and it has been shown that j̃R(x, t ) can also be written in terms
of the single-particle density matrix

j̃R(x, t ) =
∑

αβR′R′′
j̃βR′;αR′′ (x, R; t ) ηαR′′;βR′ (t ), (23)

where the “generalized site-quantity matrix element”
j̃βR′;αR′′ (x, R; t ) was also defined previously [15]. The
total microscopic magnetization field is then defined as

m(x, t ) ≡
∑

R

(m̄R(x, t ) + m̃R(x, t )). (24)

From the site polarization and magnetization fields, site dipole
moments can be extracted [16] via

μR(t ) =
∫

dx pR(x, t ), (25a)

νR(t ) =
∫

dx mR(x, t ). (25b)

B. Macroscopic quantities

Here we study an insulator occupying its zero-temperature
ground state and do not consider the effect of an applied elec-
tromagnetic field. Thus all quantities appearing in (11)–(25)

become independent of time. Moreover, the electric and mag-
netic dipole moments μR and νR associated with each lattice
site are physically equivalent; μR = μR′ and νR = νR′ for any
pair of lattice sites R, R′ ∈ �. Consequently, the macroscopic
polarization and magnetization fields are uniform,

P = μR

�uc
and M = νR

�uc
, (26)

where the electric and magnetic dipole moments are given
explicitly in terms of the single-particle density matrix by

μi
R =

∑
αβR′R′′

[ ∫
dy (yi − Ri )ρβR′;αR′′ (y, R)

]

×ηαβ (R′′ − R′) + (
μion

R

)i
, (27a)

ν i
R =

∑
αβR′R′′

[
εiab

2c

∫
dy (ya − Ra)

(
jb
βR′;αR′′ (y, R)

+ j̃b
βR′;αR′′ (y, R)

)]
ηαβ (R′′ − R′), (27b)

where μion
R is the dipole moment associated with ρ ion

R (x), and
the “generalized site-quantity matrix elements” in their time-
independent form are given in Appendix A.

By implementing (10) in (27a), we obtain the expression
for the macroscopic polarization of a Chern insulator, which
is found to be (see Appendix B)

Pi = e
∑

n

fn

∫
BZ

dk
(2π )3

(
ξ i

nn(k) + W i
nn(k)

)
+

(
μion

R

)i

�uc
, (28)

where the components of the non-Abelian Berry connection
in the locally defined “Bloch frame” (|nk〉)n are

ξ a
mn(k) = i

�uc

∫
�

dx u∗
mk(x)

∂unk(x)

∂ka
, (29)

and we have defined the Hermitian matrix [29] populated by
elements

Wa
mn(k) ≡ i

∑
α

(∂aUmα (k))U †
αn(k). (30)

The expression (28) is formally similar to that of a trivial insu-
lator [4]. As described in Sec. II A, in a trivial insulator Unα (k)
can be chosen to be of block-diagonal form, and under such
circumstances the term in (28) involving W i

nn(k) has been
shown to generally evaluate to an element of a discrete set [4];
that is, there is a “quantum of indeterminacy” associated with
P. However, for a Chern insulator the transformation (1) must
involve states associated with both the valence and conduction
bands. Thus Unα (k) cannot be chosen to be of that block-
diagonal form, and the ambiguity associated with (28) is not
generally discrete, at least not following from the usual argu-
ment of Resta [4]. Nevertheless, the macroscopic polarization
(28) maintains the physically sensible feature that shifting the
origin of all ELWFs by any Rs ∈ � leads to a shift in P by
an additive constant proportional to Rs. Explicitly, mapping
|αR〉 → |αR + Rs〉, or equivalently, Unα (k) → e−ik·RsUnα (k)
and thus Wa

mn(k) → Wa
mn(k) + δmnRa

s , leads to a shift

P → P + eNelRs, (31)
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where Nel is the number of electrons per unit volume.
Unlike the polarization (28), the expression that we ob-

tain for the macroscopic orbital magnetization is qualitatively
different from that of the “modern theory” [12,13]. From
(27b), there are two distinct contributions thereto; we will call
the first of these the atomiclike contribution (indicated by a
bar accent) and the second the itinerant contribution (indi-
cated by a tilde accent). For a Chern insulator, the atomiclike
contribution is

