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Ferromagnetic instability in itinerant fcc lattice electron systems with higher-order
van Hove singularities: Functional renormalization group study
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We investigate the possibility of ferromagnetic ordering in the nondegenerate Hubbard model on the face-
centered cubic lattice within the functional renormalization group technique using temperature as a scale
parameter. We assume the relations between nearest, next-nearest, and next-next-nearest hopping parameters
providing higher-order (giant) van Hove singularity of the density of states. The ferromagnetic instability
formation with lowering temperature is described consistently in the one-loop approximation for a one-particle
irreducible vertex of two-particle electron interaction. The chemical potential versus temperature phase diagrams
are calculated. We find ferromagnetic order only for sufficiently strong divergence of the density of states
and fillings in the vicinity of van Hove singularity. The obtained Curie temperature is more than an order of
magnitude smaller than the results of the random-phase approximation. The main origin of the suppression of
ferromagnetism is the screening of interaction in the particle-particle channel. We also do not find the pronounced
tendency towards incommensurate order when the Fermi level is moved away from a van Hove singularity, such
that the first-order quantum phase transitions from the ferro- to paramagnetic phase are obtained.
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I. INTRODUCTION

Weak itinerant magnets, such as ZrZn2 [1,2], Ni3Al [3,4],
and some other compounds, represent substances having
low magnetic transition temperatures and small saturation
magnetic moment. The problem of description of itinerant
ferromagnetism is a long-standing problem, which started
from the Stoner theory [5,6]. Although this theory describes
main features of magnetic transitions, it strongly overesti-
mates magnetic transition temperatures, does not explain the
Curie-Weiss behavior of magnetic susceptibilities, and yields
an incorrect critical behavior. These effects occur due to elec-
tronic and magnetic correlations, which are not accounted by
the Stoner theory.

Some drawbacks of the Stoner theory were improved
by spin-fluctuation approaches, such as Murata-Doniach [7],
Moriya [8] theory, etc. These approaches account for the
effect of correlations by considering the contribution of the
paramagnon interaction to the magnetic susceptibility. While
Murata-Doniach theory reproduces the Curie-Wess law, it
accounts only for the static spin correlations. The dynamic
spin correlations were accounted by Moriya theory, which
yields the temperature T dependence of magnetic suscepti-
bility ∝ 1/(T 4/3 − T 4/3

C ) (TC being the Curie temperature),
which is close to the Curie-Weiss law. The Moriya theory,
based on the bosonic mean-field approximation, was justi-
fied within the Hertz-Millis renormalization group approach
[9,10] and it was shown that Moriya theory yields qualita-
tively correct results since the effective dimension d + z = 6
for the cubic itinerant ferromagnets (z = 3 is the dynamic

critical exponent) is larger than the upper critical dimension
dc = 4 of the φ4 theory.

Yet, the spin-fluctuation approaches consider an effect of
only a single (particle-hole) channel of electron interaction,
which represents the paramagnon contribution. At the same
time, it was argued that for two-dimensional systems, the
singular behavior of the density of states near the Fermi level
yields an interplay of different channels of electron interac-
tions [11–13]. In three dimensions, peaks of the density of
states that originate from the so called “giant” or “higher-
order” van Hove singularities (vHs), play the important role
of the ferromagnetism formation [14–19]. These singularities
originate from vanishing of some inverse masses of electronic
dispersion at van Hove points, which makes the dispersion
effectively two- or one-dimensional. A number of band struc-
ture investigations point out appearing van Hove singularities
of electron density of states, which play the important role
for the physics of itinerant magnets. For ZrZn2, the peak of
density of states is formed by the vicinity of L point of the
Brillouin zone [2,20–22], while for Ni3Al, the van Hove point
R produces the peak in the density of states [23]. In nickel,
which is a stronger metallic magnet, there is a flat band in
the vicinity of L point of the Brillouin zone [24]. For bcc
(body centered cubic) iron eg derived band appears to be flat
in several direction which, together with Hund coupling JH,
results in the local moment formation [25,26].

A large enough value of the density of states (DOS)
at the Fermi level, occurring due to vHs, leads to the
ferromagnetic ground state according to the Stoner theory
[5,6]. Therefore, on one hand, the fundamental origin of
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itinerant ferromagnetism is the presence of van Hove sin-
gularities of the itinerant electron electronic dispersion. On
the other, the van Hove singularities induce the interplay of
different channels of electron scattering and, therefore, require
going beyond the spin fluctuation approaches. In particular,
the Kanamori screening [27] is expected to be particularly
important near van Hove singularities, see also Refs. [28–30].

In this respect, dynamical mean-field theory (DMFT) pro-
vides a possibility for studying the effect of local electronic
correlations on ferromagnetism in the single-band [31,32]
and multiband [2,24,25,33,34] models. In particular, the prob-
lem of ferromagnetism formation in the single-band Hubbard
model on fcc (face centered cubic) lattices was considered
within DMFT [31] in cases (i) d = ∞ at the ratio of next-
nearest and nearest neighbor hopping parameters t ′/t = 1/2
(which provides a giant one-dimensional-like van Hove sin-
gularity at the bottom of the band) and (ii) d = 3 at t ′ = t/4
which yields a wide and moderate-valued DOS plateau in the
vicinity of band bottom (see also Ref. [18]). While in case (i)
wide ferromagnetic region was found for Coulomb interaction
parameter U ∼ 7t , in case (ii) ferromagnetism was not found
at U ∼ 14t , but found at U ∼ 21t . These DMFT results imply
that ferromagnetic ordering for the nondegenerate model in
the absence of strong peak of density of states can be stable
only at very large interaction parameter U values. However,
the treatment of the nonlocal effects is beyond the scope of
the dynamical mean-field theory. Moreover, a generalization
of the Stoner theory to treat the spin spiral instability and Néel
antiferromagnetism reveals also that in a major part of the
phase diagram, the spiral phase is even more preferable than
the ferromagnetic one [35–37]. Therefore the theory of itiner-
ant ferromagnetism should also treat its competition with the
other type of magnetic orderings, including incommensurate
ones.

