
PHYSICAL REVIEW B 107, 104518 (2023)

Photonic heat transport from weak to strong coupling
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Superconducting circuits provide a favorable platform for quantum thermodynamic experiments. An important
component for such experiments is a heat valve, i.e., a device which allows one to control the heat power flowing
through the system. Here we theoretically study the heat valve based on a superconducting quantum interference
device (SQUID) coupled to two heat baths via two resonators. The heat current in such a system can be tuned by
magnetic flux. We investigate how the heat current modulation depends on the coupling strength g between
the SQUID and the resonators. In the weak coupling regime the heat current modulation grows as g2, but,
surprisingly, at the intermediate coupling it can be strongly suppressed. This effect is linked to the resonant
nature of the heat transport at weak coupling, where the heat current dependence on the magnetic flux is a
periodic set of narrow peaks. At the intermediate coupling the peaks become broader and overlap, thus reducing
the heat modulation. At very strong coupling the heat modulation grows again and finally saturates at a constant
value.

DOI: 10.1103/PhysRevB.107.104518

I. INTRODUCTION

Quantum thermodynamics attracts a lot of attention both
from the fundamental physics viewpoint and due to potential
applications in nanoscale devices [1–3]. In this context, un-
derstanding of the heat transport in nanoscale systems is very
important [4–10]. Precise control and tuning of the heat power
is essential for the design of quantum heat engines [11–17],
thermal rectifiers [18–21], transistors [22–25], masers [26],
and circulators [17]. Such thermal devices can also be used
for heat management in quantum circuits [10,27]. According
to the theory [28,29], the heat current carried by quasiparticles
can be controlled by magnetic flux in properly designed super-
conducting circuits. Such tunability of the quasiparticle heat
current has been successfully demonstrated in the experiments
with proximized normal metals [25,30–32] and with Joseph-
son tunnel junctions [33,34]. Alternatively, one can use a
magnetic flux tunable superconducting quantum interference
device (SQUID) loop with two Josephson junctions to control
the heat carried by photons propagating through the electric
circuit. The SQUID may either operate as a classical inductor
[35–37] or as a qubit [9,38,39]. At very low temperatures the
photonic heat flux usually dominates over the phononic and
the quasiparticle contributions [40]. In addition, this mech-
anism permits heat transmission over macroscopic distances
[37] and remote management of the heat. In such devices the
heat current can be accurately measured employing, for ex-
ample, the normal metal–insulator–superconductor junctions
as thermometers [41].

Here we theoretically study the photonic heat transport
in the superconducting heat valve similar to the one used
in the experiment [38]; see Fig. 1. It consists of the two
resistors kept at different temperatures, two resonators, and
the SQUID loop tunable by magnetic flux. We extend the
results of Refs. [9,38], where several limiting cases have been
already considered, and study the heat transport at arbitrary
coupling between the SQUID and the resonators. To find the

heat current in the system we use the Landauer formalism for
the heat transport (see, e.g., the review [5]). In the context
of nanoelectronic systems the Landauer formula for the heat
current can be derived from the Langevin equations for the
fluctuating Josephson phase [42] coupled to the Nyquist noise
of the resistors [43]. The Landauer formalism is standard
for this type of problem; it has been used, for example, in
Refs. [9,22,44], etc. The advantage of this approach is the pos-
sibility of studying both weak and strong coupling regimes. In
the past, thermodynamics of systems weakly coupled to the
environment has been studied extensively, and there also have
been many extensions of the theory to the strong coupling
regime [45–49]. One of the difficulties in this context is the
ambiguity in the definition of heat at strong coupling [50].
Here we express the heat in terms of the temperature changes
of the metallic islands playing the role of thermal baths. Thus,
in our model, the heat is defined via the changes of the internal
energies of the baths. This definition is inspired by the experi-
ments mentioned above and the heat defined in this way can be
experimentally measured regardless of the coupling strength
between the SQUID and the resonators.

