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Electron-phonon correlations inducing excitonic excitations in semimetal
and semiconducting materials
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The influence of phonons on the low-energy excitonic excitations at zero temperature in the extended
Falicov-Kimball model has been investigated. In the framework of the unrestricted Hartree-Fock approximation,
a set of self-consistent equations for the excitonic condensate order parameter and a lattice distortion is derived
when both electron-phonon coupling and electron-hole Coulomb interaction are treated on an equal footing.
The low-energy excitation properties of the excitonic condensate are addressed in signatures of the optical
conductivity and the dynamical excitonic susceptibility function. The real part of the optical conductivity is
evaluated by the Kubo linear response theory and the imaginary part of the dynamical excitonic susceptibility
is found by adapting the random phase approximation. In the semimetal state, one always finds a sharp peak
in the optical conductivity spectrum indicating the stability of the excitonic condensation in the BCS type if
the correlation between electrons and phonons becomes significant. In contrast, the peak is smeared out on the
semiconducting side indicating the stability of the BEC-type excitonic condensate. In this semiconducting side,
the sharp peak signature appears and the system turns to the BCS-type excitonic condensation state by increasing
the electron-phonon correlations. In either the semimetal or the semiconducting normal state, increasing the
electron-phonon correlations always reinforces a low-energy sharp peak in the dynamical excitonic susceptibility
spectrum, indicating the existence of the tightly bound excitonic excitations before the condensation state.
Specifically, on the semiconducting side, the “halo” phase with the preformed excitons exiting outside of the
BEC-excitonic condensation state has been specified. The halo phase becomes more recognizable by raising the
electron-phonon correlations.
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I. INTRODUCTION

The Bose-Einstein condensation (BEC) state is one of the
most interesting quantum phenomena attracting much interest
both in science and in technology. The BEC state might be
observed in a system of bosonic particles or quasiparticles
with sufficiently large density once all these bosons condense
spontaneously into a single coherent quantum state at a very
low temperature. The exciton is one of the bosonic quasipar-
ticles that might be formed in a small band-overlap semimetal
or in a narrow band-gap semiconductor due to the Coulomb
attraction between an electron in a conduction band and a hole
in a valance band [1]. Once the temperature is sufficiently low,
the excitons might condense into the BEC so-called excitonic
insulator (EI) state that has been conceived more than 60
years ago [2–4]. Depending on either large or small Coulomb
coupling, the excitons might condense like the Cooper pairs
in the Bardeen-Cooper-Schrieffer (BCS) theory or like neutral
atoms in the original BEC consideration [5,6].

As addressed above, the exciton is a bound state of an
electron and hole mediated by the Coulomb interaction, thus
to analyze the formalism of the excitonic condensation, it is
naturally investigated in a purely electronic manner [2–8].

*Corresponding author: phanvannham@duytan.edu.vn

However, in some circumstances, phononic signatures also
play important roles in reinforcing the stability of the exci-
tonic condensation state [9–11]. Indeed, an experiment has
revealed that an abrupt change of lattice displacement just
heats up the excitonic condensate in the mixed valence com-
pound TmSe0.45Te0.55 [12]. In transition-metal dichalcogenide
1T -TiSe2, one has specified a strong relation between the
charge-density-wave and excitonic condensation state [13,14].
The lattice distortion is also believed as a crucial point pushing
up the critical temperature of the excitonic condensation state
to the record value up to Tc = 326 K in Ta2NiSe5 [11,15–
17]. From several points of view, involving the phononic
degree of freedom is crucially important to inspect the un-
derlying physics of the excitonic condensation state in some
semimetal/semiconductor materials. In our present work,
the electron-hole system is described in the framework of
the extended Falicov-Kimball model (EFKM) where the
valance electrons are able to hop but the Coulomb interac-
tion is localized. The phononic involvement is addressed by
the electron-phonon interaction. Both the electronic and the
phononic degrees of freedom are thus involved equally to
address signatures of the excitonic instability in the systems.

Utilizing the EFKM with the electron-phonon interaction,
the excitonic instability has been considered [14,18–20]. In
these studies, the excitonic stability is specified by analyzing
the excitonic condensate order parameter and only some static

2469-9950/2023/107(11)/115106(9) 115106-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0411-2950
https://orcid.org/0000-0003-0009-3932
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.115106&domain=pdf&date_stamp=2023-03-03
https://doi.org/10.1103/PhysRevB.107.115106


