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Two-dimensional polaron spectroscopy of Fermi superfluids
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Multidimensional spectroscopy is becoming an increasingly popular tool and there is an ongoing effort to
access electronic transitions and many-body dynamics in correlated materials. We apply the protocol recently
proposed by Wang [Phys. Rev. A 107, 013305 (2023)] to extract two-dimensional polaron spectra in a Fermi
superfluid with an impurity. The bath is described by a BCS ansatz and it assumed that the impurity can
scatter at most one quasiparticle pair. The spectral response contains a symmetric contribution, which carries
the same information as Ramsey spectra, and an asymmetric one. While a priori it may seem promising to
probe the quasiparticle gap from the asymmetric contribution, we show explicitly that this is not the case
and, in the absence of incoherent processes, multidimensional spectroscopy does not bring much additional
information. Our calculation is suitable for ultracold gases, but we discuss implications for exciton polarons in
two-dimensional materials.
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I. INTRODUCTION

Multidimensional spectroscopy [1–3] is an experimen-
tal tool that allows one to study extremely fast processes
with high spectral resolution. It has been tremendously
successful in investigating the mechanisms underlying pho-
tosynthesis [4] and it is an essential tool to understand
the incoherent and coherent energy transfer in molecu-
lar aggregates and the dynamics of electronic transitions.
Currently, there is growing interest in using this approach
to explore the many-body properties of correlated mate-
rials [5,6], including cuprates [7]. Ongoing attempts to
extend the technique to the terahertz range are also worth
mentioning [8].

Recently, Wang proposed [9,10] an extension of multidi-
mensional spectroscopy suitable for cold atoms experiments,
consisting in immersing an impurity in a Fermi sea and per-
forming a sequence of four Rabi pulses. Here, we will refer
to this approach as two-dimensional polaron spectroscopy
(2DPS), since the dressing of the impurity by the excitations
of the bath to form polaronic states plays a central role for the
impurity dynamics.

In this article we are interested in applying the 2DPS
protocol to an impurity immersed in a three-dimensional
Fermi superfluid, where spin up fermions pair with spin
down fermions [11]. Polaron formation along the BEC-BCS
crossover is in itself a topic of intense theoretical research
[12–17]. The main challenge is to provide an accurate descrip-
tion both in the BCS and BEC regime, to recover the Fermi
and Bose polaron cases, respectively.

Using a generalized Chevy ansatz [18] on top of a
BCS variational state [19], we compute the Ramsey one-
dimensional spectra as well as the 2DPS ones. We show that,
in the absence of incoherent energy transfer, the 2DPS does
not bring much additional information. In particular, there is
no direct signature of the quasiparticle gap in the asymmetric
contribution to the 2DPS. Our results may help to elucidate

experimental data in future studies of multidimensional spec-
troscopy in superconductors.

II. POLARONS IN FERMI SUPERFLUIDS

We consider a zero temperature gas of spin one-half
fermionic atoms described by the annihilation operators ckσ ,
where σ = ↑,↓, and by the dispersion ξk = k2

2m − μ, where m
is the mass and μ the chemical potential. A single impurity of
mass M is also present and it has two internal states, split by a
large energy ω0 and described by dkσ . Each fermion interacts
with a spin-flipped atom via a contact attractive interaction
with coupling strength g. In three dimensions, this is related to
the scattering length a in the usual way 1

g = m
4πa − 1

V

∑�
k

m
k2 ,

where V is the volume of the system and � a cutoff. A similar
analysis [20] for the two-dimensional system is reported in
the Supplemental Material (SM) [21]. We assume that the
impurity interacts only with the ↑ fermions and only when
in its ↑ state, with strength g↑ and scattering length a↑. This
is reasonable experimentally, since Feschbach resonances in-
volve a specific spin configuration.

The overall Hamiltonian reads

H =
∑
kσ

ξkc†
kσ ckσ + g

V

∑
kpq

c†
k+q↑c†

p−q↓cp↓ck↑

+
∑
kσ

(
ω0δσ↑ + k2

2M

)
d†

kσ dkσ

+ g↑
V

∑
kpq

c†
k+q↑d†

p−q↑dp↑ck↑ (1)

and it is actually convenient to split it as H = H↑ + H↓ de-
pending on the internal state of the impurity.

