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Nontrivial effect of spin-orbit coupling on the intrinsic resistivity of ferromagnetic gadolinium
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As a metallic material of a heavy atom, elemental gadolinium (Gd) has many extraordinary electronic
properties associated with the strong correlation and spin-orbital coupling (SOC). Previous studies have shown
that the resistivity of ferromagnetic (FM) Gd due to the spin fluctuation scattering is comparable to the
intrinsic resistivity limited by electron-phonon (e-ph) scattering even near the room temperature. However, such
theoretical explanations cannot account for the experimental observation quantitatively. In the present work, by
performing the first-principles calculations, we find that the intrinsic resistivity is insensitive to Hubbard U , i.e.,
the electronic correlation. On the contrary, when the effect of SOC is taken into account, the band structure near
the Fermi level is modified greatly. As a result, the calculated intrinsic resistivity increases by nearly 3 times over
that without SOC. By further counting in the additional resistivity contributed from spin fluctuation scattering,
our theoretical result of resistivity agrees very well with the experimental observation of resistivity of FM Gd as
a function of temperature.

DOI: 10.1103/PhysRevB.107.115101

I. INTRODUCTION

Materials with heavy elements, especially the transi-
tion metallic atoms and rare-earth atoms, are characterized
by the strong electronic correlation and spin-orbital cou-
pling (SOC). A variety of significant physical phenomena
such as the magnetism, high-temperature superconductivity,
Kondo effect, and Mott transition can often be observed
in such materials [1–3], most of which are attributed to
the strong correlation effect introduced by the d or f or-
bitals of heavy atoms. In addition, the strong SOC of heavy
atoms can bring about the band inversion, hence resulting
in the topological transition [4]. Thus far, many topolog-
ical nontrivial materials involve heavy elements. As such,
one can say that heavy elements often play a crucial role
for determining the extraordinary electronic properties of
materials.

As a representative of lanthanide materials, elemental
gadolinium (Gd) in its single-crystal form is a ferromagnetic
(FM) metallic material with partially occupied 4 f and 5d
bands at temperature lower than the Curie temperature. There-
fore, it is a correlated electron system and also has strong
SOC. Research on Gd has a long history [5]. Nonetheless,
it has never ceased to get attention since interesting exper-
imental observations about various physical properties were
reported successively on such an elemental metal [6–13]. For
example, very recently, Gd has been experimentally demon-
strated to be a Dirac magnon material by inelastic neutron
scattering, which draws much attention [14]. All of these
experimental results on Gd call for reasonable theoretical
explanations, preferably on the level of quantitative coinci-
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dences with experimental results. However, because of the
strong electronic correlation and SOC in Gd, it is not a simple
task even to explain the experimental observations on some
fundamental physical properties which can be well described
within band theory in other conventional solids. For instance,
to our knowledge, the theoretical result on the resistivity of
FM Gd as a function of temperature is at odds with the
relevant experimental measure [15]. In general, the resistivity
of most metals around room temperature is dominated by the
e-ph scattering which is called the intrinsic resistivity of metal
since it is inevitable even in a perfect lattice. In contrast, the
contributions of other scattering mechanisms to the resistivity
are much smaller at room temperature. However, it is not such
a case for Gd which has the FM phase as the ground state with
a high Curie temperature of Tc = 293 K [16], in the range of
room temperature. Theoretical analysis indicated that the e-ph
scattering limited intrinsic resistivity does not agree well with
the measured resistivity of FM Gd even when the temperature
is close to Tc [17]. Consequently, one must consider other
possible scattering mechanisms, at least comparable to the ef-
fect of e-ph scattering. Previous theoretical studies suggested
that the scattering due to spin fluctuation is as important as
e-ph scattering near room temperature [18,19]. In relevant
theoretical work, both kinds of resistivity limited by e-ph scat-
tering and spin fluctuation of FM Gd were theoretically treated
on the equal footing, by employing the so-called coherent
potential approximation (CPA). Usually, CPA is believed to
be a successful approximation to deal with spin fluctuation,
impurity, and disorder scatterings. However, as a quasistatic
theory, CPA disregards the inelastic nature of e-ph scattering.
Furthermore, it has to use an empirical model to estimate
the Debye frequency [20,21]. Therefore, the approach using
CPA is not a fully first-principles calculation on the intrinsic
resistivity of materials, such as Gd. Just owing to these draw-
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backs, in the previous work the calculated resistivity of Gd
with both the e-ph and spin fluctuation scatterings taken into
account is still not satisfactory, which cannot account for the
experimental result quantitatively.