THI-HONG-HAI DO AND VAN-NHAM PHAN PHYSICAL REVIEW B 107, 115106 (2023)

signatures of the order state are addressed. In the meanwhile,
in order to understand the nature of an ordered state, the
fluctuations both inside and outside of the ordered state need
to be cleared [11,16,21–25]. Indeed, by inspecting the dy-
namical excitonic susceptibility function, one has specified
the fluctuations of a bound coherent state corresponding to
the formation of the preformed excitons before the excitonic
stability in the semiconductor, the so-called “halo” of the
excitonic condensation state [21]. The halo phase has been
experimentally observed in the semiconductor compound
TmSe0.45Te0.55 [12,26]. By analyzing the optical conductivity
spectra one also revealed the anomalous appearance of the
excitons even before the excitonic condensation in metallic
Ta2NiSe5 [22,23]. In our present work, the anomalies of the
preformed excitons existing outside of the condensation state
would be considered by analyzing the optical conductivity and
dynamical excitonic susceptibility function. Without electron-
phonon coupling, these dynamical quantities of the EFKM
have been addressed [27]. In that study, the resonance of the
coherent excitonic state before the stability of the excitonic
condensate in the halo phase has been specified on the semi-
conductor side. In the presence of phonons, our present study
would describe the nature of the resonance coherent state on
the impact of the electron-phonon correlations. Our results
reveal that the halo phase can be found for large Coulomb
interaction. Increasing the electron-phonon correlations leads
to reinforcing the resonance of the coherent state that appears
even on the semimetal side.

In the present work, the EFKM with electron-phonon
coupling is considered in the framework of the unrestricted
Hartree-Fock (UHF) approximation. By neglecting all fluc-
tuations raised due to many-particle correlations, one can
simply derive a single-particle effective model, thus a set
of self-consistent equations determining the excitonic con-
densate order parameters or quasi-particle energies is easily
delivered. With the results of the effective Hamiltonian, one
can explicitly evaluate the optical conductivity in the features
of Kubo linear response theory and the dynamical excitonic
susceptibility function in the random phase approximation.
Once a solution of the set of self-consistent equations is nu-
merically achieved, signatures of the optical conductivity or
dynamical excitonic susceptibility spectrum can be observed.
That helps us explicitly analyze the dynamical properties of
the excitons around the critical points under the influence
of phonons and also other parameters. We agree that the
UHF approximation generally is insufficient in considering
the correlated electron systems. However, in some specific
conditions, the UHF approach is still applicable even for large
interacting cases such as in the cases of very high and very
low temperature limitations [28–31]. In the situation of very
low temperature, one has pointed out that the UHF approxi-
mation is equivalent to the dynamical mean-field theory—one
of the best theoretical approaches successfully applied to the
strongly correlated electron systems [29,32], or to the unbi-
ased constrained path Monte Carlo simulation [33,34]. In our
investigation we consider the system in the ground state, i.e.,
at zero temperature. The results of the phase diagram and
optical conductivity in our work are thus reliable [22,35].

This paper is organized as follows. In the next sec-
tion, Sec. II, the Hamiltonian of the EFKM involving the

electron-phonon correlations is addressed. In Sec. III, the
analytical calculation evaluating the effective Hamiltonian in
the UHF approximation is derived; it then is applied to find
the analytical expressions of the optical conductivity and the
excitonic susceptibility function. The numerical results and
discussion can be found in Sec. IV. Finally, Sec. V summa-
rizes our work.

II. EXTENDED FALICOV-KIMBALL MODEL
WITH ELECTRON-PHONON COUPLING

In order to address the influence of phonons to the excitonic
excitation state we use here the spinless extended EFKM
involving the electron-phonon correlations. Both the electron-
hole Coulomb attraction and electron-phonon coupling thus
are treated on an equal footing. In the momentum space, the
EFKM with the electron-phonon coupling can be written as
follows:

H =
∑

k

(
εa

ka†
kak + εb

kb†
kbk + ω0 p†

k pk

)

+ U

N

∑
kk′q

b†
k+qbk′a†

k′−qak

+ g√
N

∑
kq

[b†
k+qak(p†

−q + pq) + H.c.], (1)

where a†
k (ak ), b†

k (bk ), and p†
k (pk ) are the creation (anni-

hilation) operators of the conduction a, valance b electrons
and phonons at momentum k, respectively. The first line in
Hamiltonian (1) expresses the kinetic energy of the electron-
hole-phonon system where ε

a(b)
k and ω0 are, respectively, the

electrononic dispersion of a (b) electrons and of phononic
dispersion. To simplify our further calculation we use the
dispersionless energy of the phonon described by the Einstein
frequency ω0 and the electronic dispersion energy of the elec-
trons, written in the tight-binding approximation, that read

ε
a(b)
k = εa(b) − t a(b)γk − μ. (2)

Here εa(b) and t a(b) are, respectively, the on-site energy and
hopping integral of the a(b) electrons with γk = 2(cos kx +
cos ky) written in a two-dimensional (2D) hypercubic lattice.
μ here is the chemical potential. The difference between the
on-site energies �ε = εa − εb gives us a separation between
the conduction and valance electronic bands. In the case with
�ε > 0 one finds a semiconducting situation and with �ε <

0 one finds a semimetal state. Without losing the generality,
t a = 1 is chosen as the unit of energy and |t b| < 1 is often
fixed to address the heavier dispersive electrons in the valance
band. The Hamiltonian in Eq. (1) has been also written in the
general units with h̄ = c = kB = 1 [36].