A tool allowing to treat both, the interplay of different
channels of electron interaction and the competition of fer-
romagnetic and incommensurate correlations is the functional
renormalization group (fRG) technique, which is a powerful
method for treatment of correlation effects [12,13,38–51]. The
fRG directly takes into account nonlocal electron correlations
which are of a great importance in the case of weak itinerant
magnetism. This approach manifested its success for consid-
eration of the problem of ferromagnetism of two-dimensional
Hubbard model due to the closeness of the Fermi level to
logarithmic van Hove singularity [11,13,42,47,48]. It was
found that necessary condition for ferromagnetism formation
is its “parameteric separation” from other types of instabilities
like superconducting or antiferromagnetic one, which can be
achieved by a strong curvature of the Fermi surface caused by
large t ′/t , where t (t ′) is the nearest- (next-nearest-) neighbor
hopping parameter (see also Refs. [36,52,53]). The ferromag-
netic instability is enhanced in the flat band case, when one of
the inverse masses of the electronic dispersion vanishes. This
case in three dimensions, corresponding to higher-order van
Hove singularity, represents therefore a certain interest for the
investigation.

While the early fRG approaches for fermionic systems
were based on the patch parametrization of electron interac-
tion vertices, it was suggested by Husemann and Salmhofer
[45] to parametrize the flow of each interaction channel by the

bosonic momentum (and possibly frequency) transfer, while
the remaining dependence on two fermionic momenta and
frequencies can be accounted less accurately via their pro-
jections onto some restricted set of basis functions. This idea
was further developed within the truncated unity functional
renormalization group approach [50], which suggests the pro-
jection of the “transverse” channels onto the same set of
basis functions, which greatly simplifies calculations. Finally,
recently the formulation of the approach of Husemann and
Salmhofer in terms of the triangular boson-fermion vertices
and the reminder was proposed [51].

These recent developments give a possibility to study
itinerant ferromagnetism of the three-dimensional fermionic
systems with sufficiently small number of flowing vertices. In
the present paper, we investigate the formation of ferromag-
netism on fcc lattice in the presence of extended van Hove
singularities. In particular, we study (i) how the strength of the
van Hove singularity affects stability of the ferromagnetism;
(ii) what is the main destructive factor of ferromagnetism in
three dimensions: A competition with incommensurate mag-
netic order or the competition with the paramagnetic phase,
and (iii) how important is the effect of screening of Coulomb
interactions.

To study the above mentioned problems, we present a study
of the evolution of magnetic and electronic properties with
decreasing temperature within 1PI fRG for the nondegenerate
Hubbard model on the fcc lattice. The plan of the paper is
the following. In Sec. II, the model and fRG equations are
presented. In Sec. III, we present and discuss the numerical
results. In Sec. IV, we conclude the paper.

II. THE MODEL AND RG EQUATIONS

A. The model

We consider the Hubbard model with the Hamiltonian

H =
∑
kσ

εkc+
kσ ckσ

+ U

2N

∑
k1k2k3k4,σσ ′

c+
k1σ

c+
k2σ ′ck3σ ′ck4σ δk1+k2,k3+k4 , (1)

where εk is an electronic dispersion, U is the Hubbard on–site
interaction, N is lattice site number, δ is the Kronecker δ

symbol, ckσ and c+
kσ

are the electron destruction and creation
operators, respectively. We consider electronic dispersion on
the face-centered cubic lattice with nearest- (unity), next-
nearest τ , and next-next-nearest τ ′ hoppings:

εk(τ, τ ′) = −4

(
cos

kx

2
cos

ky

2
+ cos

kx

2
cos

kz

2

+ cos
ky

2
cos

kz

2

)
+ 2τ (cos kx + cos ky + cos kz )

+ 4τ ′(cos kx cos ky + cos kx cos kz + cos ky cos kz),

(2)

where the lattice constant is put to unity.

115105-2



FERROMAGNETIC INSTABILITY IN ITINERANT FCC … PHYSICAL REVIEW B 107, 115105 (2023)

FIG. 1. τ ′ dependence of van Hove energies at τ = −0.13.

B. van Hove singularities

We are interested in studying itinerant magnetism induced
by higher-order van Hove singularities. For itinerant ferro-
magnets on fcc lattice, peculiarities of the dispersion in the
vicinity of L(π, π, π ) point represent certain interest. To in-
vestigate the contribution of the vicinity of L(π, π, π ) point
to DOS, we expand the Eq. (2) as εk(τ, τ ′) = εkL (τ, τ ′) +
(τ − 4τ ′)q2 − qyqz − qzqx − qxqy, where k = kL + q and
εkL (τ, τ ′) = 6(−τ + 2τ ′). Since the eigenvalues of this q-
quadratic form (inverse masses) are m−1

L,1 = 1 + 2τ − 8τ ′

(doubly degenerate) and m−1
L,2 = 2(−1 + τ − 4τ ′), we obtain

the condition on giant (quasi-one-dimensional-like) van Hove
singularity at

τ ′
c(τ ) = 1

8
+ τ

4
. (3)

The investigation of the electronic dispersion in the vicin-
ity of L point at τ ′ �= τ ′

c(τ ) (see Appendix A) yields the
following topological transition in the profile of isoenergy
surfaces: While at τ ′ < τ ′

c(τ ) we have single van Hove
point L with finite masses, at τ ′ > τ ′

c(τ ) the van Hove
point L splits into two van Hove points L1 = (π − δk1, π +
δk1, π ) (on the face of the Brillouin zone) and L2 = (π −
δk2, π − δk′

2, π − δk′
2), where δk1 � 2

√
δτ ′/τ ′, δk2(τ, τ ′)

≈ −4
√

δτ ′/(3τ ′), δk′
2(τ, τ ′) ≈ 2

√
δτ ′/(3τ ′) at small δτ ′ =

τ ′ − τ ′
c. The energies of these van Hove points as functions

of τ ′ at τ = −0.13 are shown in Fig. 1. One can see that
despite the fact that L1,2 points are well separated in re-
ciprocal space, their energies EL1,2 are very close and their
difference increases only slowly with increasing of τ ′. This
scenario of high-order van Hove point splitting was earlier
found for cubic lattices with the dispersion, containing only
nearest- and next-nearest-neighbor hoppings [15,16,18]. Us-
ing the tetrahedron method [54], we calculate numerically
the density of states ρ(ε, τ, τ ′) = ∑

k δ(ε − εk(τ, τ ′)), see
Fig. 2(a). Here and below we include the factor 1/N into
the definition of the sum over Brillouin zone. One can see
that the plateau with finite but rather high value of den-
sity of states occurs in the energy interval [EL1 , EL2 ]. At
τ ′ = τ ′

c(τ ), where τ ′
c(τ ) is determined by the Eq. (3), the

DOS has a logarithmic van Hove singularity: ρ(ε, τ, τ ′
c(τ )) ∼

8/(π2√3(1 + 2τ )) ln(4/|ε − εkL (τ, τ ′
c)|) (see Appendix A).