M̄i = − e

2h̄c
εiabIm

∑
nm

fn

∫
BZ

dk
(2π )3

(
Emkξ

a
nmξ b

mn

+ (Emk − Enk)Wa
nmξ b

mn − EnkWa
nmWb

mn

)
, (32)

which reduces to the usual atomic term in the limit of a trivial
insulator, while the itinerant contribution is

M̃i = − e

2h̄c
εiabIm

∑
n

fn

∫
BZ

dk
(2π )3

(
− iEnk∂aξ

b
nn

+
∑

m

(Enk − Emk)Wa
nmξ b

mn − EmkWa
nmWb

mn

)
, (33)

which also reduces to the usual itinerant term in that limit
[16,30]. Combining (32) and (33), we find

Mi = e

2h̄c

∑
n

fn

∫
BZ

dk
(2π )3

(
Enkε

iab∂aξ
b
nn

−
∑

m

EmkIm
[
εiabξ a

nmξ b
mn

]) + e

2h̄c

∑
nm

( fn − fm)
∫

BZ

× dk
(2π )3

EnkIm
[
εiabWa

nmWb
mn

]
. (34)

The first integral in (34) constitutes the usual expression
for the orbital magnetization of a trivial insulator, while the
second is sensitive to the global topology of the underlying
valence bundle.

To illustrate this, consider first a generic trivial insulator.
As described above, the Unα (k) through which we construct
ELWFs can be chosen to be block diagonal, so that Wa

mn(k) 
=
0 only if fm = fn. The second term of (34) then vanishes,
and the usual expression is obtained [16,30]. Consider instead
the simplest instance of a Chern insulator, in which the en-
ergy bands are isolated from one another; even in this case,
ELWFs can only be constructed from the energy eigenfunc-
tions associated with the full Bloch bundle. Thus the Unα (k)
will necessarily have at least four off-diagonal entries, two
associated with n, α ∈ {1, . . . , N} and two associated with
n, α ∈ {N + 1, . . .}. Hence it is clear from (30) that in general
Wa

mn(k) 
= 0 for fm 
= fn, in which case the second term of
(34) need not vanish.

In fact, this second integral is in disagreement with the
generalization of the “modern theory” to Chern insulators
[12,13]. There the orbital magnetization of a Chern insulator
is obtained by adding to the analogous expression for a trivial
insulator a term involving the product of the Berry curvature
and a chemical potential; in Resta et al. [13] it is argued
that this form is invariant under transformations between local
Bloch frames for the valence bundle V and manifestly exhibits
invariance of M under a shift of the energy zero. We too

anticipate (28) and (34) to be unaffected by shifts of the
energy zero, Enk → Enk + ε and EF → EF + ε. The polar-
ization (28) is trivially unaffected by such a shift, while the
magnetization (34) becomes

Mi → Mi + ε
e

h̄c

∑
n

fn

∫
BZ

dk
(2π )3

εiab

× (
∂aξ

b
nn(k) + ∂aWb

nn(k)
)
. (35)

It is not obvious, a priori, that the second term in (35)
vanishes, nor would we expect it to vanish for an arbitrary
multiband unitary transformation U (k). However, as shown in
Appendix C, the integral does vanish for those Wa

mn(k) related
to unitary transformations Unα (k), whose action on the local
Bloch frame (|nk〉)n∈J results in a smooth, globally defined
Wannier frame (|αk〉)α∈J for the Bloch bundle.

The vanishing of the integral in (35) provides us with an
interpretation of the matrix Wa

mn(k), an object that is ubiqui-
tous in the formalism developed above. The first term in the
parentheses of (35) is directly proportional to the Chern num-
ber Ci

V , which encodes information about how this Hilbert
bundle “twists” as elements therein are parallel transported
between neighboring fibers using the non-Abelian Berry con-
nection ξ a

mn(k). The existence of a set of ELWFs constructed
from elements of the Bloch bundle implies that the integrand
itself vanishes locally, meaning that any such “twisting” is
locally “unwound” by the matrix Wa

mn(k) in such a way that
the globally defined Wannier frame (|αk〉)α∈J is smooth and
periodic everywhere. Degeneracies within the valence bands
act as obstructions to extending this local cancellation across
the entire Brillouin zone [10]. However, when integrated over
the Brillouin zone, the sum total of the contributions coming
from these obstructions cancels among the various terms in
the integrand [31], and therefore leads to the vanishing of
the integral in (35). In this sense there exists here a delicate
cancellation between terms associated with the local topology
coming from band crossings and the global topology associ-
ated with the “twisting” of the valence bundle itself.

