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Optimizing the transport of Majorana zero modes in one-dimensional topological superconductors
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Topological quantum computing is based on the notion of braiding non-Abelian anyons, such as Majorana
zero modes (MZMs), to perform gate operations. A crucial building block of these protocols is the adiabatic
shuttling of MZMs through topological superconductors. Here, we consider the “piano key” approach, where
MZMs are transported using local electric gates to tune sections (“keys”) of a wire between topologically trivial
and nontrivial phases. We numerically simulate this transport on a single wire and calculate the diabatic error
corresponding to exciting the system. We find that this error is typically reduced when transport is facilitated by
using multiple keys as one may expect from modeling each piano key press as an effective Landau-Zener process.
However, further increasing the number of keys increases errors; thus, there exists a nontrivial optimal number
of keys that minimizes the diabatic error given a fixed total shuttle time. As we show, this optimal number of
keys can be explained by modeling each key press as an effective Landau-Zener process while paying careful
attention to power-law corrections that arise due to the nonanalytic behavior of the time-dependent modulation
of the chemical potential at the beginning and end of each key press.
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I. INTRODUCTION

Majorana zero modes (MZMs) provide a promising plat-
form for quantum computation due to their nonlocal character
and non-Abelian exchange statistics [1,2]. Quantum informa-
tion can be encoded nonlocally in a degenerate ground-state
subspace formed by MZMs and is topologically protected
against decoherence [2,3]. The braiding of MZMs equates
to a unitary operation within this subspace, which can be
exploited for use as quantum logic gates [4,5]. MZMs are
predicted to emerge as edge states in p-wave superconductors
[3,4] and various experimental platforms for realizing p-wave
superconductivity have been proposed [6–13]. Experimental
signatures of MZMs have also been well-established, with
a notable signature being a quantized electrical conductance
at zero-bias voltage [14–17]. Over the past decade, consider-
able progress has been made in the experimental detection of
MZMs in a host of settings including hybrid semiconductor-
superconductor nanowires [18–30], magnetic atomic chains
[31–35], and others [36–40]. Although definitive evidence for
MZMs remains elusive, recent experimental developments are
encouraging and have galvanized theoretical efforts regarding
their applications to quantum computation, with particu-
lar attention directed towards braiding. Various schemes for
braiding MZMs have been proposed which involve circuits of
superconducting wires [41–44], Josephson junctions [45–47],
periodic driving [48–50], and others [51–55].

The method by which MZMs are manipulated and the
time scales over which these manipulations occur are impor-
tant considerations for any braiding protocol. In particular, a
number of protocols rely on MZMs being transported across
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superconducting wires. Transport which is performed too
quickly compared to the time scale of the energy gap runs the
risk of inducing quasiparticle excitations between the ground-
state subspace and excited states. These diabatic transitions
are a source of decoherence and are therefore destructive in
view of topological quantum computation. Errors originating
from such transitions have been examined in the specific case
of transport [56–62] and in the broader context of braiding
[63–70].

In this work, we study the diabatic error that is accrued as
MZMs are transported over a fixed distance along a single,
topological superconducting wire. We specifically focus on
the “piano key” setup where a wire is divided into electri-
cally gated sections (“keys”). Within each key, the chemical
potential may be tuned in order for the key to switch from a
topologically trivial phase to a nontrivial phase and viceversa.
Since MZMs reside at the phase boundaries, appropriately
tuning a key facilitates their transport. Our work is concerned
with the use of multiple keys and serves as an extension
of Ref. [59] which examines the diabatic error generated
when a single key is used. We note that recent experiments
have demonstrated more advanced electrical gating tech-
niques [71,72] which has led to an increased appeal in this
transport method for theoretical study. Other methods have
also been proposed where, for example, the chemical potential
changes in a domain wall-like fashion [57,58].

While it is sufficient to use a single piano key to shuttle
an MZM between two positions in a wire, it can nevertheless
be useful to study how the diabatic error changes when this
single key is separated into multiple keys which are tuned one
at a time. We consider a simple protocol where an MZM is
transported over a distance R in a total time τ using n keys
where each key has the same size R/n and the same tuning
time τ/n. The total diabatic error can be intuitively understood
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by viewing the tuning of each key as a Landau-Zener process
[59]. As a key undergoes a topological phase transition, the
energy gap between the ground-state subspace and excited
states achieves a minimum value δ ∼ n/R. Since Landau-
Zener theory predicts that the total diabatic error scales as
∼ne−δ2τ/v for some model-dependent parameter v, it would
appear that reducing the size of the keys (at least down to the
MZM localization length) is always optimal.

As we show, the above argument ignores important power-
law corrections ∼1/(δτ )α to the Landau-Zener result. These
corrections originate due to the finite duration of the protocol
and the nonanalytic behavior of the change in the chemical
potential with time, μ(t ), at the beginning and end of each
piano key press. Somewhat counterintuitively, as the protocol
time τ is increased, these corrections dominate the diabatic
error as the usual exponentially small contribution becomes
irrelevant. These power-law corrections can be suppressed
by choosing a tuning function for μ(t ) where the first M
derivatives vanish at the endpoints of each key press [leading
to α = 2(M + 1)], though this is expected to be futile in the
presence of noise [65].