We also compare the above discussed van Hove singular-
ities to the case of high-order van Hove singularity for the
dispersion on the fcc lattice with only nearest and next-nearest
hopping (τ ′ = 0) [18]. In this case, the high-order van Hove
point is the 	 point of the Brillouin zone; the van Hove
singularity occurs when τ = 1 and it is located at the bottom
of the band, ρ(ε, 1, 0) ∝ (ε + 6)−1/4, see Fig. 2(b). While
τ deviates from 1, the van Hove point splits onto the van
Hove structure corresponding to the points Σ∗ and Δ∗, which
lie on high-symmetry directions Σ (p, p, 0) and Δ(p, 0, 0) in
the vicinity of the 	 point and have close energies provided
that τ − 1 � 1. While the energy interval [EΣ∗ , EΔ∗ ] does
not formally correspond to divergence of DOS, it can provide
rather high value of DOS, which is of a great importance for
itinerant ferromagnetism stability. See an example of DOS in
Fig. 2(b) at τ = 1.05 and more details in Ref. [18].

C. fRG equations

We use the 1PI fRG equations [38] for 1PI 2-particle ver-
tex, which in the absence of magnetic field and magnetic order

FIG. 2. (a) Density of states ρ(ε, τ, τ ′) plot as a function of ε for τ = −0.13, τ ′ = 0.0925 and τ ′ = 0.13. In the inset, ρ(ε, τ, τ ′) at
τ ′ = 0.13 in the energy window near the van Hove structure, corresponding to the energies EL1 and EL2 (marked by dashed vertical lines) is
shown. (b) The density of states in the vicinity of the bottom of the band for τ ′ = 0, τ = 1 (red solid line) and τ = 1.05 (black solid line).
For the case τ = 1.05, the positions of van Hove structure energies [18] EΣ∗ = −5.736, EΔ∗ = −5.71 and E	 = −5.7 are shown by vertical
dashed lines.
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[i.e., for the SU(2) symmetry] has the form

	σ1σ2;σ3σ4 (p1, p2, p3) = V (p1, p2, p3)δσ1σ3δσ2σ4

− V (p1, p2, p4)δσ1σ4δσ2σ3 . (4)

The momentum dependence of the vertex V is of particular
interest. To parametrize this, we introduce following C. Huse-
mann and M. Salmhofer [45] bosonic (l) and fermionic (k1,2)
momenta in various channels:

lP = p1 + p2, kP
1 = (p1 − p2)/2, kP

2 = (p4 − p3)/2, (5)

lM = p1 − p3, kM
1 = (p1 + p3)/2, kM

2 = (p2 + p4)/2, (6)

lK = p3 − p2, kK
1 = (p1 + p4)/2, kK

2 = (p2 + p3)/2. (7)

Within the channel decoupling representation

V (p1, p2, p3) = U − �SC
(
lP, kP

1 , kP
2

) + �M
(
lM, kM

1 , kM
2

)
+ 1

2�M
(
lK, kK

1 , kK
2

) − 1
2�K

(
lK, kK

1 , kK
2

)
,

(8)

we have the following equations for constituents of the
vertex V

�̇SC
(
lP, kP

1 , kP
2

) = −τpp(p1, p2, p3), (9)

�̇M
(
lM, kM

1 , kM
2

) = τ cr
ph(p1, p2, p3), (10)

�̇K
(
lK, kK

1 , kK
2

) = −2τ d
ph(p1, p2, p3) + τ cr

ph(p1, p2, p4),

(11)

where the derivative is taken with respect to the flow param-
eter s = ln(t/T ) and explicit expressions for τpp(p1, p2, p3),
τ d

ph(p1, p2, p3), and τ cr
ph(p1, p2, p3) are given in Appendix B.

In the following, we neglect the frequency dependencies of
the vertices, which is justified in the weak-coupling regime.
To treat the momentum dependencies, we apply truncated
unity fRG approach [50]. To this end, we define the projection
operators acting on functions of the momenta F (p1, p2, p3) as

F P
n,m(l) =

∑
kk′

fn(k) fm(k′)F
(

l
2

+ k,
l
2

− k,
l
2

− k′
)

, (12)

F M
n,m(l) =

∑
kk′

fn(k) fm(k′)F
(

l
2

+ k, k′ − l
2
, k − l

2

)
, (13)

F K
n,m(l) =

∑
kk′

fn(k) fm(k′)F
(

l
2

+ k, k′ − l
2
,

l
2

+ k′
)

, (14)

where a set of functions fn(k) constitute a basis in the cor-
responding Hilbert space. We apply these operators to Eqs.
(9)–(11). Using the projection rules (12) and (13), and insert-
ing representation of unity in the right-hand sides (r.h.s.), we
obtain the projected components of the r.h.s. (see Appendix B)

(τpp)P
n1,n2

(l) = ∑
m1,m2

V P
n1,m1

(l)χpp
m1,m2 (l)V P

m2,n2
(l), (15)

(
τ cr

ph

)M

n1,n2
(l) = ∑

m1,m2

V M
n1,m1

(l)χph
m1,m2 (l)V M

m2,n2
(l), (16)

where the explicit form of V P,M(l) is given by the Eqs. (12)
and (13) with F = V ,

χpp,ph
n,m (l) =

∑
p

fn(p) fm(p)
∑

ν

Lpp,ph(l, p), (17)

Lpp,ph(l, p) = −∂s[G(l/2 + p, ν)G(±l/2 ∓ p,∓ν)], (18)

G(p, ν) is the electron Green’s function, p = (p, ν). Finally,(
τ d

ph

)K

n1,n2
(l) = −2

∑
m1,m2

V K
n1,m1

(l)χph
m1,m2

(l)V K
m2,n2

(l)

+
∑

m1,m2

[Vex]K
n1,m1

(l)χph
m1,m2

(l)V K
m2,n2

(l)