The device depicted in Fig. 1 operates as a heat valve
and allows one to tune the heat flux between the resistors by
changing the critical current of the SQUID with the magnetic
flux. From the practical point of view, the performance of the
valve is characterized by the heat current modulation ampli-
tude, i.e., by the difference between the maximum and the
minimum values of the heat current. We investigate how the
heat modulation varies with various system parameters and
obtain two surprising results. First, we find that the modu-
lation of the heat depends on the coupling strength between
the SQUID and the resonators in a nonmonotonous way. In-
deed, the modulation grows with the coupling strength in the
weak coupling regime, it almost vanishes at the intermediate
coupling, then it grows again and eventually saturates at very
strong coupling. Second, the strongest heat modulation is
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FIG. 1. Schematics of the heat valve under consideration. The
hot bath is indicated by red color and the cold one by blue color.
The two baths are realized as two transmission line resonators ter-
minated by two resistors having the same resistance R and kept
at temperatures T1, T2. The resonators have the same characteristic
impedance Z0 and the frequencies of the fundamental modes ω1,2.
They are coupled to the SQUID loop via the capacitors Cc,1,Cc,2. The
dc SQUID is characterized by the capacitance of the tunnel junctions
C and by the Josephson critical current IC (�) (1), which depends on
the external magnetic flux � threading the SQUID.

achieved in the weak coupling regime. In our modeling we
use feasible parameters [38,51,52] and we believe that our
predictions can be experimentally tested. Finally, we have
derived analytical expressions for the heat flux in various
limiting cases in terms of the circuit parameters.

We organize the paper as follows: in Sec. II we introduce
the model, in Sec. III we qualitatively discuss our main find-
ings, in Secs. IV–VI we analytically analyze the weak, the
intermediate, and the strong coupling regimes, and in Sec. VII
we summarize the results. The derivation of the Landauer
formula for the heat current is given in the Appendix.

II. MODEL

We consider an electric circuit depicted in Fig. 1. In this cir-
cuit, the two normal metal islands, having the same resistances
R and kept at constant temperatures T1, T2, act as heat baths.
The temperatures Tj ( j = 1, 2) can be experimentally mon-
itored using biased normal metal–insulator–superconductor
junctions [41]. The two identical superconducting coplanar
waveguide λ/4 resonators with characteristic impedance Z0

serve as filters. The resonators are coupled to the SQUID via
the capacitors Cc, j . The frequencies of the resonators ω1 and
ω2 may slightly differ to compensate the difference between
Cc1 and Cc2, as we explain below.

In this setup, the SQUID can act as a heat valve [10,38].
Indeed, it provides a control parameter, the external magnetic
field, which one can use to tune the heat current through the
system. We assume that the symmetric SQUID is made of
the two identical Josephson tunnel junctions and its critical
current IC periodically depends on the magnetic flux � as

IC (�) = IC,0|cos (π�/�0)|. (1)

Here IC,0 is the critical current at zero flux and �0 is the
magnetic flux quantum. The SQUID is characterized by the
Josephson energy EJ (�) = h̄IC (�)/2e and by the charging
energy EC = e2/2(Cc,1 + Cc,2 + C), where C is the capaci-
tance of the tunnel junctions of the SQUID; see Fig. 1. Here
we consider the limit EJ (0) � EC and EC � kBTj � 2EJ (0).
In this case, the Josephson junctions of the SQUID, which are
nonlinear elements, can be approximately replaced by a linear
inductor LJ (�) ≈ h̄/2eIC (�) and the SQUID as a whole by
an LC circuit with the frequency

ωJ (�) =
√

8EJ (�)EC/h̄. (2)

To describe the transport of heat by photons between the
resistors 1 and 2, we use the quasiclassical Langevin equa-
tion where the power spectra of Nyquist noises generated
by the resistors are determined by the fluctuation-dissipation
theorem [42]. In this way, we obtain the following expression
for the heat current from the resistor 2 to the resistor 1 [43]
(see also Appendix):

J (�) =
∫ ∞

0
dω

h̄ω

2π
τ (ω,�)[N2(ω) − N1(ω)]. (3)

Here Nj (ω) = 1/(eh̄ω/kBTj − 1) are the Bose functions and
τ (ω,�) is the transmission probability, which depends on
frequency and magnetic flux. Equation (3) has the familiar
form of the Landauer formula for the photon current [5]. For
the circuit of Fig. 1 the transmission probability τ (ω,�) is
given by [9,43]

τ (ω,�) =
4 Re

[
1

Z1(ω)

]
Re

[
1

Z2(ω)

]
∣∣ − iωC + 1

Z1(ω) + 1
Z2(ω) + 1

ZJ (ω,�)

∣∣2 , (4)

where the impedances of the resonators are

Zj (ω) = 1

−iωCc, j
− iZ0 tan

(
π

2

ω

ω j
+ iα

)
, (5)

α = 1

2
ln

Z0 + R

Z0 − R
, (6)

and the impedance of the SQUID is

ZJ (ω,�) = −iωLJ (�) = −ih̄ω

2eIC (�)
. (7)

In Eq. (5) the angular frequencies ω j correspond to the funda-
mental modes of the uncoupled resonators.