Thus far, it is not difficult to calculate the electronic band
energy of most realistic materials within the theoretical frame-
work of the density functional theory (DFT). Besides, the
phonon frequency and the e-ph interaction matrix elements
can also be obtained by means of the density functional per-
turbation theory (DFPT) [22] or the so-called frozen-phonon
method. More importantly, the effects of electronic correlation
and SOC on the electronic states, the phonon frequency, as
well as the e-ph interaction are incorporated into the calcu-
lations by using the DFT+U [23–26] and DFPT+U [27,28]
methods and by choosing appropriate relativistic pseudopo-
tential. This theoretical progress paves the way for explaining
or predicting the experimental observation of electronic trans-
port property of actual materials. In such a context, it is
now feasible to revisit the issue of the intrinsic resistivity
of Gd on the level of the first-principles calculations, with
the purpose to explain the relevant experimental observations
quantitatively.

In this paper, within the theoretical framework of DFT+U
and DFPT+U, we calculate the electronic and phonon dis-
persion, together with the e-ph interaction matrix elements
of Gd. Then, with these calculated quantities as the input to
solve the Boltzmann transport equation (BTE) numerically,
we can perform the ab initio study on the intrinsic resistivity
of FM Gd. We find that the Hubbard U has very limited impact
on the intrinsic resistivity of FM Gd. In contrast, due to the
substantial modification to the band structure, the SOC effect
increases the intrinsic resistivity by nearly 3 times over the one
without SOC. As a result, after counting in the contribution of
spin fluctuation scattering to the resistivity from Ref. [15], we
obtain the final result of resistivity of FM Gd, agreeing with
the experiment results quantitatively.

The rest of the present work is organized as follows.
In Sec. II, we give the details of the parametric setup for
first-principles calculations and the theoretical formulas to
calculate the intrinsic resistivity of FM Gd. In Sec. III, we
discuss the numerical results. In Sec. IV, the main conclusions
are summarized.

II. COMPUTATIONAL METHOD

In this paper, the collinear spin-polarized DFT+U,
DFPT+U, and noncollinear DFT and DFPT calculations are
performed by using the QUANTUM ESPRESSO (QE) pack-
age [29,30]. The norm-conserving pseudopotential with the
local-density approximation (LDA) functional together with a
90 Ry kinetic energy cutoff is used. The Brillouin zone (BZ)
of electronic states is sampled by a coarse Monkhorst-Pack
mesh of 12 × 12 × 12, whereas that of phonon states by a
mesh of 3 × 3 × 3. The resistivity is calculated on a much
finer mesh on the BZ for both electrons and phonons in the
framework of iterative linearized BTE [31–33] with the help
of Wannier interpolation techniques as implemented in Wan-
nier90 [34] and the PERTURBO code [35]. The convergences
of conductivity or resistivity calculated throughout the paper
are all tested.

The basic formulations for linearized BTE are as follows.
The e-ph scattering limited conductivity driven by an electric
field according to the linearized BTE has the form

σ = 2e2

Nk�kBT

∑

nk

fnk(1 − fnk)(vnk · ε)(Fnk · ε), (1)

where e is the elementary charge, kB the Boltzmann constant,
and T the temperature. The Fermi-Dirac distribution for the
electron in states with band index being n and electron wave
vector being k is denoted by fnk. ε is a unit vector pointing
to the electric field direction. Nk is the number of the k points
for sampling the BZ. � is the unit cell volume. vnk = ∇Enk/h̄
is the electron velocity. The factor fnk(1 − fnk) as a function
of the electronic energy Enk has a sharp peak around Fermi
energy. This feature implies that the intrinsic conductivity is
dominated by the electron states around the Fermi level. In
other words, the nearer the eigenenergy of the electron is to the
Fermi level, the larger its contribution to the conductivity is.
Because of this, fnk(1 − fnk) defines a temperature-smeared
Fermi window relevant to the intrinsic conductivity (resis-
tivity). The width of the Fermi window is on the scale of
a couple of the thermal excitation energies. Throughout the
paper, the Fermi window is set to be ±0.3 eV around the
Fermi level, which is wide enough for the convergence of
the Fermi window related variables, such as the conductivity,
in the temperature range we are interested in.