+
∑

m1,m2

V K
n1,m1

(l)χph
m1,m2

(l)[Vex]K
m2,n2

(l), (19)

where the index “ex” corresponds to an interchange of third
and forth 4-vertex argument: Vex(l/2 + k1, k2 − l/2, l/2 +
k2) = V (l/2 + k1, k2 − l/2, k1 − l/2) and(

τ cr
ph,ex

)K

n1,n2
(l) =

∑
m1,m2

V M
n1,m1

(l)χph
m1,m2

(l)V M
m2,n2

(l), (20)

the explicit form of V K(l) is given by the Eq. (14) with F = V
and we have used F K

ex = F M.
Denoting matrices with respect to the projection indices

by bold capital letters, we rewrite Eqs. (9)–(11) in the matrix
form in terms of projections:

�̇
SC

(l) = −VP(l) · χpp(l) · VP(l), (21)

�̇
M

(l) = VM(l) · χph(l) · VM(l), (22)

�̇
K

(l) = (2VK(l) − VM(l)) · χph(l) · (2VK(l) − VM(l)),

(23)

where · means matrix multiplication. We consider the tem-
perature flow [12] with s = − ln T , G(p, ν) = T 1/2/(iν − ξp),
and ∑

ν

Lpp,ph(l, p) = ±∂s
f [ξp+l/2] − f [∓ξp−l/2]

ξp+l/2 ± ξp−l/2
. (24)

Here ξp = εp − μ (μ being the chemical potential), f [ξ ] =
1/(exp(ξ/T ) + 1) is the Fermi function. Since ∂s f [ξ ] =
ξ f ′[ξ ], we get

χpp,ph
n,m (l) = ±

∑
p

fn(p) fm(p)

× ξp+l/2 f ′[ξp+l/2] ± ξp−l/2 f ′[∓ξp−l/2]

ξp+l/2 ± ξp−l/2
, (25)

We restrict consideration to the trivial set of the (s-wave)
basis functions fm = const, which corresponds to momentum
averaging of the vertex taken in the “transverse” channels.
Thus, matrices with respect to projection indices reduce to
numbers. The fRG equations can be written in the following
explicit form within the channel decoupling scheme

�̇SC(q) = −V 2
SC(q)L+(q), (26)

�̇M(q) = +V 2
M(q)L−(q), (27)

�̇K(q) = +V 2
K (q)L−(q), (28)
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where

VSC(q) = U − �SC(q) + 3
2 �̄M − 1

2 �̄K, (29)

VM(q) = U + �M(q) − �̄SC + 1
2 �̄M − 1

2 �̄K, (30)

VK(q) = U − �K(q) − �̄SC + 3
2 �̄M + 1

2 �̄K, (31)

L±(q) = ±
∑

p

ξp+q/2 f ′
p+q/2 ± ξp−q/2 f ′

p−q/2

ξp+q/2 ± ξp−q/2
, (32)

and

�̄c ≡
∑

q

�c(q), c = SC, M, K. (33)

The fRG equations (26)–(28) form the system of ordinary
functional differential equations. These equations also allow
single-boson exchange decomposition [51], see Appendix C.
Below we present the procedure of numerical solution of the
equations (26)–(28) in details.

D. Numerical implementation

Since the polarization functions derivatives L±(q) are inde-
pendent of �SC,M,K(q), we calculate the scale s dependence
of L±(q) on a grid of s and q. The s dependence of L±(q)
is further interpolated by splines. We use the q grid in the
Brillouin zone with the number of reciprocal vector division
nq = 8, which corresponds to 29 different points in the part of
the Brillouin zone, irreducible by the point group symmetry.
We have verified that the results do not change qualitatively
for nq = 16. To perform integration over k in Eq. (32) we
consider adaptive division of each of the 6n3

q tetrahedrons in
the standard uniform grid of the Brillouin zone using TOMS
algorithm [55]. Here we take into in account the fact that
�SC,M,K(q) is a more smooth function of q, than the electronic
dispersion ξk, which details are of a great importance and
require using very dense (adaptive) k grid for integration
[see Eq. (32)]. The obtained functions L±(q) are used for
the solution of ordinary differential equations by Runge-Kutta
procedure for different values of U without recalculation of
L±. The divergence of �M(Q) at some scale s = s0 corre-
sponds to the phase transition into the ordered phase with
the wave vector Q and the corresponding critical temper-
ature (Curie temperature TC = exp(−s0) at Q = 0). The s
dependence of quantities L±(q) determines the fRG flow for
specified U . The most important is L−(q = 0) dependence,
see the examples of its scale dependence in Fig. 3. Nonmono-
tonic s dependence of L−(0) originates from the presence of
several energy scales of DOS. The first pair of the extrema
(0.5 � s � 1.5) corresponds to large scale feature of DOS
at 2.5 � ε � 3.5 and its is not sensitive to the variation of
the Fermi level position. The second pair of the extrema (at
3 � s � 5), which is present for μ = 2.123, is sensitive to
the Fermi level position and originates from the small scale
feature (van Hove plateau) of density of states at 2.167 � ε �
2.172. One can see that for μ far away from van Hove plateau,
L−(q = 0) becomes negative below some μ-dependent tem-
perature. Therefore below this temperature the formation of
ferromagnetic instability becomes impossible, see Eq. (27).
When for fixed U and the temperature TC(μ,U ) the condition

FIG. 3. The s dependence of L−(q = 0), see definition (32), at
τ = −τ ′ = −0.13, and different values of μ. Numbers in the legend
denote μ.

L−(q = 0) = 0 is fulfilled, TC jumps to zero which indicates
the first-order quantum phase transition.

Since the numerical complexity of calculation of L±(Q)
grows with decreasing temperature due to narrowing of ac-
tual integration region domain, only s � smax � 6 region is
accessible. For calculation of the phase diagrams, we calculate
fRG flows at several values of the chemical potential μ and
the dense grid of U , determining Curie temperature TC(μ,U ),
if it exists. Generally, the flow is stopped when the vertices
become large, which corresponds to magnetic instability, or
maximal available scale smax is achieved. If the ferromagnetic
component of the vertex �M(q = 0) is strongly enhanced at
the end of the flow, the extrapolation procedure is employed
for �M(q = 0) to determine TC beyond the available temper-
ature region.

III. RESULTS

In this section, we present and discuss numerical results of
the present fRG approach for different position of the Fermi
level and Coulomb interaction U .