Pairing in the ground state of the bath can be qualitatively
captured by the variational BCS ansatz along all the BEC-
BCS crossover [19]. A convenient approach is to introduce
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the fermionic quasiparticle operators

γk↑ = ukck↑ + vkc†
−k↓, γk↓ = ukck↓ − vkc†

−k↑. (2)

We define |BCS〉 as the vacuum of the quasiparti-
cles γkσ |BCS〉 = 0. Writing uk = cos θk, vk = sin θk , the
variational parameter θk minimizes the energy for tan 2θk =
−


ξk
, where 
 = g↑

V

∑
k〈ck↑ck↓〉BCS = −g↑

V

∑
k ukvk is the

pairing order parameter. In the following we use EF = kF
2m =

3π2

m n as unit, which fixes kF and the density of each spin
n = 1

V

∑
k〈c†

kσ
ckσ 〉BCS, where 〈c†

kσ
ckσ 〉BCS = v2

k .
Exciting a quasiparticle costs on average an energy Ek =√

ξ 2
k + 
, meaning that 〈γkσ Hγ

†
kσ 〉BCS = Ek , having shifted

the zero of the energy so to have 〈H〉BCS = 0. One crucial
point is that we do not approximate the Hamiltonian of the
bath to HBCS = ∑

kσ Ekγ
†
kσ γkσ , but we retain the interactions

between the quasiparticles. As illustrated in detail in [17],
this entails that, rather than a large gap 2
, the excitation
modes in the two-quasiparticle Hilbert sector have a small
gap, stemming from (an imprecise description of) the gapless
Goldstone mode. Our calculation becomes exact in the small
density limit kF a↑ → 0+, independent of being in the BEC or
BCS regime.

With this in mind, the impurity problem is diagonalized in
the two-quasiparticle Hilbert subspace. The idea is that the
impurity can scatter the bosonic excitations of the system,
and in this case we restrict ourselves to a single excitation
to make the problem treatable. In other words, the polaron
wave functions are given by the generalized Chevy ansatz
[13,14,17]

|�〉 =
⎛
⎝ψ0d†

0↑ + 1

V

∑
kQ

ψk(Q)d†
Q↑γ

†
k↓γ

†
−k−Q↑

⎞
⎠|BCS〉,

(3)

where here we restrict ourselves to total zero momentum
and to the sector with the impurity in the interacting internal
state. Notice that this ansatz contains exactly the three-body
bound state in the vacuum. The Schrödinger equations in the
variational subspace read

i∂tψ0 = g↑
V 2

∑
kQ

vkuk+Qψk(Q), (4)

i∂tψk(Q) =
(

Ek + Ek+Q + ω0 + Q2

2M

)
ψk(Q)

+ g↑vkuk+Qψ0 + g↑
V

∑
Q′

uk+Quk+Q′ψk(Q′)

+ g

V
ukuk+Q

∑
k′

uk′uk′+Qψk′ (Q). (5)

In writing Eqs. (4) and (5) we used the fact that for contact
interactions terms like g

V

∑
k . . . vk are subleading as V →

∞. For the impurity in the noninteracting ↓ state, one can
factorize the impurity wave function, while quasiparticles in-
teract with each other. Below we will use the matrix form
Hσ = Vσ EσV †

σ for the eigenmodes and eigenenergies in the
Chevy subspace, having diagonalized the Hamiltonian in the
noninteracting and interacting impurity sectors. Here Eσ is a

FIG. 1. One-dimensional Ramsey spectrum is plotted as a
function of the fermion-fermion scattering length a, for fixed
fermion-impurity interactions a↑. The left (right) regions correspond
to the BCS (BEC) regime.

diagonal matrix and we index the Chevy subspace basis in
such a way that the state j = 0 is the state with no quasiparti-
cles ψ0d†

0σ |BCS〉. Also, in the σ = ↓ sector this is the zeroth
eigenstate with energy E↓

0 = 0.
In experiments a typical protocol is Ramsey spectroscopy

[22–24], which consists in starting with the noninteracting
impurity and applying two π/2 pulses separated by a time
t . Varying t allows one to probe the response function in
frequency space

A(ω) =
∑

m

|(V↑)0m|2
ω − E↑

m + i0+ . (6)

The one-dimensional spectrum −2 ImA(ω) of the system
for the interacting impurity is plotted in Fig. 1 for differ-
ent fermion-fermion scattering lengths a and for kF a↑ = √

2,
which corresponds to a fermion-impurity binding energy in
the vacuum EB = EF . A broadening 0+ → 0.3EF is used in
practice.

The two main features are a lower and upper branch,
denoted attractive (AP) and repulsive (RP) polarons, respec-
tively. The AP state is closely linked to the bound state of
the impurity with a fermion or a fermion pair, while the RP
is continuously connected to the bare impurity. As already
observed in [13] a secondary middle peak is present on the
BCS side of the crossover; consistent with the symmetry of
the wave function and the size of the gap, we attribute this
feature to a Cooper pair excited into the Higgs channel bound
to the impurity. The divergence of the AP energy in the deep
BEC limit is explained by the dependence of the effective
dimer-impurity scattering length with a in the three-body
problem [25,26]. We also recall that the cutoff � cannot be
removed in the three-body problem with contact interactions
(Thomas collapse). Here we use � = 20kF .