In Figs. 2 and 3 we plot, respectively, the transmission
probability Eq. (4) and the heat current Eq. (3) evaluated
numerically. In Fig. 3 the heat flux [Fig. 3(a)] and its mod-
ulation amplitude [Fig. 3(b)] are plotted versus the coupling
strength between the SQUID and the resonators g defined in
Eq. (25). Figure 3(b) illustrates the nonmonotonous depen-
dence of the modulation amplitude �J (g). For the numerical
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FIG. 2. Transmission probability and heat current in a symmetric system with Cc,1 = Cc,2 = Cc and ω1 = ω2. Panels (a), (b), and (c)—
transmission probability (4) versus normalized magnetic flux �/�0 and the frequency f = ω/2π . The black dashed lines are eigenfrequencies
obtained from three-level system approximation, i.e., Eqs. (27) and (28). Panels (d), (e), and (f)—heat current (3) as a function of �/�0.
(a),(d) Weak coupling regime with Cc = 10 fF. The corresponding value of the coupling constant (11) is g/2π = 296 MHz, of the shifted
resonator frequency (10) is 	r/2π = 8.73 GHz, and of the damping rate (26) is κ/2π = 451 MHz. (b),(e) Intermediate coupling regime with
Cc = 1 pF, the coupling constant (25) g/2π = 2.592 GHz, the frequency of the uncoupled mode (27) ωunc/2π = 4.15 GHz, and the frequency
of the coupled mode (24) 	r/2π = 8.425 GHz and κ/2π = 451 MHz. (c),(f) Strong coupling regime with Cc = 10−7 F, g/2π = 2.975 GHz,
ωunc/2π = 14.87 MHz, 	r/2π = 8.414 GHz, and κ/2π = 451 MHz.

simulations we have used the parameter values typical for
the experiment (see, e.g., Refs. [38,51,52]): Z0 = 50	, R =
2	, ω1/2π = ω2/2π = 8.84 GHz, C = 58.7 fF, IC = 291
nA, T2 = 300 mK, and T1 = 150 mK. The ratio between the
Josephson energy and the maximum value of the charging en-
ergy achieved at Cc,1 = Cc,2 = 0, max(EC ) = e2/2C, is high,
EJ/ max(EC ) = 438. For these parameters the replacement
of the nonlinear SQUID by a linear inductor is justified. In
the subsequent sections we discuss various approximate ap-
proaches, which allow us to find analytical expressions for the
heat current and to understand the physics behind the unusual
dependence �J (g).

III. QUALITATIVE DISCUSSION

The transmission probability Eq. (4) has peaks at frequen-
cies corresponding to the eigenmodes of the whole system
“two resonators plus SQUID.” The position, the height, and
the width of these peaks depend on magnetic flux. In Fig. 2
we plot the function τ (ω,�) for three different values of the
coupling strength between the SQUID and the resonators. In
this figure and in the rest of the paper, we assume that the
maximum value of the SQUID frequency satisfies

h̄ω1,2 < ωJ (0) < 3h̄ω1,2. (8)

In this case, the SQUID frequency [Eq. (2)] crosses only the
lowest resonator modes.

In the weak coupling limit [Fig. 2(a)] the modes of the
resonators and of the SQUID are almost independent. They
become hybridized only in the vicinity of the flux point where
ωJ (�) crossed the frequency of the resonators ω1,2. The heat
current through the system J (�) shows sharp peak at this
point and almost vanishes away from it [Fig. 2(d)]. That is
why the modulation of the heat current in the weak coupling
limit approximately equals its maximum value. For the param-
eters chosen for the simulations, which are given above, the
weak coupling limit is valid for Cc � 50 fF. A more general
condition for this is given by Eq. (21).