We consider first the flow for τ = −τ ′ = −0.13. For
the Fermi level μ = EL2 = 2.17335t , corresponding to the
right edge of van Hove plateau (see Fig. 2), the fRG
flow of the vertices �SC(0) and �M(Q) for U = 4t
and symmetric wave vectors Q = 0, QX = (2π, 0, 0), QL =
(π, π, π ), QW = (2π, π, 0), QX1 = QX/2 is shown in Fig. 4.
The critical temperature of ferromagnetic instability TC man-
ifests itself by the diverging �M(Q = 0) component of the
vertex at s = sC. The substantial screening particle-particle
component of the vertex, �SC(Q = 0) ≈ (1.5 − 2)U is found
in the end of the flow. We actually do not find any notice-
able incommensurate or antiferromagnetic fluctuation to be
enhanced and competing with ferromagnetism formation. In
particular, from Fig. 4, one can see that �M(q) is not en-
hanced remarkable when q �= 0 for the chosen q points; we
have also verified that this holds in the entire Brillouin zone.
Therefore the ferromagnetic ordering is suppressed due to �̄

contributions into Eq. (22), but not due to competition with in-
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FIG. 4. Scale (temperature) dependence for components of the
vertex �SC(0) and �M(q) in units of U for various symmet-
ric q vectors for τ = −τ ′ = −0.13, μ = EL2 = 2.17335, U = 4t .
Double-dot-dashed line shows the RPA result. The Fermi level
corresponds to right edge of van Hove plateau, see Fig. 2(b). the
divergence of �M (Q = 0) corresponds to s = sC = 5.0.

commensurate �(q �= 0), in contrast to the mean-field studies
[36,37]. One can also see that the obtained Curie temperature
TC is much lower than the corresponding temperature in the
random phase approximation (RPA) due to screening of the
interaction in the particle-particle channel.

To show the necessity of having a pair of van Hove points,
we contrast the above discussed case τ ′ = 0.13 (a pair of
giant van Hove singularities yielding plateau of of DOS)
to the case τ ′ = τ ′

c = 0.0925 (weak van Hove singularity
ρ(ε, τ, τ ′

c(τ )) ∼ 8/(π2√3(1 + 2τ )) ln(4/|ε − εkL (τ, τ ′
c)|),

see Sect. II B). One can see from Fig. 5 that at U = 5t
no divergence of �M(Q = 0) is achieved. In this case,
the divergence is suppressed by faster growth of the

0

 0.5

1

 1.5

2

 2.5
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-4 -3 -2 -1 0 1 2 3 4 5

U = 5t

Φ
/U

s

ΦSC(0)
ΦM(0)

ΦM(0), RPA
ΦM(QX1

)
ΦM(QL)

ΦM(QW)
ΦM(QX)

FIG. 5. τ = −0.13, τ ′ = +0.0925, μ = 1.89. Scale (tempera-
ture) dependence for components of 4-vertex �SC(Q = 0), �M(q)
in units of U for symmetric vectors q, U = 5t . Double-dot-dashed
line shows the RPA result. The Fermi level corresponds to van Hove
singularity at μ = 1.89t , see Fig. 2(a).

FIG. 6. Phase diagram μ − TC for τ = −τ ′ = −0.13 at different
U . T RPA

C (μ,Ueff ) is shown by dashed lines (see text). The arrows
mark position of the plateau of the density of states.

screening component �SC(Q = 0), which also reaches
considerable value ∼(1.5 − 2)U . The role of incommensurate
or antiferromagnetic correlations is the same as in the
case τ = −τ ′ = −0.13, none of them compete with the
ferromagnetic instability. Therefore the plateau of the density
of states, or, at least, stronger than logarithmic divergence
of the density of states, seems to be the necessary condition
for ferromagnetism formation in three dimensions in the
single-band Hubbard model. This conclusion agrees with the
results of Ref. [31].

We show the obtained phase diagram TC(μ,U ) for the case
τ = −τ ′ = −0.13 in Fig. 6. The chosen interval of the chemi-
cal potentials μ is taken around vHS plateau, corresponding to
the fillings n ∈ (0.65, 0.68) per one spin projection. We also
show the line L−(q = 0) = 0 as a function of temperature
and μ. One can see that as expected, the phase transition
temperatures increase with U ; TC(μ,U ) is also largest for
the Fermi level at the narrow van Hove plateau and decrease
when moving away from the plateau. The obtained quantum
phase transitions are of the first-order (corresponding to the
sudden disappearance of TC with changing μ) due to change
of the sign of L−(q = 0). It is interesting that in the considered
case the lines of the first-order transitions form themselves the
“quantum critical fan” which begins at T = 0 at the position
of a narrow van Hove plateau. At strong U substantial values
of TC(μ,U ) are obtained therefore far beyond the position of
the plateau.

The obtained values of Curie temperature are almost
an order of magnitude smaller than the Curie tempera-
ture in RPA. To compare the obtained results with RPA
we therefore introduce an effective Coulomb interaction
Ueff (cf. Ref. [48]). The interaction Ueff is determined to
match T RPA

C (μ∗,Ueff ) = TC(μ∗,U ) for some fixed μ = μ∗
(for τ = −τ ′ = −0.13 we choose μ∗ = EL2 ). From Fig. 6,
one can see that T RPA

C (μ,Ueff ) only weakly deviates from
the results of the fRG approach. The U dependence of the
resulting Ueff is shown in Fig. 7. We have verified that sim-
ple estimate of Ueff = U/(1 + U�pp(q = 0)) with �pp(q) =∑

p{ f [−ξp−q/2] − f [ξp+q/2]}/(ξp+q/2 + ξp−q/2), correspond-
ing to the summation of ladder particle-particle diagrams,
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FIG. 7. U dependence of Ueff for the cases τ = −τ ′ = −0.13
and τ = 1.05, τ ′ = 0.

yields much smaller (up to 4 times) value Ueff , than obtained
within the fRG approach. Despite the fact that this approach
was often used for screening strength estimation, our results
imply impossibility of separate renormalization of Coulomb
interaction in different channels, which also shows impor-
tant effect of the interference of different electron scattering
channels.