C. Comparison with existing literature

As detailed above, in constructing macroscopic quanti-
ties to describe the physics of bulk Chern insulators, our
formalism is to be distinguished from the approach taken
in the “modern theories” (or rather their generalizations to
topologically nontrivial insulators). In the latter, following a
solution of the spectral problem associated with the Hamilto-
nian (4) through Bloch’s theorem, one uses the cell-periodic
parts of the occupied Bloch states {|nk〉}N

n=1, or the associated
projectors

PV (k) =
∑

n

fn|nk〉〈nk|, (36)

to calculate the Berry curvature and the (first) Chern numbers
Ci
V characterizing the valence bundle V . If any such inte-

ger is nonzero, then the standard conclusion is to abandon
the construction of ELWFs and instead use thermodynamic
arguments to extend, for example, the definition of the
macroscopic (bulk) orbital magnetization in topologically
trivial insulators to their nontrivial counterparts, usually by
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introduction of a chemical potential lying somewhere in the
band gap. While this is perfectly reasonable in finite-size
systems, for bulk systems with no boundary, the location
of the chemical potential within the band gap is essentially
arbitrary. Conversely, in our formalism, after including suf-
ficiently many unoccupied conduction bands so that the total
Chern numbers Ci

B = Ci
V + Ci

C characterizing the valence and
conduction bundles taken together (the Bloch bundle) vanish,
we are then able to construct ELWFs using a unitary trans-
formation of the form (1) and thereby build an inherently
microscopic description of the crystal, obtaining macroscopic
quantities like the polarization and magnetization through spa-
tial averaging. Of course, we have replaced the arbitrariness
in placement of a chemical potential with a sort of “gauge
freedom” in the choice of Wannier frame (|αk〉)α∈J (or as-
sociated ELWFs) that is used to define the site quantities of
Sec. II A. This type of “gauge freedom” is outside of the scope
of the description of Chern insulators given by the “modern
theories.” The gauge freedom considered there consists only
of transformations between local Bloch frames of the valence
bundle V , which (away from degeneracies) take the form
|nk〉 → eiλn (k)|nk〉 for some smooth function λn(k). Under
such transformations, they find their expression for the mag-
netization to be invariant, as is ours. However, unlike in the
“modern theories,” we would argue that our “gauge freedom”
is an advantage, since it can be used to minimize the spread of
the ELWFs—for example, using the Marzari-Vanderbilt func-
tional [26]—allowing one to improve the accuracy of various
approximations associated with, for example, the construction
of tight-binding models using our choice of ELWFs.

Of course, in focusing on bulk crystals for which it is the
charge and current densities that are generally physically ac-
cessible, which are related to the microscopic polarization and
magnetization fields and the free charge and current densities
through (11), such a set {p(x, t ), m(x, t ), ρF (x, t ), jF (x, t )}
satisfying (11) is far from unique. Then it is not surprising
that different approaches to defining such quantities can yield
different results, and that the electronic contribution to the
dipole moments (25) describing the microscopic polarization
(18) and magnetization (24) fields depend on the choice of
Wannier frame (and therefore on the choice of ELWFs). In
certain instances we have found [16,17] these quantities to
be independent of this choice—for example, the unperturbed
M and the linearly induced P due to an electric field in a
bulk trivial insulator initially occupying its zero-temperature
ground state—but these are to be considered special cases.
In fact, in such a trivial insulator the unperturbed P and the
linearly induced P (M) due to a magnetic (electric) field
display a similar “gauge freedom,” which gives rise to a
“quantum of indeterminacy” in each of these cases; both of
these quantities can be derived within the “modern theories”
[4,32,33] and the approach implemented here [15,16], and
agreement is found. In that setting we have also shown [17]
that the linearly induced charge and current densities due to
electromagnetic fields that can vary both spatially and tem-
porally are gauge invariant in that, when obtained from the
appropriate combinations of induced multipole moments, the
resultant expressions are independent of the choice of Wannier
frame, even though the induced multipole moments of the (in
this case nonuniform) macroscopic polarization and magneti-

zation fields are generally not. We have also previously shown
[15] that for a Chern insulator subject to a uniform dc electric
field, the linearly induced P and JF lead to the usual quantized
anomalous Hall current via the macroscopic analog of (11).