In the Hamiltonian (1), the second and the last lines ex-
press the interband electron-hole Coulomb interaction and the
electron-phonon coupling in the system, respectively, with N
being a number of lattice sites. Both the Coulomb interaction
U and the electron-phonon coupling g here are assumed to be
localized. The assumption is applicable to consider the exci-
tonic condensation state in almost semimetal/semiconducting
materials with the conduction and the valence electrons cou-
pling together on the same site [6,22,37]. In Eq. (1) we also
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omit all other Coulomb interactions such as between a-a or
b-b electrons to simplify our further calculation. The inter-
actions mainly shift the on-site energy levels of the a or b
electrons only and they do not strongly affect the electron-hole
or electron-phonon correlations in the excitonic excitation
signatures in the system.

III. THEORETICAL CALCULATION

A. Unrestricted Hartree-Fock aproximation

The model written in Eq. (1) is the many-particle correla-
tion quantum Hamiltonian. There is thus no way to solve it
exactly. Generally, one has to try simplifying the many-body
features to a single-particle Hamiltonian by applying some
approximations. In this study, we use the UHF approxima-
tion to solve the Hamiltonian written in Eq. (1). Within this
approximation, all fluctuation parts are possibly ignored and
one might find an effective single-particle Hamiltonian, that
reads

HUHF =
∑

k

(
ε̄a

ka†
kak + ε̄b

kb†
kbk + ω0 p†

k pk
)

+ δ
∑

k

(b†
kak + H.c.) +

√
Nh(p†

−q + pq)δq,0. (3)

Here we have assumed that the system stabilizes in the
excitonic condensation state, specified by the presence of
spontaneous fields risen due to the stability of the electron-
hole bound coherent states. We have also supposed the
predominance of zero-momentum excitons, i.e., with q = 0,
that have been specified condensing in a single coherent
state in the case of the typical mixed-valance compound
Ta2NiSe5 [11,16,17]. The spontanceous fields described in the
second line of the effective Hamiltonian in Eq. (3) thus read

h = g

N

∑
k

〈b†
kak + a†

kbk〉, (4)

δ = g√
N

〈p†
−q + pq〉δq,0 − U

N

∑
k

〈b†
kak〉. (5)

In Eqs. (4) and (5), both h and δ contain a term representing
a hybridization between the a and b electrons, 〈b†

kak〉, cor-
responding to a formation of excitons and their condensation
state. They thus play the role of the excitonic condensate order
parameters.

In the UHF approximation, the electronic excitation
energies have been shifted by the Coulomb interaction con-
tribution given by

ε̄
a(b)
k = ε

a(b)
k + Unb(a), (6)

where na = ∑
k〈a†

kak〉/N and nb = ∑
k〈b†

kbk〉/N respectively
are the density of a and b electrons. To find a close set of
self-consistent equations, in the next step, we diagonalize the
effective Hamiltonian in Eq. (3). In order to diagonalize the
Hamiltonian we divide Eq. (3) into two parts: a so-called
electronic part and a phononic one. The former part reads

He
UHF =

∑
k

(
ε̄a

ka†
kak + ε̄b

kb†
kbk

) + δ
∑

k

(b†
kak + H.c.), (7)

that can be diagonalized by using a Bogoliubov transforma-
tion with new fermionic operators

c†
k = ξkb†

k + ηka†
k, (8)

f †
k = −ηkb†

k + ξka†
k, (9)

where ξk and ηk are chosen such that ξ 2
k + η2

k = 1. Then

ξ 2
k = 1

2

[
1 + sgn

(
ε̄a

k − ε̄b
k

) ε̄a
k − ε̄b

k

	k

]
, (10)

η2
k = 1

2

[
1 − sgn

(
ε̄a

k − ε̄b
k

) ε̄a
k − ε̄b

k

	k

]
, (11)

with

	k =
√(

ε̄b
k − ε̄a

k

)2 + 4|δ|2. (12)

The Hamiltonian in Eq. (7) thus can be completely diagonal-
ized; it reads

He
dia =

∑
k

(
Ec

kc†
kck + E f

k f †
k fk

)
, (13)

where the quasiparticle energies are given by

Ec/ f
k = ε̄a

k + ε̄b
k

2
∓ sgn

(
ε̄a

k − ε̄b
k

)
2

	k. (14)

From Eq. (19), the expectation values could be evaluated
and we obtain〈

nb
k

〉 = 〈b†
kbk〉 = ξ 2

k f
(
Ec

k

) + η2
k f

(
E f

k

)
,〈

na
k

〉 = 〈a†
kak〉 = η2

k f
(
Ec

k

) + ξ 2
k f

(
E f

k

)
,

〈dk〉 = 〈b†
kak〉 = −[

f
(
Ec

k

) − f
(
E f

k

)]
sgn

(
ε̄a

k − ε̄b
k

) δ

	k
, (15)

where f (ε) = 1/(1 + eβε ) is the Fermi-Dirac distribution
function, with β = 1/T and T is the temperature.