In Fig. 8, we show that the similar dome-shaped form of
the phase diagram in terms of μ and TC is obtained for τ =
1.05 and τ ′ = 0. The chosen interval of chemical potentials
μ is taken around vHS plateau, corresponding to fillings n ∈
(0.03, 0.06) per one spin projection. In this case despite, the
relatively broad van Hove plateau, the deviation of μ from van
Hove structure [see Fig. 2(b)] results in a rapid decay of TC.
The role of incommensurate correlations here is the same as in
above considered cases for τ = −0.13, they are not enhanced
considerably. Choosing μ∗ = −5.72t for the determination of
Ueff , we see from Fig. 8 that the obtained T RPA

C (μ,Ueff ) for the
case τ = 1.05, τ ′ = 0 almost perfectly reproduces the results
of fRG approach in the region TC > 0. For the case τ = 1.05,

FIG. 8. The same as Fig. 6 at τ = 1.05 and τ ′ = 0. The value
Ueff for RPA is adjusted to reproduce the same TC at μ = −5.72t .
The arrows mark position of the plateau of the density of states.

τ ′ = 0 the renormalization of the interaction U is weaker than
for the case τ = −τ ′ = −0.13 (see Fig. 7), which seems to be
related to smaller density of states in the former case.

IV. CONCLUSIONS

In this study, we present the fRG treatment of an instability
towards ferromagnetic order in the Hubbard model, controlled
by the Fermi level being in the vicinity of van Hove singularity
and the on-site Coulomb interaction.

For the densities of states with the plateau, formed by the
higher-order van Hove singularities, we find ferromagnetic
instability for the Fermi level being in the vicinity of the
plateau, with the Curie temperature decreasing with moving
the Fermi level away from the plateau. We find the first-order
quantum phase transition to paramagnetic state with further
moving the Fermi level away from the plateau.

In the considered case of van Hove singularities in fcc
lattices, incommensurate correlations are not remarkably
enhanced. This considerably distinguishes the considered
systems from the case of ferromagnetism formation in two-
dimensional case with large t ′/t ∼ 0.4–0.5 where strong
competition with long-wave incommensurate magnetic fluc-
tuations was found [47,52,53]. We therefore find that in the
three-dimensional case, the main cause of ferromagnetism
suppression is the particle-particle screening.

The analysis of fRG flows in the case of logarithmic
singularity of density of states (τ ′ = 0.13 and τ ′′ = 0.0925)
with the Fermi level being at van Hove singularity yields
the absence of ferromagnetic instability well below available
temperature scales (s < smax = 5.5 − 6.0). One can state that
wide plateau with large value of density of states caused
by van Hove structure (or, at least, stronger divergence of
the density of states) is necessary to stabilize the ferromag-
netic instability in the three-dimensional case, and logarithmic
van Hove singularity is not sufficient due to strong particle-
particle screening.

In the present paper, we have considered s-wave basis
function only, which implies averaging of the dependence of
vertices on fermionic momenta. In future studies other basis
functions, e.g., peaked at the van Hove singularity points, can
be included. This may allow to describe the effect of stronger
fermionic momentum dependence of vertices near van Hove
points.

In realistic materials, the Hund exchange interaction plays
important role. On one hand, it provides (partial) formation
of local magnetic moments, such that the local dynamic
two-particle correlations, not accounted in the present study
become important (see, e.g., Refs. [24,25]). On the other hand,
Hund exchange enhances the tendency towards ferromagnetic
order, see, in particular, Ref. [34]. Studying the effect of
Hund exchange in realistic materials within the nonlocal ex-
tensions of dynamical mean-field theory [56], in particular,
the DMF2RG approach [57], is therefore of certain interest.
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APPENDIX A: ELECTRON DISPERSION AND GIANT
VAN HOVE SINGULARITIES OF DOS

At τ ′ < τ ′
c, only van Hove L point is present. The investi-

gation of the dispersion (2) in the vicinity of L point at τ ′
c < τ ′

yields the following van Hove points: (i) L1(π − δk1, π +
δk1, π ) (on the face of Brillouin zone), where

δk1(τ, τ ′) = 2 arcsin

√
1 − τ ′

c(τ )

τ ′ . (A1)

(ii) L2(π − δk2(τ, τ ′), π − δk′
2(τ, τ ′), π − δk′

2(τ, τ ′)), where

δk2(τ, τ ′) = −2 arcsin
2s(τ, τ ′)

1 + 8δτ ′(τ ) − 16τ ′s2(τ, τ ′)
, (A2)

δk′
2(τ, τ ′) = 2 arcsin s(τ, τ ′), (A3)

where δτ ′(τ ) = τ ′ − τ ′
c(τ ) and s = s(τ, τ ′) is a root of the

equation

δτ ′ + τ ′s2 + 4(1 + 4δτ ′(τ ) − 4τ ′s2)(−δτ ′(τ )

+ 2τ ′s2)(1 + 4δτ ′(τ ) − 8τ ′s2) = 0. (A4)

At small δτ ′, we can simplify this equation by neglecting
small terms in brackets compared to 1, to obtain

−3δτ ′(τ ) + 9τ ′s2 = 0, (A5)

δk2(τ, τ ′) ≈ −2 arcsin 2

√
δτ ′

3τ ′ , (A6)

δk′
2(τ, τ ′) ≈ 2 arcsin

√
δτ ′

3τ ′ . (A7)

Note that at small δτ ′ we have δk2(τ, τ ′) ≈ 2δk′
2(τ, τ ′) which

implies that L2 point stays closely to the face of Brillouin
zone at small δτ ′. The energies of these van Hove points as
a function of τ ′ are shown in Fig. 1 in the main text. The
deviations δk1(τ, τ ′), δk2(τ, τ ′), δk′

2(τ, τ ′) as functions of τ

are shown in Fig. 9. One can see that the energy levels of
kL1 , kL2 points are very close and the distance between these

FIG. 9. k deviations of van Hove position, see Eqs. (A1)–(A3).

points increases slowly with increasing of τ ′. This scenario of
high-order van Hove point destruction was earlier found for
cubic lattices for the dispersion in the nearest and next-nearest
approximation [15,16,18].