In contrast, in the “modern theories” (and extensions
thereof), notions of P and M are fundamentally macroscopic
and aimed at the study of unperturbed insulators or those
that are adiabatically perturbed by a uniform electromagnetic
field. Moreover, an implicit principle of both modern theories
is that, in finite-sized insulators, P and M, when taken as
the usual charge and current density dipole moments, are
experimentally accessible; it is implicitly assumed that the
bulk quantities should coincide with those [14,30]. While this
is a seemingly natural assumption, in the case of a Chern
insulator it comes at the cost of an additional term in the bulk
M that involves a chemical potential. As noted above, it seems
that such an assumption must be examined in a case-by-case
basis, since the relation between these quantities in bulk and
finite-sized systems is not straightforward and considerations
at the boundary are often important, even in trivial insulators.
For example, the bulk topological magnetoelectric coefficient
does not in general determine that of a thin film [34,35].

It is not then surprising that we find disagreement with the
extension of the “modern theory of magnetization,” owing to
the different underlying philosophies of these approaches. In
fact, this is elucidated precisely by the additional terms that
appear in the expressions for the unperturbed M of a bulk
Chern insulator. In the “modern theory,” the additional term
involves a chemical potential multiplied by a Berry curvature,
which is best understood in the context of finite-size systems
and is a consequence of the thermodynamic extension of M
for a trivial insulator; in two dimensions, that term is related
to the quantum anomalous Hall current by means of a Streda
formula [13]. In contrast, the M we derive for a bulk Chern
insulator features an extra term involving the matrix Wa

mn(k)
defined in (30), which is an object directly related to the
geometric structures encoding the “gauge freedom” in our
formalism. More precisely, associated with the Bloch bundle
is its frame bundle [36], the (local) sections of which are
frames over open sets in the Brillouin zone; any two such
frames are related pointwise by a unitary transformation. Ex-
amples include the locally defined Bloch frame (|nk〉)n∈J and
the globally defined Wannier frame (|αk〉)α∈J , and the unitary
transformation relating them is precisely the transformation
whose components are given in (1). If we equip the frame
bundle with a connection, which in turn induces a connection
on the Bloch bundle, then these two frames yield (local)
component representations of this connection; in the Bloch
frame (|nk〉)n∈J , the components of the Berry connection are
given by ξ a

mn(k) defined in (29), while in the Wannier frame
(|αk〉)α∈J its components are

ξ̃ a
βα (k) = i

�uc

∫
�

dx u∗
βk(x)

∂uαk(x)

∂ka
. (37)

These two local representations (of the same connection on
the total space of the frame bundle) are related by∑

αβ

Umβ (k)ξ̃ a
βα (k)U †

αn(k) = ξ a
mn(k) + Wa

mn(k). (38)
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The dependence of these component representations of the
Berry connection on the choice of frame is precisely encoded
in Wa

mn(k), and so it seems natural that any expression in our
formalism involving the Berry connection that differs from
that of the “modern theories,” for example, the expression (34)
for the orbital magnetization, will involve this matrix [37]. In
this sense the rich geometry behind topologically nontrivial
phases like the Chern insulator plays a more prominent role in
our formalism than it does in the “modern theories.”

III. DISCUSSION

A unique feature of our microscopic formalism is the uni-
fied manner (11) in which “bound” and “free” charge and
current densities in crystalline solids are described. The latter
are modelled via a generalized lattice gauge theory wherein
site charges QR(t ) are associated with the lattice sites R ∈ �

and link currents I (R, R′) between sites R, R′ ∈ � are identi-
fied by evaluating the time evolution thereof [15]. In general,
the microscopic free current density,

jF (x) = 1

2

∑
RR′

s(x; R′, R)I (R, R′), (39)

arising from such link currents is nonvanishing for an unper-
turbed Chern insulator, which is evident upon examining the
explicit form of I (R, R′),

I (R, R′) = 2e

h̄

�2
uc

(2π )6

∑
nmλγ

fn

∫∫
dkdk′ Emk′

× Im[ei(k−k′ )·(R′−R)Unλ(k)U †
λm(k′)Umγ (k′)U †

γ n(k)].
(40)

This vanishes in the limit of a trivial insulator; choosing the
unitary matrices Unα (k) to be of block-diagonal form and
introducing the filling factor fα as in Sec. II A, the result
follows. The link currents [and thus the microscopic free
current density jF(x)] are sensitive to the topology of the
valence bundle for insulators—they vanish for trivial insula-
tors but are generically nonvanishing for Chern insulators. In
contrast, j(x) is invariant under transformations of the form
(1), and therefore physically measurable [unlike jF(x)], and
in general does not vanish for insulating and metallic systems.
However, if a crystal possesses time-reversal symmetry, then
j(x) vanishes; in this sense j(x) is explicitly sensitive to the
symmetries rather than topology of the band structure.