At the intermediate coupling [Fig. 2(b)], the hybridization
between the resonators and the SQUID becomes significant
even far away from the crossing flux point. For this reason,
the heat current peaks become broad and overlap [Fig. 2(e)].
Therefore, the magnitude of the heat current modulation
drops. In fact, it almost vanishes; see Fig. 3(b). Another effect,
visible in Fig. 2(b), is the splitting of the resonator modes into
pairs. In each pair, only one of the modes is coupled to the
SQUID and sensitive to the magnetic flux. Namely, it is the
mode having voltage antinode in the vicinity of the SQUID
and having the higher frequency of the two modes. In this
regime, the coupling capacitors Cc are on the same order of
magnitude as the effective capacitance of the resonators Cr ,
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FIG. 3. Heat current (3) and heat current modulation amplitude
�J versus the coupling strength g (25). (a) The maximum (red line)
and the minimum (blue line) photonic heat power (3) as a function
of the coupling strength g. (b) The heat power modulation �J =
Jmax − Jmin. In both plots we have normalized the heat power by
ballistic heat conduction, Jbal = (πk2

B/12h̄)(T 2
2 − T 2

1 ), which follows
from Eq. (3) if τ (ω) ≡ 1. For visual clarity, the horizontal axis shows
the rescaled coupling strength g	r/ωunc. In panel (b) we also show
the analytical approximations based on Eq. (29) (dashed blue line)
and Eqs. (39) and (40) (dashed red line). Vertical black dashed line
shows the predicted optimal coupling strength g ≈ √

κ	r/2, which
follows from the condition (30) assuming g � κ/2.

which will be defined below. In our simulation the intermedi-
ate coupling occurs in the range 50 fF � Cc � 10 pF.

In the strong coupling regime [Fig. 2(c)] the two lowest
lines in the spectrum move to very low frequencies. In this
limit, the heat current modulation reappears again. In part,
this effect is caused by the divergence of the Bose functions
at low frequencies, which makes the relative contribution of
these frequencies to the integral [Eq. (3)] more significant.
In addition to that, the third hybrid mode with the frequency
close to ω1,2 depends on the flux and also contributes to
the modulation shown in Fig. 2(f). In this limit the coupling
capacitors Cc are much larger than the effective capacitance

of the resonators Cr . For the parameters of our simulations it
means Cc � 10 pF.

In the next three sections we discuss each of the regimes
introduced above in detail.

IV. WEAK COUPLING REGIME

In the weak coupling regime, the Hamiltonian of the com-
bined system “resonators plus SQUID” can be approximately
reduced to that of three coupled oscillators [9,53,54],

H =
∑
j=1,2

h̄	 j

(
a†

j a j + 1

2

)
+ h̄ωJ (�)

(
b†b + 1

2

)

− ih̄g1(a†
1 − a1)(b† + b) − ih̄g2(a†

2 − a2)(b† + b). (9)

Here 	 j are the frequencies of the two lowest modes of the
resonators shifted by the presence of the capacitors Cc, j ,

	 j =
√

πω j√
π + 4ω jZ0Cc, j

, (10)

a j are the ladder operators of the resonators, b is the ladder
operator of the SQUID, and

g j =
√

Z0C2
c, jω

3
j

π (Cc,1 + Cc,2 + C)
(11)

are the coupling constants between the resonators and the
SQUID.

In the rest of the paper we consider the symmetric case
of two resonators with equal renormalized frequencies (10),
	1 = 	2 = 	r . For such symmetric setup the heat current
reaches the maximum values. To achieve the equality 	1 =
	2 for the asymmetric coupling with Cc,1 �= Cc,2, we ad-
just the frequencies ω j accordingly. Equations (10) and (11)
have been derived by expanding the tangents in the resonator
impedances Eq. (5) as

tan x =
∞∑

n=0

2x

π2
(
n + 1

2

)2 − x2
(12)

and keeping only the pole in the expansion with n = 0. Equa-
tions (9)–(11) are valid at small coupling g j � 	r . Below
we provide a more accurate condition for the weak coupling
approximation, which also involves the damping rate of the
resonators Eq. (21).