Fnk describes the mean-free path of the electron in state
|nk〉 limited by e-ph scattering and is

Fnk = vnkτnk + τnk

∑

mqν

(
Gmk+q

nk,−qν
+ Gmk+q

nk,qν

)
Fmk+q (2)

with

Gmk+q
nk,−qν

= 2π

h̄

∣∣gmk+q
nk,qν

∣∣2
(1 + N−qν − fmk+q)

× δ(Enk − h̄ω−qν − Emk+q) (3)

and

Gmk+q
nk,qν

= 2π

h̄

∣∣gmk+q
nk,qν

∣∣2
(Nqν + fmk+q)

× δ(Enk + h̄ωqν − Emk+q), (4)

where q stands for phonon wave vector, ωqν phonon
frequency, ν phonon mode, and Nqν the phonon boson distri-
bution function. gmk+q

nk,qν
is the e-ph interaction matrix element.

τnk is the relaxation time of electronic state |nk〉 due to e-ph
scattering, and its inverse is just the corresponding scattering
rate which takes a form as

1

τnk
= 2π

h̄

∑

mqν

∣∣gmk+q
nk,qν

∣∣2

× [(1 + N−qν − fmk+q)δ(Enk − h̄ω−qν − Emk+q)

+ (Nqν
+ fmk+q)δ(Enk + h̄ωqν − Emk+q)]. (5)

With the calculated conductivity, the intrinsic resistivity can
then be obtained by using

ρ = 1/σ. (6)

If the second term in Eq. (2) is neglected, the formulas
reduce to the ones in the energy relaxation time approximation
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FIG. 1. The convergence test on the Hubbard U against the num-
ber of q points by using the linear response approach.

(ERTA) [31] which can be adopted to analyze the numerical
results in the next section. In ERTA, the conductivity has the
form of

σ = 2e2

Nk�kBT

∑

nk

fnk(1 − fnk)(vnk · ε)2τnk

=
∑

nk

σnk, (7)

where σnk is electronic state resolved conductivity.

III. RESULTS AND DISCUSSION

Accordingly to previous experimental works [6,36], el-
emental Gd in its single-crystal form has the hexagonal
close-packed structure with lattice constants of a0 = 3.63 Å
and c0 = 5.78 Å. And the FM phase is the ground state
with the Curie temperature Tc = 293 K [16]. The measured
magnetic moment per Gd atom is 7.63 ± 0.01 μB [37]. Our
numerical calculations can well reproduce these results. And
in the following we will focus only on the intrinsic resistivity
of single-crystal Gd in the FM ground state at a temperature
lower than the Curie temperature.

A. The impacts of Hubbard U

To partially incorporate the electronic correlation effect
into the mean-field theory, the DFT+U method is a widely
adopted method on the level of the first-principles calcula-
tions for correlated electron systems, especially for lanthanide
and actinide. The Hubbard U can be determined without any
adjustable parameters within the linear response approach
[38,39]. Here, by performing numerical calculation within the
linear response approach, we find that the Hubbard U for
FM Gd converges to 2.83 eV, as shown in Fig. 1. Besides,
we further find that the calculated lattice constants and the
magnetic moment per atom with U = 2.83 eV deviate less
than 0.5 percent from the ones with U = 0 eV. This indicates

FIG. 2. (a) The phonon band structure of FM Gd with U = 0 eV and U = 2.83 eV. The spin-polarized electron band structures for electrons
in (b) majority spin states and (c) minority spin states of ferromagnetic (FM) gadolinium (Gd) with U = 0 eV and U = 2.83 eV.
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FIG. 3. The relaxation times τnk for electrons in (a) majority spin
states and (b) minority spin states near the Fermi level with U = 0 eV
and U = 2.83 eV at 280 K.

that the Hubbard U has very limited impact on the crystal
structure and magnetism of FM Gd.