In the case τ ′ = τ ′
c, see Eq. (3), we expand the dispersion

in the vicinity of L point up to fourth-order terms with respect
to both k� and q⊥

εkL+�k = 3
2 (1 − 2τ ) − 3

2 k2
Λ + 1

96

(
12k2

Λq2
⊥ + 8(1 + τ )k4

Λ

+ 3(1 + 2τ )q4
⊥ + 2

√
2(1 + 4τ ) sin 3ϕkΛq3

⊥
)
,

(A8)

here we parametrize the deviation from L point as �k =
q⊥ cos ϕe1 + q⊥ sin ϕe2 + kΛe3, where the orthonormal
basis e1(+1/

√
2, 0,−1/

√
2), e2(−1/

√
6,+2/

√
6,−1/

√
6),

e3(+1/
√

3,+1/
√

3,+1/
√

3) was used. For convenience, we
retain only leading contributions to εkL+�k with respect to k�

and q⊥ dependence:

δεkL+�k ≈ εkL+�k − 3

2
(1 − 2τ ) − 3

2
k2
Λ + 1 + 2τ

32
q4

⊥. (A9)

It can be verified that neglected terms in Eq. (A9) do not
change substantially the δεkL+�k in a rather extended vicinity
of the L point. Since here q2

⊥ plays a similar role as k� we
introduce the same (up to numerical factors) cutoff κ for them:

(3/2)k2
�,

1 + 2τ

32
q4

⊥ < κ2 � 1, (A10)

From the DOS definition, we get the contribution of eight
regions near the L point and corresponding points shifted by
reciprocal lattice constants. We obtain

�ρ(δε) ≈ 8π

VBZ

∫ √
2/3κ

−√
2/3κ

dk�

∫ √
32κ/(1+2τ )

0
dq⊥q⊥

× δ

(
δε + 3

2
k2
Λ − 1 + 2τ

32
q4

⊥

)
, (A11)

where VBZ = 2π3 being a Brillouin zone volume. So we ob-
tain that in this case the logarithmic giant van Hove singularity

�ρ(δε) ≈ 8

π2
√

3
√

1 + 2τ
ln

4κ2

|δε| . (A12)

APPENDIX B: RG EQUATIONS

We consider the one-loop truncation of fRG equations for
V (p1, p2, p3) [38]

∂sV (p1, p2, p3) = τpp(p1, p2, p3) + τ d
ph(p1, p2, p3)

+ τ cr
ph(p1, p2, p3), (B1)
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where

τpp(p1, p2, p3) = −
∑

p

∂s[G(p)G(p1 + p2 − p)]V (p1, p2, p)V (p1 + p2 − p, p, p3), (B2)

τ cr
ph(p1, p2, p3) = −

∑
p

∂s[G(p)G(p + p3 − p1)]V (p1, p + p3 − p1, p3)V (p, p2, p + p3 − p1) (B3)

τ d
ph(p1, p2, p3) =

∑
p

∂s[G(p)G(p + p2 − p3)][2V (p1, p + p2 − p3, p)V (p, p2, p3)

−V (p1, p + p2 − p3, p1 + p2 − p3)V (p, p2, p3) − V (p1, p + p2 − p3, p)V (p, p2, p + p2 − p3)]. (B4)

Here s is fRG scale parameter, p = (iνn, p) is a 3-momentum, νn = π (2n + 1)T being the fermionic Matsubara frequency with
integer np and p being a vector in the Brillouin zone. Analogous notations hold for pi. We use the shorthand notation∑

p

= T
∑
νn,p

. (B5)

Three contribution in Eq. (B1) corresponds to particle-particle τpp [see Eq. (B2)], direct particle-hole τ d
ph [see Eq. (B4)], and

crossed particle-hole direct particle-hole τ cr
ph [see Eq. (B3)].

We rewrite the Eq. (B2) through momenta l, k1, k2, introduced for particle-particle (P) channel by Eq. (5), performing the
variable change p → l/2 − p

τpp(l/2 + k1, l/2 − k1, l/2 − k2) =
∑

p

Lpp(l, p)V (l/2 + k1, l/2 − k1, l/2 − p)V (l/2 + p, l/2 − p, l/2 − k2), (B6)

Arguments of both V factors are the same as the arguments on the left hand side. Following Ref. [50], we use the identity

δkk′ =
∑

n

fn(k) fn(k′) (B7)

to obtain

τpp(l/2 + k1, l/2 − k1, l/2 − k2) =
∑

m1,m2,n1,n2

fn1 (k1) fn2 (k2)
∑

p

fm1 (p)Lpp(l, p) fm2 (p)

×
∑
k′

1p′
1

fn1 (k′
1)V (l/2 + k′

1, l/2 − k′
1, l/2 − p′

1) fm1 (p′
1)

×
∑
k′

2p′
2

fn2 (k′
2)V (l/2 + p′

2, l/2 − p′
2, l/2 − k′

2) fm2 (p′
2). (B8)

Following the same algorithm for the crossed particle-hole (M) channel, for the contribution (B3), we get

τ cr
ph(l/2 + k1, k2 − l/2, k1 − l/2) =

∑
m1,m2,n1,n2

fn1 (k1) fn2 (k2)
∑

p

fm1 (p)Lph(l, p) fm2 (p)

×
∑
k′

1p′
1

fn1 (k′
1)V (l/2 + k′

1, p′
1 − l/2, k′

1 − l/2) fm1 (p′
1)

×
∑
k′

2p′
2

fn2 (k′
2)V (l/2 + p′

2, k′
2 − l/2, p′

2 − l/2) fm2 (p′
2). (B9)

Now we consider the projection of the expression (B4) onto the channel K [see Eq. (7)]. We have

τ d
ph(l/2 + k1, k2 − l/2, l/2 + k2) = −

∑
m1,m2,n1,n2

fn1 (k1) fn2 (k2)
∑

p

fm1 (p)Lph(l, p) fm2 (p)

×
∑

k′
1p′

1k′
2p′

2

[2 fn1 (k′
1)V (l/2 + k′

1, p′
1 − l/2, p′

1 + l/2) fm1 (p′
1)

× fn2 (k′
2)V (p′

2 + l/2, k′
2 − l/2, l/2 + k′

2) fm2 (p′
2)

− fn1 (k′
1)V (l/2 + k′

1, p′
1 − l/2, k′

1 − l/2) fm1 (p′
1)

× fn2 (k′
2)V (p′

2 + l/2, k′
2 − l/2, l/2 + k′

2) fm2 (p′
2)

− fn1 (k′
1)V (l/2 + k′

1, p′
1 − l/2, p′

1 + l/2) fm1 (p′
1)

× fn2 (k′
2)V (p′

2 + l/2, k′
2 − l/2, p′

2 − l/2) fm2 (p′
2)]. (B10)
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The second term in Eq. (11) contains momentum arguments suitable for projection in K channel