Determining the normal modes of the Hamiltonian Eq. (9),
we find that one of them is independent of the magnetic
flux because it is uncoupled from the SQUID. We call this
mode “uncoupled”; it has a voltage node in the vicinity of the
SQUID and in the weak coupling limit its frequency always
equals that of the shifted resonator mode, ωunc = 	r . The
frequencies of the two other modes are

ω± =

√√√√	2
r + ω2

J ±
√(

	2
r − ω2

J

)2 + 16
(
g2

1 + g2
2

)
	rωJ

2
.

(13)

In Fig. 2(a) these modes are clearly visible, while the uncou-
pled mode overlaps with ω± due to the small value of the
coupling constant g.
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In the weak coupling limit the heat current Eq. (3) strongly
increases at values of the magnetic flux �∗, which correspond
to the resonance condition ωJ (�∗) = 	r , and it almost van-
ishes away from this point [Fig. 2(d)]. In Fig. 2(a) the SQUID
frequency crosses the resonator frequencies at the flux value
�∗ ≈ 0.41�0, where the heat modulation amplitude reaches
the maximum value. To find the latter, it is sufficient to con-
sider the range of frequencies ω ∼ ωJ ∼ 	r , where one can
accurately approximate the transmission probability Eq. (4)
as follows:

τ (ω) = κ2g2
1g2

2∣∣(ω − ωJ )(ω − νr )2 − (
g2

1 + g2
2

)
(ω − νr )

∣∣2 . (14)

Here we have introduced the complex frequency νr = 	r −
iκ/2, where

κ = 4R	r

πZ0
(15)

is the damping rate of the resonator modes.
The heat current Eq. (3) with the approximate transmis-

sion probability Eq. (14) can be evaluated analytically. If
the temperatures of the resistors are sufficiently high, kBTj �
|ωJ − 	|, we obtain

J (�) = 2g2
1g2

2

g2
1 + g2

2

( g2
1+g2

2
κ

+ κ
2

)
h̄	r[N2(	r ) − N1(	r )]

[ωJ (�) − 	r]2 + ( g2
1+g2

2
κ

+ κ
2

)2
. (16)

The maximum of the heat flux is achieved at the resonance
condition � = �∗,

Jmax = 2g2
1g2

2

g2
1 + g2

2

h̄	r[N2(	r ) − N1(	r )]
g2

1+g2
2

κ
+ κ

2

, (17)

while the minimum occurs far away from the resonance, i.e.,
either at zero flux, � = 0, or at � = �0/2. As we have
discussed, at weak coupling one always has Jmin � Jmax.
Therefore, in this regime the modulation of the heat current
is close to its maximum value,

�J = Jmax − Jmin ≈ Jmax. (18)

In the symmetric case g1 = g2 = g and at very weak coupling
g � κ/2 one finds

�J = 2g2

κ
h̄	r[N2(	r ) − N1(	r )]. (19)

Thus, in this limit, the heat modulation grows with the cou-
pling strength as g2. In the limit g � κ/2 the modulation
saturates at the value

�J = κ

2
h̄	r[N2(	r ) − N1(	r )]. (20)

Considering �J as a function of the damping rate κ at fixed g,
we find that the optimal value of the damping rate is κopt = 2g
and the modulation amplitude at this point becomes �Jopt =
(g/2)h̄	r[N2(	r ) − N1(	r )].

In Eq. (16) we have ignored the contributions of the high
frequency modes of the resonators to the heat transport. Since
in our model the SQUID angular frequency ωJ (�) does not
cross these modes, in the weak coupling regime they give
small contribution.

In Fig. 3 we plot the maximum and the minimum values
of the heat current and its modulation amplitude, obtained
numerically, as a function of the coupling constant g and
compare them with the approximate results. We note that the
expressions Eqs. (17) and (18) well agree with the numerics
in the weak coupling regime.