The intrinsic resistivity or conductivity depends on the
electronic band energy, phonon dispersion, and e-ph scattering
rate. Therefore, in the following we study the impact of U
on these relevant quantities respectively. As one can see from
Fig. 2(a), the phonon band structure is affected insignificantly
by U. Moreover, as shown in Figs. 2(b) and 2(c), U also has
very limited impact on the electronic band structure of FM Gd
near the Fermi level, especially for electrons in majority spin
states. The major variation in the band structure happens near
the high-symmetry point K where the electrons in minority
spin states on the flat band near the Fermi level are raised
by approximately 0.05 eV with respect to the Fermi level.
Figure 3 shows the relaxation time τnk defined by Eq. (5) at
280 K as a function of the eigenenergy Enk relative to the
Fermi energy E f . Note that only those electron states |nk〉
in the Fermi window are considered in the numerical results
shown in Fig. 3 since only those states contribute to the in-
trinsic resistivity substantially. As one can see, the differences
between the relaxation times for electrons in majority spin
states with different U are insignificant, while the relaxation
times increase slightly as U increases from 0 to 2.83 eV
for electrons in minority spin states. This indicates that U
increases the overall relaxation times of the electrons near
the Fermi level and consequently increases the conductivity
of FM Gd to a small extent.

Figure 4 shows the temperature dependence of the cal-
culated resistivities along the x and z directions, i.e., the b
axis and c axis of the hexagonal lattice, respectively. The
appreciable difference of the intrinsic resistivities between the

FIG. 4. (a) The calculated resistivity along x and z directions, i.e.,
the b axis and c axis of the hexagonal lattice, respectively. The Hub-
bard U is set as 0. ITA for resistivity calculated iteratively and ERTA
for resistivity in energy relaxation time approximation (ERTA). The
measured and calculated resistivities of FM Gd (b) along b axis
and (c) along c axis as a function of temperature. The measured
resistivity shown as the gray circles [16]. ρe-ph stands for the intrinsic
resistivity arisen from e-ph scattering and ρsf for the one limited by
the spin fluctuation calculated in Ref. [15]. The calculated intrinsic
resistivities are all in ERTA.

two distinct transport directions is due to the different Fermi
velocities of electronic states in the two directions. In addition,
those results of resistivity shown in Fig. 4 are obtained by
using two kinds of numerical approaches, i.e., the iteration
solution of the BTE and ERTA. We can see that the two
kinds of numerical results agree with each other very well in
the whole temperature range. This implies that the iteration
process cannot bring about nontrivial change of the intrinsic
resistivity, regardless of the electronic transport direction. As
shown in Figs. 4(b) and 4(c), the intrinsic resistivity has only a
trivial decrease when the Hubbard U takes a nonzero value, in
comparison with the result of U = 0 eV. This numerical result
is consistent with the calculated relaxation time as shown in
Fig. 3(b) which indicates that the relaxation time of minority
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FIG. 5. (a) The phonon band structure of FM Gd with SOC and without SOC. (b) The electron band structures of FM Gd with SOC. The
spin polarization along z axis is projected as shown in the color bar when considering SOC effect. The band structures without SOC are also
plotted as red and blue dashed lines for majority spin states and minority states, respectively, as reference. Ef stands for the Fermi level. (c) The
electronic state resolved conductivity σnk. And the driving electric field is along b axis at 280 K. Note that σnk’s are shown in an arbitrary units
since only their relative values make sense for the discussion in the context.

spin states near the Fermi level is enhanced slightly by a
nonzero U value. More importantly, it can be clearly found
from Figs. 4(b) and 4(c) that the intrinsic resistivity is far
lower than the experimental result of the resistivity even near
the room temperature. When the resistivity due to the spin
fluctuation is counted in, the theoretical result of the resistivity
becomes closer to the experimental result in the total tempera-
ture range. But a nontrivial difference between them remains.

Considering that the value of the Hubbard U can be
determined by other methods, we also perform numerical
calculations similar to those of the aforementioned properties
with other Hubbard-U values. Specifically, we calculated and
compared the crystal structures, magnetic moments per atom,
electronic band structures near the Fermi level, phononic band
structures, relaxation times, and resistivities of FM Gd with
U = 0, 1, 2, 3, 4, 5, and 6 eV. The results are quite similar,
without substantial differences. In other words, the Hubbard
U has very limited impact on the above properties, especially
on the intrinsic resistivity, our main concern.

B. The impacts of SOC

Now that electronic correlation (Hubbard U ) does not af-
fect the intrinsic resistivity of Gd notably, we turn to pay

attention to the effect of SOC on the intrinsic resistivity of
Gd. To begin with, let us compare the phonon spectrum of FM
Gd with and without SOC. The result is shown in Fig. 5(a).
We find that SOC hardens slightly the low-frequency phonon
around the � point, i.e., the BZ center. This result intends
to lower the number of low-frequency acoustic phonons and
hence to lower the possibility of e-ph scattering. According
to this result and considering that the low-frequency phonons
play the crucial role to affect the electronic transport, we can
say that the SOC effect on phonon dispersion reduces slightly
the intrinsic resistivity if the effect of SOC on phonon disper-
sion is exclusively taken into account. Obviously, this result
is just opposite to the fact that theoretical result of resistivity
is appreciably smaller than the experimental observation as
shown in Fig. 4.