The macroscopic free current density, obtained from its
microscopic analog through spatial averaging, can be shown
to vanish in the ground state, in agreement with assumptions
of the “modern theories.” Even so, it does yield a nonvanishing
contribution to the linear response of such Chern insulators in
the presence of a uniform electric field [15] and thus plays a
nontrivial role in phenomena such as the quantum anomalous
Hall effect. Moreover, the free current density that we define
is generally gauge dependent and therefore physically inde-
terminate in a bulk crystal. However, it may be the case that
there is a correspondence between the role played by this bulk
free current density and that of the so-called “topologically
protected” surface states, which cross the Fermi energy in
finite-sized Chern insulators [38]. In particular, the “quantum

of indeterminacy” arising from the gauge dependence of the
bulk quantities considered here is often argued to be related
to the ambiguity of the surface configuration of a finite-sized
sample [29]; for example, in the macroscopic polarization of
a trivial insulator as well as the Chern-Simons contribution
to the orbital magnetoelectric polarizability tensor. Moreover,
it is known that the appearance of edge currents in finite
systems is also closely related to the nonvanishing of the Hall
conductivity tensor [29]. We therefore anticipate a physical
connection between these edge currents and our bulk free cur-
rent density when considering finite-sized systems. We intend
on investigating this connection in a future publication.

In summary, we have applied a previously developed mi-
croscopic formalism to a Chern insulator and derived formulas
for the ground-state polarization (28) and orbital magneti-
zation (34). Our expression for the polarization is formally
similar to that of the “modern theory,” while our expression
for the orbital magnetization is qualitatively different. In the
“modern theory” the orbital magnetization of a Chern in-
sulator is obtained by thermodynamic arguments that yield
an explicit dependence on a chemical potential (the Fermi
energy), even in the case of a bulk insulator. Meanwhile, our
expression is derived from an underlying microscopic mag-
netization field defined in terms of an appropriate choice of
ELWFs and therefore has manifest dependence on this choice.
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APPENDIX A: GENERALIZED SITE-QUANTITY
MATRIX ELEMENTS

In the case of an unperturbed crystal considered here,
the “generalized site-quantity matrix elements” are obtained
by first expanding the electron field operators in a basis of
ELWFs:

ψ̂ (x, t ) =
∑
αR

WαR(x)âαR(t ). (A1)

The dynamics of the electron field operator ψ̂ (x, t ) are such
that the differential operators associated with the spatial com-
ponents of the conserved current take the usual form [39]:

Ja(x,p(x)) = e

m
pa(x), (A2)

where p(x) was defined in (6). In terms of the expansion (A1),
the generalized site-quantity matrix element ρβR′;αR′′ (x, R) as-
sociated with the electronic charge density is

ρβR′;αR′′ (x, R) = e

2
(δRR′ + δRR′′ )W ∗

βR′ (x)WαR′′ (x), (A3)

while the generalized site-quantity matrix element
jβR′;αR′′ (x, R) associated with the current density is

jβR′;αR′′ (x, R)= 1
2 (δRR′ + δRR′′ )[W ∗

βR′′ (x)(J(x,p(x))WαR′ (x))

+ (J(x,p(x))WβR′′ (x))∗WαR′ (x)]. (A4)
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To derive the generalized site-quantity matrix element as-
sociated with the itinerant current density, we previously
defined the general site quantity

KR(x, t ) ≡ ∂ρel
R (x, t )

∂t
+ ∇ · jR(x, t ),

which is introduced in the presence of an applied electro-
magnetic field. This quantity is generally nonvanishing due
to charges which can move between neighboring lattice sites,
but the continuity equation is still satisfied by the total charge
and current densities, which leads to∑

R

KR(x, t ) = 0. (A5)

For an unperturbed crystal occupying in its zero-
temperature ground state considered here, this simplifies to

KR(x) = ∇ · jR(x), (A6)

and the itinerant current density is then defined by

j̃(x) = −
∑

R

∫
dy s(x; y, R)KR(y) − jF (x).