III. TWO-DIMENSIONAL POLARON
SPECTROSCOPY (2DPS)

Taking inspiration on multidimensional spectroscopy [3],
Wang has recently proposed [9] a generalization of the
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FIG. 2. Modulus of the 2DPS response function is shown for (kF a)−1 = −0.5, (kF a↑)−1 = 1/
√

2, and T = 0. More precisely, from left to
right, we display the total spectrum, the symmetric contribution, and the asymmetric one. The lower (upper) peak on the diagonal corresponds
to the AP (RP).

Ramsey protocol. This new 2DPS approach consists in ap-
plying four π/2 pulses to the two-level impurity atom and
measuring its final state. The three time intervals between the
four pulses are denoted in order coherence time τ , waiting
time T , and detection time t . The two-dimensional spec-
trum is obtained Fourier transforming with respect to τ

and t .
Assuming that ω0 is a very large energy scale compared to

the splitting of the AP and RP resonances, one can invoke a
rotating-wave approximation and write the response function
A(τ, T, t ) = I1+I2

2 , where the two contributions are

I1 = 〈i|eiH↓τ s−eiH↑(T +t )s+e−iH↓t s−e−iH↑(T +τ )s+|i〉, (7)

I2 = 〈i|eiH↓(τ+T )s−eiH↑t s+e−iH↓(t+T )s−e−iH↑τ s+|i〉, (8)

with s+ = s†
− = ∑

k d†
k↑dk↓ the Rabi flip operator and |i〉 =

d†
k↓|BCS〉 the initial state.

The spectral function can be easily evaluated diagonalizing
the Hamiltonian in the Chevy subspace. After a double Fourier
transform and using E↓

0 = 0, one gets

A(ωτ , T, ωt ) = 1

2π2

∑
jmn

(e−i(E↑
n −E↑

m )T + e−iE↓
j T )

× (V↑)0m(V †
↑ V↓)m j

ωt − E↑
m + E↓

j − i0+
(V ∗

↑ )0n(V †
↓ V↑) jn

ωτ − E↑
n + i0+ .

(9)

This expression generalizes the result of [10] for the Fermi
polaron, where it holds that (V↓) jm = δ jm.

The symmetric contribution As is defined by restrict-
ing the summation over j = 0 and, since E↓

0 = 0, it obeys
As(ωτ , T, ωt ) = A∗

s (ωt , T, ωτ ). It is clear that this term does
not contain additional information with respect to the Ramsey
spectrum A(ω); in particular, As(ωτ , 0, ωt ) ∝ A(ωτ )A(ωt )
for T = 0 and the quantum oscillations of the cross peaks with
T merely reflect the energy difference between the resonances
in A(ω).

Looking at the expression for the asymmetric term, in-
stead, one can hope to extract some intrinsic properties of

the bath in the absence of the impurity. Indeed, setting for
simplicity T = 0, one notices that the mth pole is shifted to
E↑

m − E↓
j . In the Fermi polaron problem analyzed in [10], the

asymmetric term leads to a characteristic shoulder in the two-
dimensional spectrum, at a detection frequency below the RP
resonance.

While the particle-hole excitation spectrum of a Fermi
sea is gapless, for a Fermi superfluid the two-quasiparticle
continuum has a gap 2
, as a consequence of the fact that
introducing a fermion in the system costs a finite energy. We
know that actually the bosonic excitation spectrum is gapless,
since it does not cost any energy to add a Cooper pair to
the condensate, but it is plausible that the two-quasiparticle
continuum has a major effect in the 2DPS, because of its
large density of states. Therefore, 2DPS seems a priori a
promising tool to probe the gap of a Fermi superfluid. In
particular, one would expect the asymmetric term to yield
some feature at a detection frequency ∼2
 below the RP
resonance. We show below that unfortunately this is not the
case.

The 2DPS spectra are reported in Fig. 2 for (kF a)−1 =
−0.5, (kF a)−1 = 1/

√
2, and zero waiting time. In the left

panel we plot the modulus of the total response function
|A(ωτ , 0, ωt )| and in the other two panels the symmetric and
asymmetric contributions are shown. Spectra for other points
along the BEC-BCS crossover as well as the real part of A can
be found in the SM [21]. The main features of Fig. 2 are nine
peaks arising from the three resonances already present in the
Ramsey spectra of Fig. 1.