The electronic band structures of FM Gd with and without
SOC effect are compared in Fig. 5(b). One can see that SOC
modifies the band structure remarkably just around K and H
points in the BZ. In contrast, in other regions of the BZ [not
limited to the high-symmetry lines as shown in Fig. 5(b)],
our numerical results indicate that the band structure does
not change nontrivially by SOC. Considering that the band
modification by SOC around the H point is far lower than
the Fermi level, i.e., nearly outside the Fermi window, the
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FIG. 6. (a) The calculated resistivity with SOC along b and c
axes in ERTA and iteratively on a k and q mesh of 30 × 30 × 30.
(b) The calculated converged resistivity of FM Gd with SOC and
without SOC along b axis on a finer k and q mesh of 50 × 50 × 50.

electronic states therein cannot influence the intrinsic resis-
tivity substantially. On the contrary, the band modification
around the K point which is characterized by the opening of
the band gap just appears around the Fermi level, falling in the
Fermi window. From such a result one can infer reasonably
that the SOC will give rise to a remarkable modification on the
calculated intrinsic resistivity. Such a prediction is verified by
the numerical result shown in Fig. 5(c) where the electronic
state resolved resistivities, i.e., σnk defined in Eq. (7) with the
driving electric field being along the b axis, are displayed for
those electronic states in the Fermi windows and along the
same high-symmetry lines in the BZ with the plot of the band
structure shown in Fig. 5(b). We can see that σnk’s around the
K point decrease dramatically due to the nontrivial SOC effect
on the band structure therein. In contrast, the σnk’s elsewhere
in the BZ are not altered nontrivially by the SOC. Based on
the numerical result shown in Fig. 5(c), we can expect a
sizable increase of the intrinsic resistivity when the SOC effect
on the band structure is incorporated into the calculations.

Similarly to the case without SOC, when SOC is taken
into account, as shown in Fig. 6(a), the intrinsic resistivity
calculated with ERTA deviates from the one calculated by the
iteration approach by less than 1%. Therefore, we will use the
numerical results calculated with ERTA for the following dis-
cussions. The calculated intrinsic resistivity along the b axis
of FM Gd between the two cases with and without SOC are
compared in Fig. 6(b). We can see that the intrinsic resistivity
with SOC is nearly 3 times greater than the one without SOC.
Such a result verifies our anticipation that SOC enhances the
intrinsic resistivity sizably.

We now concentrate on the contributions of electronic
states around the K point and in the Fermi window to the

intrinsic conductivity since only these states are nontrivially
changed by SOC. We learn from Eq. (7) that the factor
fnk(1 − fnk), the relaxation time (τnk), as well as the squared
velocity component along the electronic transport direction
(v2

nk,x) within the Fermi window are relevant to the intrinsic
conductivity. Therefore, it is significant to perform a detailed
analysis on the change of these three quantities by SOC for
the electronic states around the K point. This can help us to
nail down the main source of the sizable increase of intrinsic
resistivity by SOC. In so doing, in Fig. 7 we show the nu-
merical results of these three quantities in the Fermi window,
together with the local band structures around the K point.
And the results with and without SOC are shown simultane-
ously for comparison. As one can see from Fig. 7(a), the band
crossings in the absence of SOC are superseded by the local
band gaps due to the presence of SOC. In more detail, let us
look at such a change of band structure close to the Fermi
level where the electronic states are tightly associated with
the electronic transport property. As shown in Fig. 7(a), in the
case without SOC, there are two band segments of minority
spin which span the Fermi level with strong dispersion along
M-K and K-� lines, respectively. They are positioned by the
two vertical gray strips throughout Fig. 7 where each of them
intersects with a flat band of minority spin near the Fermi
level. In the presence of SOC, these two band segments of
strong dispersion disappear in the vicinity of the Fermi level.
These states are pushed away from the Fermi level, due to the
gap opening by SOC. Thus, they appear much farther away
from the Fermi level, meanwhile, with spin mixing and much
weaker dispersion. In view of that the strong dispersion means
high velocity, the disappearance of these states near the Fermi
level is presumably the main reason for the sizable increase of
intrinsic resistivity by SOC as shown in Fig. 6(b). In addition,
as seen from Fig. 7(a), for the states spanning the Fermi level
elsewhere, SOC does not change notably the band structure
therein except that one more flat band with strong spin mixing
occurs around the K point and very close to the Fermi level.
However, one should note that a flat band does not take part in
the electronic transport process substantially.