Using the general identity (A5), it is easy to show that the
total itinerant current density always shows no divergence,

∇ · j̃(x) = 0, (A7)

here independent of time. Moreover, we can write
j̃(x) = ∑

R j̃R(x), where ∇ · j̃R(x) = 0. Using (23) applied to
an unperturbed crystal, it can be shown that the corresponding
generalized site-quantity matrix elements are of the form

j̃βR′;αR′′ (x, R) = 1
2 (δRR′ + δRR′′ ) j̃βR′;αR′′ (x), (A8)

where the exact form of the expression for j̃βR′;αR′′ (x) is
complicated and is given in previous work [15].

APPENDIX B: UNPERTURBED MACROSCOPIC
POLARIZATION AND MAGNETIZATION

A useful identity [26] is∫
dxW ∗

βR(x)xaWα0(x) = �uc

(2π )3

∫
BZ

dk eik·Rξ̃ a
βα (k), (B1)

where ξ̃ a
βα (k) was defined in (37). The components (37) of the

non-Abelian Berry connection in the Wannier frame (|αk〉)α∈J

are related to its components in the Bloch frame (|nk〉)n∈J

through (38). Since all of our Wannier and Bloch frames are
periodic over BZ, so too are all of the quantities appearing in
(38). Another useful identity is∫

dx ψ∗
n′k′ (x)pa(x)ψnk(x) = pa

n′n(k)δ(k − k′), (B2)

with matrix elements found to be [16]

pa
n′n(k) = δn′n

m

h̄

∂Enk

∂ka
+ im

h̄
(En′k − Enk)ξ a

n′n(k). (B3)

Implementing previously derived expressions summarized
in Appendix A, the electric dipole moment associated with a

lattice site R of a Chern insulator is found to be

μi
R ≡

∫
dx pi

R(x)

=
∑

αβR′R′′

(∫
dy (yi − Ri )ρβR′;αR′′ (y, R)

)
ηαβ (R′′ − R′)

= e
�uc

(2π )3
Re

∑
n

fn

∫
BZ

dk
∑
αβR′

eik·(R′−R)

× Unβ (k)

(∫
dyW ∗

β0(y)yiWαR′−R(y)

)
U †

αn(k)

= e
�uc

(2π )3
Re

∑
n

fn

∫
BZ

dk
(
ξ i

nn(k) + W i
nn(k)

)
. (B4)

Meanwhile, the atomiclike contribution to the magnetic dipole
moment associated with a lattice site R is

ν̄ i
R ≡

∫
dx m̄i

R(x)

= 1

2c
εiab

∑
αβR′R′′

(∫
dy (ya−Ra) jb

βR′;αR′′ (y, R)

)
ηαβ (R′′−R′)

= e

2mc

�uc

(2π )3
εiabRe

∑
n

fn

∫
BZ

dk
∑
αβR′

eik·(R′−R)Unβ (k)

×
(∫

dyW ∗
β0(y)yapb(y)WαR′−R(y)

)
U †

αn(k)

= − e

2h̄c

�uc

(2π )3
εiabIm

∑
nm

fn

∫
BZ

dk
(
Emkξ

a
nm(k)ξ b

mn(k)

+ (Emk − Enk)Wa
nm(k)ξ b

mn(k) − EnkWa
nm(k)Wb

mn(k)
)
,

(B5)

while the itinerant contribution to the magnetic dipole mo-
ment associated with a lattice site R is

ν̃ i
R ≡

∫
dx m̃i

R(x)

= 1

2c
εiab

∑
αβR′R′′

(∫
dy (ya−Ra) j̃b

βR′;αR′′ (y, R)

)
ηαβ (R′′−R′)

= − e

2h̄c

�uc

(2π )3
εiabIm

∑
n

fn

∫
BZ

dk
(

− iEnk∂aξ
b
nn(k)

+
∑

m

(Enk − Emk)Wa
nm(k)ξ b

mn(k) − EmkWa
nm(k)Wb

mn(k)

)
.