The other visible feature is the destructive interference dip
visible around (ωτ , ωt ) ∼ (ωRP, ω0) and which can clearly
be ascribed to the asymmetric term. In the absence of in-
coherent processes, the main difference between Ramsey
spectroscopy and 2DPS is this dip. We then study the
asymmetric term, fixing ωτ = ωRP and T = 0 for different
fermion-fermion scattering lengths. In Fig. 3 we normalize
the asymmetric contribution to the height of the RP diago-
nal peak. For every value of the scattering length, the ratio
|Aa(ωRP, 0, ωt )/A(ωRP, 0, ωRP)| peaks at ωt ∼ ω0 and be-
comes weaker on the BEC side of the crossover. Slices at
ω = ωRP are also reported in the SM, suggesting that on

104519-3



IVAN AMELIO PHYSICAL REVIEW B 107, 104519 (2023)

FIG. 3. Asymmetric part of the 2DPS is plotted along the T =
0, ωτ = ωRP slice and for different kF a’s, at fixed (kF a↑)−1 = 1/

√
2.

More precisely, the intensity is normalized to the RP diagonal peak.
The asymmetric contribution is always peaked around ω0 and de-
creases approaching the BEC limit of the crossover.

the BEC side it may not be possible to discern the presence
of the asymmetric contribution in an experiment with finite
signal-to-noise ratio. To get some insight on the reason why
the asymmetric term peaks at ωt ∼ ω0, we noticed that 90%
of the weight of this peak comes from states higher in energy
than the RP. In these states the impurity must be very weakly
correlated with the excited quasiparticle pair, so that E↑

m and
E↓

j are very close for alike quasiparticle momenta.
We also plot in Fig. 4 the so-called quantum oscillations of

the AP-RP and RP-AP cross peaks. A Fourier analysis reveals
that the carrier frequency corresponds to ωRP − ωAP, while the
gentle envelope behavior involves the middle resonance MP,
yielding a secondary component at frequency ωRP − ωMP.
Naively, one could have instead expected ωRP − ωAP + 2


for the carrier frequency.
The absence of a clear signature of the size of the pairing

gap is, as mentioned before, due to the fact that one has to con-
sider interacting quasiparticles, which form gapless Cooper

FIG. 4. Oscillations of the two main cross peaks are plotted as a
function of the waiting time T . Same parameters as Fig. 2(a).

pairs. If one approximates H↓  HBCS + ∑
kσ

k2

2M d†
kσ dkσ , one

would indeed get spurious peaks in Aa not at ω0, as demon-
strated in the SM [21].

IV. DISCUSSION AND CONCLUSIONS

In this article we have computed the 2DPS spectra for an
impurity immersed in a three-dimensional Fermi superfluid.
Our results suggest that, in the absence of incoherent energy
transfer or polaron-polaron interactions (single impurity), lit-
tle information is added with respect to standard Ramsey
spectroscopy and this tool would not help in measuring the
gap directly. In particular, on the BEC side the contribution of
the asymmetric term appears very small. In the SM [21] we
also report the calculation for two-dimensional superfluids,
yielding the same conclusions.

While to our knowledge in cold atom experiments Wang’s
protocol has not been implemented yet, two-dimensional
spectroscopy of solid-state samples is by now an estab-
lished tool [27–30], which allows one to access the third
order nonlinear susceptibility χ (τ, T, t ). The formalism re-
viewed here is particularly suitable to be applied to transition
metal dichalcogenide heterostructures of few layers [31]. The
optical response of these semiconductors is dominated by
excitons. In the presence of some doping, the excitons are
dressed by the electronic particle-hole excitations and form
exciton polarons [32–34]. In the expressions (7), (8) for I1, I2

one should replace s+ with the exciton creation operator x†
0 ,

where the subscript indicates that the exciton momentum is
very small, since it should belong to the light cone. The two
inner excitonic operators then add an extra projection of the
impurity in the zero momentum state. As a consequence,
the asymmetric contribution Aa is suppressed by a factor of

the order a2
T

λ2 ∼ 10−4, where the trion radius aT determines
the typical scale of the momentum states involved in the AP
and RP peaks. This argument is perfectly consistent with the
experimental findings of [27] that have been fitted neglecting
the asymmetric contribution [35,36].

On the other hand, one may argue that one main advan-
tage of two-dimensional spectroscopy is the ability to access
incoherent processes, such as dephasing, decay channels, and
inhomogeneous braodening. In this sense, the purely Hamil-
tonian nature of our model is a limitation and inclusion of
non-Hermitian elements is an interesting research direction.
In particular, incoherent processes in real materials may cause
pair breaking and make the size of the quasiparticle gap of
a superconductor detectable in the cross-peak dynamics. An-
other valuable question is whether strong interactions may
lead to complex two-dimensional spectra [6]. Finally, while
here we restrict to the case of a single impurity, it would be
very interesting (and technically much more challenging [37])
to study the signatures of the interactions between polarons
[30].
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