Finally, we provide a more accurate condition under which
the weak coupling expressions Eqs. (16)–(20) are valid,

2g2

κ
+ κ

2
� |ωJ (0) − 	r | � kBTj

h̄
. (21)

V. INTERMEDIATE COUPLING REGIME

In this section we consider the intermediate coupling
regime g j ∼ 	r . In this case, the expressions for the cou-
pling constants g j , Eq. (11), and for other parameters should
be corrected. To obtain the corrected expressions, we con-
sider the classical Lagrangian of the system. For simplicity,
we consider a fully symmetric setup and put ω1 = ω2 = ωr ,
Cc,1 = Cc,2 = Cc, and g1 = g2 = g. We also define the effec-
tive capacitance of the λ/4 resonators, Cr = π/4Z0ωr (we
obtain Cr ≈ 0.28 pF for the simulation parameters given at the
end of Sec. II), and their effective inductances Lr = 4Z0/πωr .
Afterwards, the classical Lagrangian of the lowest modes of
the resonators interacting with the SQUID is expressed as

L = h̄2

8e2

∑
j=1,2

(
Cr ϕ̇

2
j − ϕ2

j

Lr
+ Cc(ϕ̇ j − ϕ̇)2

)

+ h̄2

8e2

(
Cϕ̇ − 2eIC (�)

h̄
ϕ2

)
. (22)

Here ϕ is the Josephson phase of the SQUID and ϕ j are
the phases describing the resonators. They are related to the
electric potentials at the ends of the resonators, adjacent to
the coupling capacitors, Vj , as ϕ̇ j = 2eVj/h̄. Diagonalizing
the Lagrangian Eq. (22), we obtain the corrected expressions
for the angular Josephson frequency ωJ , for the angular fre-
quencies of the resonator modes 	r , and for the coupling
constant g:

ωJ (�) =
√

2eIC (�)(Cr + Cc)

h̄[CCc + (C + 2Cc)Cr]
, (23)

	r = ωr

√
(C + 2Cc)Cr

CCc + (C + 2Cc)Cr
, (24)

g = ωr

√
C2

c Cr

4(Cr + Cc)[CCc + (C + 2Cc)Cr]
. (25)

In the limit Cc � Cr these expressions match the weak cou-
pling formulas given in the previous section. In addition, if
the resistance R approaches Z0 one should use a more accurate
expression for the damping rate,

κ = 4RZ0ωr

π
∣∣Z2

0 − R2
∣∣ . (26)

With these corrections, Eq. (16) approximately describes the
heat current in the intermediate coupling regime. The frequen-
cies of the eigenmodes of the coupled system in the limit
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R → 0 are

ωunc = ωr

√
Cr

Cr + Cc
(27)

for the mode uncoupled from the SQUID and

ω± =

√√√√	2
r + ω2

J ±
√(

	2
r − ω2

J

)2 + 32g2ω2
J

2
(28)

for the two hybrid modes. Note that the interaction term in this
equation slightly differs from that in Eq. (13). As expected,
in the limit Cc � Cr these expressions match those of the
previous section.

The main difference between the weak and the intermedi-
ate coupling regimes is in the growing value of the minimum
heat current. Assuming that Jmin = J (0), from Eq. (16) one
finds the modulation in the form

�J = g2[ωJ (0) − 	r]2h̄	r[N2(	r ) − N1(	r )][
[ωJ (0) − 	r]2 + ( 2g2

κ
+ κ

2

)2]( 2g2

κ
+ κ

2

) . (29)

This modulation amplitude significantly drops if

2g2

κ
+ κ

2
� |ωJ (0) − 	r |, (30)

i.e., as soon as the coupling can no longer be considered
weak. As in the weak coupling regime, the optimal damping
rate ensuring the strongest modulation is κopt = 2g. With this
condition fulfilled, the amplitude (29) takes the maximum
value �Jmax at the coupling strength gopt ≈ |ωJ (0) − 	r |/2.
Thus we estimate the strongest possible heat modulation as

�Jmax ≈ |ωJ (0) − 	r |
8

h̄	r[N2(	r ) − N1(	r )]. (31)

At these optimal conditions the quality factor of the resonators
Qopt = 	r/2gopt = 	r/|ωJ (0) − 	r | is low if the SQUID fre-
quency ωJ (0) is far detuned from 	r .

To illustrate these points, in Fig. 2(b) we show the trans-
mission probability τ (ω,�) in the intermediate coupling
regime g ∼ 	r . The flux-independent line at f ≈ 4.4 GHz
corresponds to the uncoupled mode of Eq. (27). The lines
corresponding to hybrid modes of Eq. (28) are well separated
at all values of magnetic flux. This is why the dependence of
the heat current on � becomes weak and does not exhibit a
resonance peak [Fig. 2(e)]. This, in turn, suppresses the heat
current modulation, as it is evident from Fig. 3(b) for the range
of couplings 1 GHz � g	r/ωunc � 100 GHZ.