(B6)

These expressions can be reached equally well as a limit
of those appearing in Mahon and Sipe [18], assuming the
existence of a band gap in the set of energy bands that are
initially partially occupied there. Indeed, the proof presented
in Appendix C provides justification for the integration by
parts that must be performed in order to relate these results.

APPENDIX C: SHIFT OF ENERGY ZERO

Starting with (34), we find that under a shift of the en-
ergy zero Enk → Enk + ε, the components of the macroscopic
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magnetization transform as

Mi →Mi+ε
e

h̄c

∑
n

fn

∫
BZ

dk
(2π )3

εiab
(
∂aξ

b
nn(k)+∂aWb

nn(k)
)
.

(C1)

The Brillouin zone is diffeomorphic as a manifold to the 3-
torus T 3 = R3/Z3, equipped with the flat Euclidean metric
inherited from R3 [22]. The first term of the integrand in (C1)
is the ith component of the curl of ξ a(k), which is the (matrix-
valued) vector field on BZ associated through the flat metric to
the (Berry) connection 1-form ξ (k), with matrix components

ξmn(k) = i(mk|∂ank)dka, (C2)

where the components preceding the coordinate 1-form dka

were defined in (29). By interior multiplication with the vol-
ume form dk1 ∧ dk2 ∧ dk3, the curl of ξ a(k) can be related to
the exterior derivative of ξ (k) [40], namely,

3∑
i=1

εiab∂aξ
b(k) ι∂i (dk1 ∧ dk2 ∧ dk3) = dξ (k), (C3)

where ι∂i denotes interior multiplication with the coordinate
vector field ∂i = ∂/∂ki, and similarly,

3∑
i=1

εiab∂aWb(k) ι∂i (dk1 ∧ dk2 ∧ dk3) = dW (k). (C4)

The domain of integration in (C1) is BZ ∼= T 3 ∼= S1 ×
S1 × S1. Under the identification S1 × S1 × S1 ∼= S1 × T 2,
define a triple of smooth embedding maps φ(i)

s : T 2 ↪→ T 3

for fixed s ∈ S1 (1 � i � 3) by [31]

φ(1)
s (k2, k3) = (s, k2, k3),

φ(2)
s (k1, k3) = (k1, s, k3),

φ(3)
s (k1, k2) = (k1, k2, s). (C5)

The image of T 2 under φ(i)
s is a 2-cycle T 2

s ≡ φ(i)
s (T 2), and

varying s ∈ S1 defines a smooth foliation of the Brillouin zone
by 2-tori. Then, using the embedding map φ(i)

s we can pull
back any 2-form on BZ to one on T 2.

Suppose that M is an embedded submanifold of BZ with
the induced metric h, associated volume form dvolh, and unit
normal vector field N . Given a vector field X on BZ, one can
show that [40]

(φM )∗[ιX (dk1 ∧ dk2 ∧ dk3)] = δ(X, N )|M dvolh, (C6)

where φM : M ↪→ BZ is the embedding map. In particular,
taking M = T 2

s with unit normal vector field ∂i, we can re-
place the term in brackets with either of ((C3),(C4)) and,
noting that δ(X, ∂i ) just picks out the ith component function
of X , we have(

φ(1)
s

)∗
(dξ (k)) = ε1ab∂aξ

b(k) dk2 ∧ dk3,(
φ(2)

s

)∗
(dξ (k)) = ε2ab∂aξ

b(k) dk3 ∧ dk1,(
φ(3)

s

)∗
(dξ (k)) = ε3ab∂aξ

b(k) dk1 ∧ dk2. (C7)

If we take the wedge product of the ith expression with the
1-form ds, then we obtain a 3-form on BZ that corresponds

(up to a possible sign) to the measure dk in the notation of the
main text, and so we can write (C1) as

Mi → Mi + ε
e

8π3h̄c

∑
n

fn

∫
S1

ds

×
∫
T 2

(
φ(i)

s

)∗
(dξnn(k) + dWnn(k)). (C8)

From this geometric perspective, the existence of ELWFs is
equivalent to the Bloch bundle being topologically trivial as a
holomorphic Hilbert bundle [7]. This means that we replace
the BZ by an appropriate complexification BZC , which we
take to be the following complex “strip”:

BZC ≡ {κ ∈ C3 | Re(κ) = k ∈ BZ, |Im(κi)| < a} (C9)

for some a > 0, which is related to the exponential rate of
decay of the ELWFs. Since the Bloch bundle is trivial as a
holomorphic Hilbert bundle, there exists a globally defined
Wannier frame (|ακ〉)α∈J that is itself holomorphic, it is this
frame with which we construct the ELWFs [22], meaning that
each state |ακ〉 (or associated quasi-Bloch function uακ(x) =
〈x|ακ〉) satisfies the Cauchy-Riemann equations. These are
conveniently encoded in a Dolbeault operator ∂̄ [41], whose
action on a function f : BZC → C is

∂̄ f =
3∑

i=1

dκ̄ i ∂ f

∂κ̄ i
, (C10)

where κ̄ i is the complex conjugate of κ i. If f is holomorphic,
then the Cauchy-Riemann equations are equivalent to the con-
dition ∂̄ f (κ) = 0. In particular, the Wannier frame (|ακ〉)α∈J

being holomorphic means that ∂̄|ακ〉 = 0, or equivalently, that
∂̄uακ(x) = 0, for every α and all κ ∈ BZC [9].

In an open neighborhood of a given point in BZC , we can
write the analytic continuation of (1) as

uακ(x) =
∑

n

Unα (κ)unκ(x), (C11)

and with the local condition ∂̄uακ(x) = 0 we have∑
n

(∂̄Unα (κ))unκ(x) = −
∑

n

Unα (κ)(∂̄unκ(x)). (C12)

Multiplying both sides by (umκ(x))
∗

on the left and U †
αn(κ) on

the right, integrating over the unit cell �, and summing over
α, we find ∑

α

(∂̄Umα (κ))U †
αn(κ) = −(mκ̄|∂̄nκ). (C13)

We can rewrite this in terms of the exterior derivative d = ∂ +
∂̄ , where ∂ is the Dolbeault operator with κ̄ being replaced by
κ in (C10) [41]. Taking the second exterior derivative of this
expression and imposing the reality condition κ = κ̄ to restrict
to BZ, we end up with the local result∑

n

fn(dξnn(k) + dWnn(k)) = 0. (C14)

This holds only on sufficiently small open sets in BZ for which
(1) is well defined.

Denote by DB the locus of degeneracies in BZ; that is,
DB is the set of points k0 ∈ BZ for which En(k0) = Em(k0)
for some n, m. We will assume that DB consists of finitely
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many disconnected components (points and lines of degener-
acy). Enclose DB within a closed submanifold N of BZ that
deformation retracts onto the closure of DB. Then BZ \ N is
an open submanifold of BZ that has a vanishing intersection
with DB. Let S1

0 denote those s ∈ S1 for which T 2
s ∩ N = ∅.

Then S1 \ S1
0 consists of finitely many disconnected closed

intervals [31]

S1 \ S1
0 =

K∐
α=1

[sα, sα+1], (C15)

where sK+1 = s1 by periodicity of s. For each 1 � i � 3,
define the following function:

Q(i)(s) ≡
∑

n

fn

∫
T 2

(
φ(i)

s

)∗
(dξnn(k) + dWnn(k)), (C16)

where s ∈ S1. Consider the integral∫
S1

dsQ(i)(s) =
∫
S1\S1

0

dsQ(i)(s) +
∫
S1

0

dsQ(i)(s)

=
∫
S1\S1

0

dsQ(i)(s), (C17)

where the second equality follows from the fact that BZ \ N
contains no degeneracies and we can therefore find a suffi-
ciently fine open cover for which (C14) holds on each open
set thereof. Thus we are left with only the second integral in
(C17). Noting that the 3-form

ds ∧ (φ(i)
s )∗(dξ (k) + dW (k)) (C18)

is closed on each component of N and therefore locally ex-
act by the Poincaré lemma [40], we can use the generalized
Stokes theorem to write the integral on the right side of (C17)
as a sum over the boundary values [31],∫

S1\S1
0

dsQ(i)(s) =
K∑

α=1

(I (sα+1) − I (sα )) = 0, (C19)

by periodicity of Q(i)(s) and sK+1 = s1, where I (sα ) denotes
the integral on the left evaluated at the boundary value sα .
Hence the integral∑

n

fn

∫
S1

ds
∫
T 2

(φ(i)
s )∗(dξnn(k) + dWnn(k)) = 0, (C20)

and the result follows.
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