The phononic part of the Hamiltonian in Eq. (3),

Hph
UHF =

∑
k

ω0 p†
k pk +

√
Nh(p†

−q + pq)δq,0, (16)

that can be diagonalized by defining a new phononic operator

P†
k = p†

k +
√

N
h

ω0
δk,0, (17)

and its diagonalized form results in

Hph
dia =

∑
k

ω0P†
k Pk. (18)

Here one can find from Eq. (17) that

〈p†
−q + pq〉 = −2

√
Nh

ω0
δq,0, (19)

where δq,0 indicates that there are only zero-momentum
phonons mediating the excitonic bound state in the system.
Note that the phonon here is considered in the optical mode
only, described in the Einstein model. The phonon scattering
still thus happens even at zero momentum q = 0.

From Eqs. (4), (5), (15), and (19) one finds a set of
self-consistent equations determining the excitonic conden-
sate order parameters h or δ and evaluating the quasiparticle
excitation energies both inside and outside of the excitonic

115106-3



THI-HONG-HAI DO AND VAN-NHAM PHAN PHYSICAL REVIEW B 107, 115106 (2023)

condensation state. The quantities help us probe signa-
tures of the optical conductivity and excitonic dynamical
susceptibility spectra.

B. The optical conductivity

One of the most essential steps towards understanding the
critical problem of excitonic phases is probing the dynamical
signatures of the excitonic condensation state. In our present
work, optical characterization describing the critical problem
is examined in a sense of optical conductivity. Utilizing the
Kubo formula of the linear response theory [38], the real part
of the optical conductivity depending on frequency could be
given as the real part of the two-particle retarded correlation
function

σ (ω) = Re
i

ωN2

∑
kk′

〈〈j†(k)|j(k′)〉〉ω, (20)

where j(k) is the momentum dependence of the current oper-
ator, defined by

j(k) = va
ka†

kak + vb
kb†

kbk, (21)

where v
a(b)
k = ∇ε

a(b)
k is the velocity of the a (b) electron.

Using the Bogoliubov transformation in Eqs. (8) and (9), the
current operators can be represented in the new quasiparticle
fermionic operators c†

k (ck ) and f †
k ( fk ). With the help of the

diagonal Hamiltonian Hdia in Eq. (19), one easily evaluates an
expression for the real part of the optical conductivity

σ (ω) = πe2

ωN

∑
k

η2
kξ

2
k

(
va

k − vb
k

)2[
f
(
Ec

k

) − f
(
E f

k

)]

× [
δ
(
ω + Ec

k − E f
k

) − δ
(
ω − Ec

k + E f
k

)]
. (22)

Here the coefficients ηk and ξk have been defined in Eqs. (10)
and (11) and the quasiparticle excitation energies Ec/ f

k are
given in Eq. (14). All these quantities can be evaluated by
solving the self-consistent equations found in the previous
section. The frequency dependence of the optical conductivity
then could be probed.

C. The excitonic susceptibility function

Another quantity essentially to probe the dynamical exci-
tations of the excitonic condensation state is the dynamical
excitonic susceptibility function. At a given momentum q, the
dynamical excitonic susceptibility function can be written as

χ (q, ω) = −〈〈Xq|X †
q 〉〉ω, (23)

where an operator X †
q = (1/

√
N )

∑
k a†

k+qbk plays the role of
the exciton creation operator. Unlike the optical conductivity
in the previous section, evaluating the excitonic dynamical
susceptibility in Eq. (23) appears the higher-order Green’s
functions which need to be truncated. Using the random phase
approximation, one might find∑

k′′q1

〈〈a†
kbk′′a†

k′′−q1
ak+q−q1 |b†

k′+qak′ 〉〉ω

≈
∑

q1

〈
na

k+q−q1

〉〈〈a†
kbk+q|b†

k′+qak′ 〉〉ω

−
∑

k2

〈
na

k

〉〈〈a†
k2

bk2+q|b†
k′+qak′ 〉〉ω (24)

and ∑
k′′q1

〈〈b†
k+q1

bk′′a†
k′′−q1

bk+q|b†
k′+qak′ 〉〉ω

≈
∑

q1

〈
nb

k+q1

〉〈〈a†
kbk+q|b†

k′+qak′ 〉〉ω

−
∑

k2

〈
nb

k+q

〉〈〈a†
k2

bk2+q|b†
k′+qak′ 〉〉ω, (25)

and similarly, we get∑
q1

〈〈a†
kak+q−q1 (p†

−q1
+ pq1 )|b†

k′+qak′ 〉〉ω

≈ 〈
na

k

〉〈〈(p†
−q + pq)|b†

k′+qak′ 〉〉ω (26)

and ∑
q1

〈〈b†
k+q1

bk+q(p†
−q1

+ pq1 )|b†
k′+qak′ 〉〉ω

≈ 〈
nb

k+q

〉〈〈(p†
−q + pq)|b†

k′+qak′ 〉〉ω. (27)