VI. STRONG COUPLING REGIME

In the strong coupling limit the hybrid mode ω−(�)
[Eq. (28)] and the uncoupled mode ωunc [Eq. (27)] move to
low frequencies, where they merge and form a broad peak in
transmission probability, which is sensitive to the magnetic
flux. The mode ω+(�) becomes isolated, with pronounced de-
pendence on the magnetic flux due to its strong coupling to the
SQUID; see Fig. 2(c). These effects lead to the reappearance
of the heat current modulation in the strong coupling limit.

The formal condition for the strong coupling limit, where
one can derive simple approximate expressions, is

Cc � max{Cr,C, Lr/R2}. (32)

In the limit Cc � max{Cr,C} Eqs. (23)–(25) become

ωJ (�) =
√

2eh̄IC (�)

C + 2Cr
, (33)

	r = ωr

√
2Cr

C + 2Cr
, g = ωr

√
Cr

4(C + 2Cr )
. (34)

Furthermore, at low frequencies ω � ωr one can approx-
imate the impedances of the resonators Eq. (5) as Z1(ω) =
Z2(ω) = −iωLr + R. In this limit, at small capacitance of
the SQUID, C � Lr/R2 and for Cc � Lr/R2 the transmission
probability at low frequencies acquires the form of a non-
Lorentzian peak,

τ (ω) = 4R2ω2( 2eIC (�)
h̄

(
ω2L2

r + R2
) + 2ω2Lr

)2 + 4R2ω2
. (35)

This peak has a maximum at frequency ωmax ∼ R/Lr . The
contribution of the low frequency peak to the heat flux can
be evaluated analytically for temperatures T1, T2 � h̄R/kBLr .
In this case, in Eq. (3) one can make the low frequency
approximation for the Bose functions

h̄ω[N2(ω) − N1(ω)] → kB(T2 − T1). (36)

After that, Eq. (3) with the transmission probability Eq. (35)
leads to the contribution to the heat flux coming from the low
frequency peak in the form

Jl (�) = κkB(T2 − T1)

4[1 + A(�)][2 + A(�)]
. (37)

Here we have defined the flux dependent dimensionless pa-
rameter

A(�) = πeZ0IC (�)

h̄ωr
= π2

8

Lr

LJ (�)
. (38)

One can work out an even more accurate approximation for
the low frequency contribution,

Jl (�) = κkB(T2 − T1)

4[2 + A(�)]

A(�)κ2 + 4[1 + A(�)]ω2
unc

A(�)[1 + A(�)]κ2 + 4ω2
unc

. (39)

This result can be extended to the intermediate coupling
regime, i.e., to the values of Cc smaller than the condition
Eq. (32) requires.

The contribution of the mode ω+ [Eq. (28)] to the heat
current can be estimated as

J+(�) = κ

4
h̄ω+(�){N2[ω+(�)] − N1[ω+(�)]}, (40)

where the frequency ω+(�) is given by Eq. (28). In the limit
Cc � max{Cr,C}, where g2 = 	2

r /8, this frequency acquires
a simple form

ω+(�) =
√

	2
r + ω2

J (�)

=
√

ω2
r

2Cr

C + 2Cr
+ 2eIC (�)

h̄(C + 2Cr )
. (41)
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The total heat current takes the form

J (�) = Jl (�) + J+(�) + Jbg(�), (42)

where Jbg(�) is the background contribution coming from the
modes with frequencies higher than ω+. Interestingly, in the
strong coupling regime the heat current has a maximum at
� = 0.5�0 and minimum at � = 0; see Fig. 2(f).

In Figs. 3(a) and 3(b) we observe the reappearance of the
heat current modulation at strong coupling. For the chosen pa-
rameters the modulation predominantly comes from the term
J+(�) [Eq. (40)], although the low frequency part Jl (�) also
gives nonvanishing contribution. In the limit Cc → ∞ and for
kBT1,2 � ω+(�) the modulation approaches the limiting value

�J =
[

A(1 + A)

(1 + A)(2 + A)
+ h̄2ω2

+
6k2

BT1T2

]
κkB(T2 − T1)

8
, (43)

where both A and ω+ are taken at � = 0.