Next, in Fig. 7(b) we show the electronic state resolved
intrinsic conductivity, i.e., σnk as defined in Eq. (7), along
the b axis at 280 K. It is proportional to the product of
the three quantities relevant to the intrinsic conductivity at
a given temperature. From Fig. 7(b) we can see that only
for those electronic states in the two gray vertical strips, the
corresponding σnk’s show large discrepancy between the two
cases with and without SOC. Hence, they are responsible for
the sizable increase of the total intrinsic resistivity by SOC. In
more detail, we can get such an impression from the numbers
beside the black arrows in the figure which give the local
maximal values of σnk in the two gray vertical strips of the two
cases with and without SOC. In either of the two regions, such
a maximum in the case without SOC is larger than that with
SOC by almost two orders of magnitude. Therefore, in the
following we will focus only on the two regions marked by the
two gray vertical strips when exposing the individual feature
of the three quantities relevant to the intrinsic conductivity. In
Fig. 7(c) the quantity v2

nk,x for those electronic states around
the K point and in the Fermi window is shown. We can see
readily that those states falling in the two gray vertical strips
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FIG. 7. (a) The electron band structures; (b) the electronic state
resolved conductivity along b axis; (c) the factor fnk(1 − fnk ); (d) the
square of electron band velocity component v2

nk,x along b axis; and (e)
the relaxation time τnk around K points along M-K-G high-symmetry
line in the cases with and without SOC. The temperature is set at
280 K for calculating the conductivity and relaxation time. Note that
all quantities here are calculated within the Fermi window. The black
arrows remind us of the difference between the typical values of the
calculated quantities in the cases with and without SOC in the gray
vertical strips.

have remarkable decrease in the squared velocity component,
as SOC is switched on. In contrast, v2

nk,x’s elsewhere as shown
in Fig. 7(c) do not have such an appreciable variation if we pay
attention only to those electronic states very close to the Fermi
level. This result is consistent with the band structure shown in
Fig. 7(a). To compare the relative importance of the electronic

states to the intrinsic resistivity, in Fig. 7(d) we plot the factor
fnk(1 − fnk) for those electronic states as shown in Fig. 7(a).
We can see that scattered points (blue circles) in the two
gray vertical strips correspond to the aforementioned band
segments of minority spin with strong dispersion in the case
without SOC. However, in the presence of SOC, such bands
cannot display appreciable peaks in Fig. 7(d). This result is
due to the fact that these bands are pushed largely away from
the Fermi level due to the SOC effect. Therefore, they become
less important to the intrinsic conductivity. In Fig. 7(e) the
electronic relaxation times (τnk) are shown for the electronic
states around the K point and in the Fermi window. We can
see that the relaxation times of those states in the two gray
vertical strips are reduced by the SOC effect, which means
a stronger e-ph scattering and further the larger resistivity.
However, such a decrease in relaxation time due to SOC is not
as significant as the other two quantities shown in Figs. 7(c)
and 7(d). From this result we can infer that the SOC cannot
alter the e-ph interaction matrix element remarkably.

In short, we can now conclude that the main reason for
the sizable increase of intrinsic resistivity by SOC is that the
SOC opens gaps. As a result, the high-speed electrons close
to the Fermi level in the case without SOC are pushed away
from the Fermi level. Meanwhile, the band velocity is largely
suppressed due to the band deformation by SOC. These two
kinds of effects are combined to cause the sizable increase of
the intrinsic resistivity.

Finally, we make a comparison between the calculated
resistivity and the experimental result, which is presented in
Fig. 8. First of all, we can find that when the SOC is taken
into account, the calculated intrinsic resistivity increases re-
markably, in comparison with the case without SOC, as has
been shown in Fig. 6. In addition, such a case is independent
of the electronic transport direction as seen from Figs. 8(a)
and 8(b). However, we can also see that the intrinsic resis-
tivity even with the SOC effect is still notably smaller than
the experimental values of resistivity. This indicates that the
resistivity arising from other scattering mechanisms cannot be
disregarded even near the room temperature, such as that due
to the spin fluctuation scattering as pointed out in previous
work. Consulting Ref. [15], we obtain the value of the resis-
tivity arising from spin fluctuation scattering. Then we add it
to the intrinsic resistivity to get the final theoretical value of
resistivity. From Fig. 8 we can find that such a theoretical re-
sult agrees with the experimental observation of the resistivity
of FM Gd very well, much better than the previous theoretical
result.