Finally, we derive the excitonic susceptibility function for
the system as follows:

χ (q, ω) = −χ0(q, ω)

1 + (U − g�q)χ0(q, ω)
, (28)

where

χ0(q, ω) = 1

N

∑
k

〈
na

k

〉 − 〈
nb

k+q

〉
ω + i0+ − ε̄b

k+q + ε̄a
k

(29)

acts as the bare excitonic susceptibility function, and

�q = 2gω0

(ω + i0+)2 − ω2
0 − 2g2ω0χ

0b(q, ω)

1 + Uχ0b(q, ω)

, (30)

with

χ0b(q, ω) = 1

N

∑
k

〈
nb

k−q

〉 − 〈
na

k

〉
ω + i0+ − ε̄a

k + ε̄b
k−q

. (31)

Here ε̄a,b
k are given in Eq. (6). Note here that the dynami-

cal excitonic susceptibility function is considered out of the
excitonic condensation state, the excitonic order parameter
is completely zero, and 〈na(b)

k 〉 = f (ε̄a(b)
k ). In this sense, the

dynamical excitonic susceptibility can be simply evaluated.

IV. NUMERICAL RESULTS AND DISCUSSION

The main focus of this work is analyzing the effects of
the phonon on the dynamical excitations of the excitonic con-
densation phase in semiconductor/superconductor (SM/SC)
materials. In this section, we therefore present numerical re-
sults showing the dynamical excitonic susceptibility function
and the optical conductivity. Considering a 2D system with
N = 800 × 800 lattice sites at zero temperature, for a given
set of the model parameters, one might find a solution of the
self-consistent equations in Eqs. (4), (5), (15), and (19). The
optical conductivity σ (ω) and the dynamical excitonic sus-
ceptibility function χ (q, ω) then can be evaluated following
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FIG. 1. The optical conductivity σ (ω) for different phonon fre-
quencies ω0 at U = 0.4 and g = 0.6. The left inset shows the
excitonic condensate order parameter δ depending on ω0. The right
inset displays the ground-state phase diagram of the excitonic con-
densation state in the (U, ω0) plane.

Eqs. (22) and (28), respectively. In the numerical calcula-
tion, we set t a = 1 as the unit of energy and the results
are fixed for εa − εb = −2.0. We also choose t b = −0.3 < 0
characterizing the direct band gap as in the case of Ta2NiSe5

in which the excitonic condensation is driven by the strong
electron-phonon coupling [11,15–17]. The chemical potential
μ in Eq. (2) is adjusted to fix the total electronic number
n = na + nb. In the present study, we use n = 1 to ensure the
half-filled band case.

We first discuss the phonon effects in the optical signatures
of the excitonic condensate state by analyzing the influence of
the phonon frequency on the optical conductivity spectrum.
The optical conductivity might give us valuable information
about the quasiparticle properties as well as the formation of
excitonic states in the system. Figure 1 displays the optical
conductivity σ (ω) for some values of the phonon frequency
ω0 for weak Coulomb interaction, U = 0.4 for instance, at
the sufficiently large electron-phonon coupling g = 0.6. Note
here that, for a weak Coulomb interaction, the system settles
in the semimetal state and if the electron-phonon correlations
are sufficiently large (indicated by small phonon energy and
large electron-phonon coupling), the ground state of the sys-
tem might stabilize in the excitonic condensate in BCS type
(see the right inset). Indeed, for a given large electron-phonon
coupling, e.g., g = 0.6, by lowering the phonon energy the
excitonic condensate order parameter rapidly increases par-
ticularly in the adiabatic regime (ω0 < t a) as shown in the
left inset. The optical conductivity spectra in the main fig-
ure also address the dynamical signatures of the excitonic
condensation state. Indeed, once the phonon energy is small
the optical conductivity is completely zero as long as the
frequency of the pulse light ω < 2δ. At ω = 2δ, the optical
conductivity gets a sharp peak and then rapidly decreases as
increasing ω as the optical conductivity of the normal metal.
The appearance of the sharp peak in the optical conductiv-
ity spectrum at the frequency ω = 2δ can be explained by
the strong hybridization of the electrons and holes forming