τ cr
ph(k1 + l/2, k2 − l/2, k1 − l/2) =

∑
p

Lph(l, p)V (k1 + l/2, p − l/2, k1 − l/2)V (p + l/2, k2 − l/2, p − l/2). (B11)

The third momentum argument of both V factors does not have the form of K channel, see Eq. (14), therefore we, as above, inter-
change third and forth momentum, V (k1 + l/2, p − l/2, k1 − l/2) = Vex(k1 + l/2, p − l/2, p + l/2), V (l/2 + p, k2 − l/2, p −
l/2) = Vex(l/2 + p, k2 − l/2, k2 + l/2). Again using the identity (B7), we get

τ cr
ph(l/2 + k1, k2 − l/2, k1 − l/2) =

∑
n1,n2

fn1 (k1) fn2 (k2)
∑

p

fm1 (p) fm2 (p)Lph(l, p)

×
∑
k′

1p′
1

fn1 (k′
1) fm1 (p′

1)Vex
(
l/2 + k′

1, p′
1 − l/2, p′

1 + l/2
)

×
∑
k′

2p′
2

fn2 (p′
2) fm2 (k′

2)Vex
(
p′

2 + l/2, k′
2 − l/2, k′

2 + l/2
)
. (B12)

We consider the projection of the interaction in Eq. (8). The dependence of vertex V on the fermionic frequencies in all
channels is out of the scope of our projection procedure and is not considered in our study. For convenience, we introduce

�M−K = �M − �K, (B13)

using the fact that the contributions of channels M and K enters the last two terms of Eq. (8) in the same way. For the P-channel
projection, we use the representation of the interaction, entering the second and third line of Eq. (B8)

VP(l; k1, k2) = U − �SC(l, k1, k2) + �M

(
k1 + k2,

l + k1 − k2

2
,

l − k1 + k2

2

)

+ 1

2
�M−K

(
k1 − k2,

l + k1 + k2

2
,

l − k1 − k2

2

)
, (B14)

therefore we derive Eq. (21) with

V P
n1n2

(l) = Uδn1,0δn2,0 − �SC
n1n2

(l) +
∑
k1k2

fn1 (k1) fn2 (k2)�M

(
k1 + k2,

l + k1 − k2

2
,

l − k1 + k2

2

)

+ 1

2

∑
k1k2

fn1 (k1) fn2 (k2)�M−K

(
k1 − k2,

l + k1 + k2

2
,

l − k1 − k2

2

)
. (B15)

Analogously for M channel, we derive Eq. (22) with

VM(l; k1, k2) = U − �SC

(
k1 + k2,

l + k1 − k2

2
,

l + k2 − k1

2

)
+ �M(l, k1, k2)

+ 1

2
�M−K

(
l + k1 − k2,

l + k1 + k2

2
,
−l + k1 + k2

2

)
(B16)

and

V M
n1n2

(l) = Uδn1,0δn2,0 −
∑
k1k2

fn1 (k1) fn2 (k2)�SC

(
k1 + k2,

l + k1 − k2

2
,

l + k2 − k1

2

)
+ �M

n1n2
(l)

+ 1

2

∑
k1k2

fn1 (k1) fn2 (k2)�M−K

(
l + k1 − k2,

l + k1 + k2

2
,
−l + k1 + k2

2

)
. (B17)

For K channel, we derive Eq. (23) with

VK(l; k1, k2) = U − �SC

(
k1 + k2,

l + k1 − k2

2
,
−l + k1 − k2

2

)

+ �M

(
k1 − k2,

l + k1 + k2

2
,
−l + k1 + k2

2

)
+ 1

2
�M−K(l, k1, k2) (B18)
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and

V K
n1n2

(l) = Uδn1,0δn2,0 −
∑
k1k2

fn1 (k1) fn2 (k2)�SC

(
k1 + k2,

l + k1 − k2

2
,
−l + k1 − k2

2

)

+
∑
k1k2

fn1 (k1) fn2 (k2)�M

(
k1 − k2,

l + k1 + k2

2
,
−l + k1 + k2

2

)
+ 1

2
�M−K

n1n2
(l). (B19)

APPENDIX C: SINGLE-BOSON EXCHANGE
DECOMPOSITION

Equations (26)–(28) allow single-boson exchange decom-
position of the vertex function through triangular (Hedin,
“Yukawa”) vertex functions γSC,M,K(q) and bosonic propaga-
tors DSC,M,K(q) [51]

U − �SC(q) = γ 2
SC(q)DSC(q) + RSC(q), (C1)

U + �M(q) = γ 2
M(q)DM(q) + RM(q), (C2)

U − �K(q) = γ 2
K(q)DK(q) + RK(q), (C3)

where the triangular vertex functions assumed to be in-
dependent on fermionic momenta. Retaining of residue
contributions RSC,M,K(q) correspond to taking into account of
so-called “box” diagrams for 4-vertex (their dependence on
fermionic momenta is also neglected).

Instead of one equation in each channel, we get three ones
(for D, γ and R). The equations for D read

−ḊSC(q) = −γ 2
SC(q)D2

SC(q)L+(q), (C4)

ḊM(q) = −γ 2
M(q)D2

M(q)L−(q), (C5)

−ḊK(q) = −γ 2
K(q)D2

K(q)L−(q). (C6)

The equation for γ read

−γ̇SC(q) = −γSC(q)DSC(q)
(
RSC(q) + 3

2 �̄M − 1
2 �̄K

)
× L+(q), (C7)

γ̇M(q) = −γM(q)DM(q)
(
RM(q) − �̄SC + 1

2 �̄M − 1
2 �̄K

)
× L−(q), (C8)

−γ̇K(q) = −γK(q)DK(q)
(
RK(q) − �̄SC + 3

2 �̄M + 1
2 �̄K

)
× L−(q). (C9)

The equation for R read

−ṘSC(q) = −(
RSC(q) + 3

2 �̄M − 1
2 �̄K

)2
L+(q), (C10)

ṘM(q) = −(
RM(q) − �̄SC + 1

2 �̄M − 1
2 �̄K

)2
L−(q), (C11)

−ṘK(q) = −(
RK(q) − �̄SC + 3

2 �̄M + 1
2 �̄K

)2
L−(q). (C12)
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