Thus far, our numerical results are wholly limited within
the LDA method. Therefore, it is significant to have a look
at the effect of SOC on the band structure of FM Gd be-
yond LDA before ending our work. In so doing, we calculate
the band structure of FM Gd on the level of hybrid density
functional, more specifically, by using HSE06 functional. The
band structure around the Fermi energy and along the sym-
metric lines in the BZ is shown in Fig. 9. As one can see, only
the band structure around the K point is modified by SOC
nontrivially, like the case of LDA as shown in Fig. 7(a). By
comparing the local band structures around the K point shown
in Fig. 9(b) and Fig. 7(a), we can first see that the flat band in
the vicinity of the Fermi energy observed previously in LDA
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(a)

(b)

FIG. 8. The measured and calculated resistivity of FM Gd with
SOC and without SOC (a) along b axis and (b) along c axis as a
function of temperature. The measured resistivity shown as the gray
circles has the residual resistivity subtracted as in Ref. [16] and the
ρs f stands for the resistivity limited by the spin fluctuation calculated
in Ref. [15].

disappears in Fig. 9(b). However, it does not matter to the
resistivity since a flat band hardly contributes to the electronic
transport. What is of importance in Fig. 9 is that two bands of
spin minority with relatively high electronic velocities, which
span the Fermi energy in the case without SOC as indicated
by the two shaded regions in Fig. 9(b), are pushed away
from the Fermi energy by the SOC effect. It bears a high
analogy with the result of LDA band structure as shown in
Fig. 7(a). Therefore, we can say that the band structure of the
hybrid density functional supports our conclusion about the
reason for the resistivity enhancement of FM Gd by the SOC
effect drawn from the LDA method. Nonetheless, we cannot
perform a further calculation about the intrinsic resistivity on
the level of the hybrid density functional which is beyond the
current applicability of the QE code. In contrast, within the
LDA, the QE code provides us with a self-contained ability to
perform a first-principles study on the intrinsic resistivity even
for a heavy atomic material such as Gd. However, it is highly
desirable to improve the ability to perform a first-principles
calculation on the intrinsic resistivity of heavy atomic ma-
terials beyond LDA, such as hybrid density functionals or

FIG. 9. (a) The electron band structure of FM Gd calculated with
HSE06 functional. (b) The zoom-in band structure around K point in
the BZ. The band structure with SOC is plotted as golden lines. The
band structures without SOC are plotted as red and blue dashed lines
for majority spin states and minority states, respectively. The k and
q meshes in HSE06 calculation are all set to be 6 × 6 × 6.

dynamical mean field theory. But it seems an arduous job in
the near future.

IV. CONCLUSIONS

In summary, we studied the influence of the Hubbard U and
SOC on the resistivity limited by e-ph scattering of FM Gd
within the theoretical framework of the BTE by using DFT+U
and DFPT+U approaches. We find that the Hubbard U has
limited impact on the electronic and phononic band structures,
e-ph scattering, and hence the intrinsic resistivity of FM Gd.
The SOC effect, on the contrary, has a crucial impact on the
electronic structures of Gd near the Fermi level and raises
the intrinsic resistivity sizably compared with the one without
SOC. By further analysis on the electronic band structure,
electron velocity, and the electron relaxation time due to e-ph
scattering, we find that the increase in the intrinsic resistivity
arises from the SOC opened band gaps near the Fermi level
around the K point in the BZ. More specifically, the band gap
opening by SOC pushes some electronic states with high ve-
locities, very close to the Fermi level in the case without SOC,
away largely from the Fermi level. Consequently, the contri-
butions of those electronic states to the intrinsic conductivity
decrease dramatically. Then the calculated intrinsic resistivity
in the presence of SOC increases by nearly 3 times over that
without SOC. By further counting in the additional resistivity
contributed from spin fluctuation scattering, our theoretical
result of resistivity agrees very well with the experimental ob-
servation of resistivity of FM Gd as a function of temperature,
which is much better than previous theoretical works.
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