FIG. 2. The optical conductivity σ (ω) for different phonon fre-
quencies ω0 at U = 4 and g = 0.6. The left inset shows the excitonic
condensate order parameter δ depending on phonon frequency ω0.
The right inset displays σ (ω) for ω0 = 4.

the excitonic bound state. This hybridization also causes the
energy gap at the Fermi level in the quasiparticle energies.
At low phonon frequency, the dynamics of the phonons is
comparable to that of the electrons; the excitonic condensation
state might be reinforced with the assistance of the electron-
phonon correlations. That is illustrated by the appearance of
a large frequency peak in the optical conductivity spectrum.
Increasing the phonon frequency, the phononic level leaves
far from the Fermi level and the phonon influence on the
electron-hole pair correlations thus is depressed. The peak
appearing in the optical conductivity spectrum thus moves
to the lower frequency corresponding to a decrease of the
excitonic condensate order parameter. Effects of the phonon
oscillations on the excitonic condensation have been demon-
strated by experimental observations in Ta2NiSe5 where the
phase structure of the system changes from orthorhombic to
monoclinic driven by the soft optical phonon modes [39,40].
At the phonon frequency, ω0 > 3.3, the sharp peak disappears
and the optical conductivity characterizes the Drude form of
the normal metallic state (see the purple line in Fig. 1).

In the case of sufficiently large Coulomb interaction, the
large Hartree shift might open a band gap and the system set-
tles in the semiconducting state. Due to the electron-phonon
correlations, electron-hole pairs might be formed and con-
densed either in the BCS type or in the BEC type depending
on the phonon frequency (see the right inset in Fig. 1) [41].
Note here that the boundary of the excitonic condensate is
specified by detecting the divergence of the static excitonic
susceptibility function χ s = χ (0, ω → 0), where χ (q, ω) is
defined in Eq. (28). The BCS and BEC types of the con-
densation are specified by the behavior of the momentum
dependence of the excitonic condensate order parameter dk in
Eqs. (15). Indeed, on the BCS side, only electrons and holes
settling near the Fermi surface might build up the electron-
hole pairs and then condense. In this case, the electron-hole
pair distribution dk peaks at a finite Fermi momentum. Oth-
erwise, in the BEC side, the tightly bound excitons might
be formed and they act as a diluted neutral gas. In this sit-
uation, the Fermi surface plays no role [41]. In Fig. 2, we
present the optical conductivity σ (ω) for different phonon
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FIG. 3. The optical conductivity σ (ω) for different electron-
phonon couplings g at U = 0.4 and ω0 = 0.5. The left inset shows
the excitonic condensate order parameter δ as a function of the
electron-phonon coupling g. The right inset displays the ground-state
phase diagram of the excitonic condensation state in the (U, g) plane.

frequencies ω0 at the strong Coulomb interaction U = 4.0 and
electron-phonon coupling g = 0.6. Note here that without the
electron-phonon correlations, the system for that Coulomb in-
teraction is in the normal semiconducting state [41]. For small
phonon frequency, i.e., in the adiabatic limitation, the optical
conductivity spectrum still raises a sharp peak at frequency
ω = 2δ, indicating a BCS-type excitonic condensation state
[see Fig. 2(a)]. Increasing the phonon frequency, the influence
of phonons on the electron-hole pair bound state is depressed.
That signature can be expressed by shifting the peak position
to the left for the lower frequency with rapid suppression of
the spectral weight. Enlarging phonon frequency in the antia-
diabatic regime (ω0 > t a), the asymmetric peak still appears
in the optical conductivity spectrum but is blunter with a much
lower spectral weight. In this case, the system settles in the
BEC-type excitonic condensation state (see the right inset
in Fig. 1). Deep inside the antiadiabatic regime, the phonon
frequency is far from the Fermi level. The electron-phonon
correlations are unable to form the electron-hole bound state
and the system stabilizes in the normal semiconducting
state, indicated by the unnoticeable signature of the optical
conductivity [see Fig. 2(b)].

To discuss the influence of the electron-phonon coupling
on the optical signatures in the system, in Fig. 3 we show the
optical conductivity σ (ω) for different values of the electron-
phonon coupling g in the adiabatic condition, for instance at
ω0 = 0.5 with weak Coulomb interaction, U = 0.4. In this
case of the Coulomb interaction, hybridization between the
electrons in the conduction band and the holes in the valence
band is not enough to form the bound state of the electron-hole
pairs. However, if the electron-phonon correlations are suffi-
ciently large, the bound state of electron-hole pairs might be
established and reinforced. Indeed, in the adiabatic situation
with ω0 = 0.5, the excitonic condensate order parameter δ

is nonzero if the electron-phonon coupling is larger than a
critical value gc = 0.233. The order parameter then rapidly
increases as increasing the electron-phonon interaction (see
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FIG. 4. The optical conductivity σ (ω) for different electron-
phonon couplings g at U = 4 and ω0 = 0.5. The inset shows the
excitonic condensate order parameter δ as a function of the electron-
phonon coupling g.