VII. CONCLUSION

In conclusion, we have studied photonic heat transport
through a SQUID coupled to the two resonators and two
resistors. By tuning the critical current of the SQUID with
magnetic flux, one can control the heat power transmitted
from the hot resistor to the cold one. This device can be used
as a heat valve provided its parameters are chosen properly.
We study the performance of the heat valve depending on the
coupling strength between the resonators and the SQUID. We
find that the main parameter characterizing the performance of
such device, namely, the amplitude of modulation of the pho-
tonic heat power, nonmonotonously varies with the coupling
strength. The modulation grows with the coupling strength
in the weak coupling regime, then significantly drops at the
intermediate coupling, and, finally, it reappears again in the
strong coupling limit. This unusual behavior is explained by
the resonant nature of the heat transport in the system. Indeed,
at weak coupling the heat flows through the device only at
magnetic flux values corresponding to the resonance condition
ωJ (�) = 	r and drops to zero away from these values. As
a result, the dependence of the heat power on the magnetic
flux, J (�), is given by a periodic set of narrow peaks. At the
intermediate coupling these peaks become broader and even-
tually overlap, thus reducing the heat modulation. The optimal
performance of the heat valve is achieved at the boundary
between the weak and the intermediate coupling regimes and
at the resonator damping rates close to the coupling constant
between resonators and the SQUID. Our results can help to
optimize the design of the low temperature heat valves based
on superconducting circuit components.
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FIG. 4. Equivalent lumped-element circuit of the system shown
in Fig. 1 with the SQUID has been replaced by a linear lumped
element with the impedance ZJ (ω). The resistors generate the noise
currents ζ1 and ζ2, which carry the information about the temperature
T1 and T2.

APPENDIX: DERIVATION OF EQ. (4)

In this Appendix we provide the derivation of the trans-
mission probability (4) following the method of Ref. [43].
Kirchhoff’s equations for the circuit of Fig. 4 read

I1(t ) =
∫ t

−∞
dt ′Y1(t − t ′)V (t ′) + ζ1(t ), (A1)

I2(t ) =
∫ t

−∞
dt ′Y2(t − t ′)V (t ′) + ζ2(t ), (A2)

IJ (t ) = CV̇ +IC sin ϕ, I1(t ) + I2(t ) + IJ (t ) = 0. (A3)

Here the admittances of the environment 1 and 2 in the time
domain are defined as Yj (t ) = ∫

dω e−iωt/[2πZj (ω)]. The
voltage drop across the junction is related to the phase by the
second Josephson relation V = h̄ϕ̇/2e. The noises ζ1 and ζ2

are the Gaussian stochastic processes fully characterized by
their pair correlators

〈ζi(t
′)ζ j (t

′′)〉 =
∫

dω

2π

〈|ζ j |2ω
〉
cos[ω(t ′ − t ′′)]δi j, (A4)

〈|ζ j |2ω
〉 = Re

[
1

Zj (ω)

]
h̄ω coth

h̄ω

2kbTj
. (A5)

The heat current flowing through the circuit is given by
the Joule heating in the impedance Z1(ω) averaged over the
noises ζ j

J = 〈I1V 〉ζ . (A6)

After linearizing the SQUID dynamics, i.e., replacing sin ϕ by
ϕ, one can replace it by an inductor. Afterwards, the current
across the junction in Fourier domain becomes Vω/ZJ (ω).
Solving Eqs. (A1), (A2), and (A3) in Fourier domain, we
obtain the Fourier component of the voltage in the form

Vω = − ζ1,ω + ζ2,ω

−iωC + 1
Z1(ω) + 1

Z2(ω) + 1
ZJ (ω)

. (A7)
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The heat flux Eq. (A6) now reads

J =
∫

dω

2π
〈I1,ωV−ω〉ζ

=
∫

dω

2π

〈(
Vω

Z1(ω)
+ ζ1,ω

)
V−ω

〉
ζ

=
∫ ∞

0

dω

2π

2 Re
[ 〈|ζ2|2ω〉

Z1
− 〈|ζ1|2ω〉

Z2

]
∣∣ − iωC + 1

Z1(ω) + 1
Z2(ω) + 1

ZJ (ω)

∣∣2 . (A8)

Using the spectral power of the noises (A5), one can show that the above expression is equivalent to Eq. (3) with the transmission
probability given by Eq. (4).
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