the left inset in Fig. 3). That signature can be probed in the op-
tical conductivity spectra. Actually, for large electron-phonon
coupling, one finds the sharp peak in the optical conductivity
spectrum at frequency ω = 2δ as addressed in Fig. 1. De-
creasing the coupling, the sharp peak moves to the left with
a lower frequency indicating the depression of the excitonic
condensate order parameter. Decreasing the electron-phonon
coupling also depresses the possibility of the electrons and
holes residing far from the Fermi level coupling together
forming the bound state. That is indicated by the acuity of the
optical conductivity signature at low g. This acuity signature
of the optical conductivity also expresses an important role
of the Fermi level in stabilizing the excitonic condensation
state or the BCS-type excitonic condensate in the situation.
At the critical value of the electron-phonon coupling g = gc,
the optical conductivity peaks at zero frequency, indicating the
Drude form in the normal semimetal state if g < gc.

On the semiconducting side, i.e., for sufficiently large
Coulomb interaction, we also find the interesting signatures
of the excitonic excitations by changing the electron-phonon
coupling. In Fig. 4, we present the optical conductivity σ (ω)
for different values of the electron-phonon coupling g at
ω0 = 0.5 and U = 4. At that large Coulomb interaction, the
system stabilizes in the normal semiconducting state if there
are no electron-phonon correlations [41]. However, by turning
on the electron-phonon coupling in the adiabatic situation,
the electron-hole coupling might be established and if the
electron-phonon coupling is sufficiently strong, the system
stabilizes in the excitonic condensation state. Indeed, the inset
in Fig. 4 shows that the excitonic condensate order parameter
is nonzero only if g > gc. Stabilization of the excitonic con-
densation state for g > gc is also addressed by the asymmetric
single peak appearance in the optical conductivity spectrum.
Indeed, for gc < g < 0.4, Fig. 4(a) shows us the blunter sin-
gle peak at low frequency in the optical conductivity. That
signature is similar to the optical conductivity behavior found
in the case of large phonon energy mentioned in Fig. 3(b),
indicating the BEC-type condensate of the electron-hole pairs
due to the electron-phonon correlations. However, in the case
of g > 0.4, the single asymmetric peak still appears in the
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optical conductivity spectra, but their peak becomes much
sharper with higher spectral weight [see Fig. 4(b)]. For this
large electron-phonon coupling, the hybridization between
electrons in the conduction band and holes in the valance
band becomes extremely strong around the Fermi level.
The predominance of electrons and holes residing close to the
Fermi level coupling together to form the excitonic coherence
exhibits the BCS-type excitonic condensation state.

As discussed above, inspecting the optical conductivity
spectra gives us the optical absorption properties only for
excitons in the condensation state. Investigating excitation of
the excitons outside the condensate is thus an essential task
to view the excitonic dynamics in a compact picture. In the
rest of this paper, we concentrate on addressing the dynamical
excitonic susceptibility function to understand the dynami-
cal properties of the exciton system before the condensation
state takes place. In the case of Ta2NiSe5, one has released
the predominance of zero-momentum excitons condensing
in a single coherent state [11,16,17]. To be comparable to
the experiments, we consider here the dynamical excitonic
susceptibility function at the zero momentum χ (ω) ≡ χ (q =
0, ω). Figure 5 addresses the imaginary part of the dynam-
ical excitonic susceptibility function Imχ (ω) as a function
of frequency for different phonon frequencies ω0 at g = 0.6
and for two typical values of Coulomb interaction [U = 0.4,
Fig. 5(a)] and [U = 4, Fig. 5(b)]. Note here that the set of
parameters has been chosen as long as the system settles out
of the ordered state. For that large electron-phonon coupling,
the phonon frequencies must be far from the Fermi level,
i.e., in the antiadiabatic regime with ω0 � 4 (see the left
inset in Fig. 1). Without phonon effects, at small Coulomb
interaction, the system settles in the semimetal state and one
finds a wide spreading of the dynamical susceptibility with
low spectral weight [see the dashed line in Fig. 5(a)]. Tun-
ing the electron-phonon coupling into the system, a peak at
low frequency appears and develops as lowering the phonon
frequency. The low-energy peak appearance in the dynamical
susceptibility function more or less indicates the resonance
of the preformed excitonic coherent bound state. Lowering
the phonon frequency reinforces the electron-hole pair co-
herence corresponding to sharpening and moving the peak
to the left. That signature of the dynamical excitonic suscep-
tibility function indicates that the bound electron-hole pairs
possibly appear in the normal–semimetal state due to the
sufficiently large electron-phonon correlations. This theoret-
ical result consolidates recent observations of the preformed
excitons appearing before the excitonic condensation state in
semimetal Ta2NiSe5 [22,23]. Note here that the susceptibility
function at high frequency seems to be insignificantly affected
by the phonon presence in the system.

In the case of large Coulomb interaction, U = 4.0 for in-
stance, the system settles in the semiconducting state (see the
right inset in Fig. 1). The imaginary part of the dynamical
excitonic susceptibility function expresses a sharp resonance
peak at low frequency. The spectral weight here is much larger
than that found in the case of the semimetal side [comparing
to Fig. 5(a)]. The sharp peak at low frequency here represents
the preformed bound electron-hole pair state above the critical
point of the semiconducting-excitonic condensate transition.
That so-called halo phase has been addressed in the previous
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FIG. 5. The imaginary part of the dynamical excitonic suscepti-
bility function as a function of frequency for different values of the
phonon frequency ω0 at g = 0.6 with U = 0.4 (a) and U = 4.0 (b).
The dashed line indicates the imaginary part of the dynamical ex-
citonic susceptibility function at U = 0.4 and zero electron-phonon
coupling g = 0.

studies in the EFKM [21]. Taking into account the phonon
contributions to the EFKM, one finds a bit of enhancement
and shift to the lower energy of the resonance peak. The
signature indicates a reinforcement of the electron-hole bound
pairs and the halo phase thus is expanded by increasing the
electron-phonon correlations.

Lastly, to view in a compact picture the impact of electron-
phonon correlations to the excitonic excitations in the system,
we discuss signatures of the electron-phonon interaction to
the dynamical excitonic susceptibility spectrum. In Fig. 6,
we show the imaginary part of the dynamical excitonic
susceptibility function Imχ (ω) for different values of the
electron-phonon coupling g at phonon energy ω0 = 0.5, i.e.,
in the adiabatic situation. Both in the semimetal [Fig. 6(a)]
and in the semiconducting [Fig. 6(b)] sides, one always finds
a small energy peak rising in the dynamical susceptibil-
ity spectrum while the electron-phonon coupling is turned
on (the high-energy spectrum of the susceptibility function
is unchanged). Increasing the electron-phonon interaction,
the spectral peak enlarges and shifts to the left with a
lower frequency. That signature indicates the bound excitons
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FIG. 6. The frequency dependence of the imaginary part of the
dynamical excitonic susceptibility function for different values of the
electron-phonon coupling g at ω0 = 0.5 with U = 0.4 (a) and U = 4
(b).

possibly established outside of the excitonic order state in the
presence of the electron-phonon coupling. Specifically in the
case of strong Coulomb interaction, the sharp peak largely
shifts to the low frequency for the electron-phonon coupling
risen up to g = 0.25 [see Fig. 6(b)] releasing the enhancement
of the preformed electron-hole pairs or the halo phase in the
semiconducting side. Note here that we are considering the
system in the adiabatic situation, so only a slight change of
the electron-phonon coupling makes a significant reconstruc-
tion of the halo state in the system. The result once more

emphasizes the strong impact of phonons on the preformed
coherent excitonic bound state in the system both in the nor-
mal semiconducting and the semimetal states.

V. CONCLUSION

In summary, by taking into account the electron-phonon
coupling to the extended Falicov-Kimball model, we have
analyzed the optical conductivity spectrum and the dynamical
excitonic susceptibility function in the framework of the unre-
stricted Hartree-Fock approximation. The effects of phonons
on the low-energy excitations of the excitonic bound state
in both semimetal and semiconducting materials have been
discussed. Our numerical results supply a compact view of
the excitonic dynamical properties both inside and outside
of the condensation state. Indeed, inside the excitonic con-
densate, the optical conductivity spectrum appears a sharp
peak at a frequency equal to twice the excitonic order pa-
rameter indicating the strong hybridization of the electrons
and the holes residing close to the Fermi level. The sig-
nature probes the BCS-type excitonic condensation state on
the semimetal side. In contrast, on the semiconducting side,
the peak in the optical conductivity becomes smeared out
addressing the BEC-type excitonic condensation state. The
optical conductivity completely disappears while the system
settles in the normal–semiconducting regime. Out of the or-
dered state, the excitonic excitations can be investigated by
inspecting the dynamical excitonic susceptibility function.
Due to the presence of the electron-phonon correlations, we
have specified the possibility of preformed excitons residing
in the normal–semimetal state. That signature becomes sig-
nificant in the case of strong electron-phonon correlations,
which has not been mentioned theoretically before or even
observed experimentally until recently in Ta2NiSe5. In the
normal-semiconducting situation, the halo phase with the
preformed excitons exiting outside of the BEC-excitonic con-
densation state has been specified. The halo phase becomes
more recognizable by raising the electron-phonon correla-
tions. Inspecting more meticulously the low-energy excitonic
excitations by taking into account all other quantum fluctua-
tions would be worthwhile of our future studies.
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