In view of this, we consider piano keys for which the local
chemical potential μ(t ) is simply rescaled temporally to go
from one extremal value to the other in time τ/n. In this
setting, there is a competition between the usual exponen-
tially small contribution to the diabatic error expected from
a Landau-Zener process, which favors increasing the number
of keys, and the anomalous power-law contribution which
favors decreasing the number of keys and which dominates
when larger protocol times are allowed. Thus, there exists a
nontrivial number of keys n∗ which is optimal at reducing the
diabatic error given either a fixed total protocol time or desired
error tolerance. Interestingly, n∗ → 1 in the limit where the
total protocol time is not a relevant constraint.

This paper is organized as follows. In Sec. II, we review
the Kitaev chain as a model for a topological superconducting
wire and describe the piano key protocol that we study for
adiabatically transporting MZMs. Furthermore, we determine
analytical expressions for the diabatic error by considering
the dynamics of a two-level system undergoing Landau-Zener
transitions. This analysis is undertaken for two chemical
potential tuning functions which have different degrees of
nonanalyticity at their endpoints, leading to different power-
law corrections. In Sec. III, we demonstrate our numerical
results for the diabatic error obtained from simulations in
the case of multiple piano keys. We show that these re-
sults compare well to analytical predictions. Moreover, we
show the emergence of an optimal number of piano keys,
n∗, depending on the total protocol time or desired error
tolerance. In Sec. IV, we conclude with a summary of our
results.

II. SETUP AND DIABATIC ERROR

A. Model for a superconducting wire

The model that we use for a one-dimensional, spinless
p-wave superconductor is the Kitaev chain [3]. In terms of
electron operators, the Hamiltonian for a Kitaev chain with N

electronic sites is

Hkit = −
N∑

j=1

μ jc
†
j c j − w

2

N−1∑
j=1

(c†
j c j+1 + H.c.)

− �SC

2

N−1∑
j=1

(c jc j+1 + H.c.), (1)

where μ j is the site-dependent chemical potential, w > 0 is
the nearest-neighbour hopping amplitude, and �SC > 0 is the
superconducting pairing amplitude. Equation (1) may also
be cast into a form which uses Majorana operators; see Ap-
pendix A for details. For a chain with homogeneous chemical
potential μ j = μ, MZMs appear when the chain is in the
topologically nontrivial phase, which occurs when |μ| < w.
The MZMs are localized at the edges, exponentially decay
into the bulk, and display an energy splitting which is expo-
nentially suppressed by their separation distance. Conversely,
the topologically trivial phase corresponds to |μ| > w, which
does not feature MZMs.

Generally, a chain with inhomogeneous parameters may
consist of sections which are in different topological phases.
At the boundaries of these different phases are where MZMs
are pinned. We consider a chain which is divided into two
sections: the left section, which has length L, is placed in the
nontrivial phase and the right section, which has length R,
can be interpolated between both phases. Initially, the right
section is placed in the trivial phase, which results in the
appearance of one MZM at the far left edge of the chain
(denoted by γ1) and another in the bulk (denoted by γ2). The
initial setup of the chain is illustrated in Fig. 1(a). Our work
focuses specifically on the transport of the MZM γ2 to the far
right edge by controlling the phase of the right section via the
chemical potential.

Let us consider quantitatively how the chain parameters
change with position and time. We set the parameters w and
�SC to be time-independent. For the left section to be fixed
in the nontrivial phase, its chemical potential is chosen to
be μ j = μL for j � L, where |μL| < w. For the right sec-
tion to be initially in the trivial phase, its chemical potential is
chosen to be μ j = μR for j = L < 0 � N , where |μR| > w.
As previously discussed, the different sections of the chain
can be thought of as “piano keys” and moving γ2 requires
keys to be “pressed.” We first review the case where the right
section is treated as a single key and adopt the scheme detailed
in Ref. [59] to tune the chemical potential. The chemical
potential changes with time uniformly across the entire key:
μ j = μ(t ) for j = L < 0 � N . Here, μ(t ) is adjusted from
μR to μL over a total time τ and takes the form

μ(t ) = [1 − g(t/τ )]μL + g(t/τ )μR, (2)

with

g(t/τ ) =
⎧⎨
⎩

0 t/τ � 0
f (t/τ ) 0 < t/τ < 1
1 t/τ � 1

, (3)

where f (t/τ ) is a tuning function such that f (0) = 0 and
f (1) = 1. In later sections, we consider both a linear tuning
function f (t/τ ) = t/τ as well as a “smooth” tuning function
f (t/τ ) = sin2(πt/2τ ).
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(a)

(b)

FIG. 1. Setup for the transport of MZMs in a superconducting
wire using the piano key approach. (a) The initial configuration of
the wire which is divided into two sections. The left section is in the
topologically nontrivial phase with length L and chemical potential
μL (solid blue line). The right section is in the trivial phase with
length R and chemical potential μR (solid red line). The critical value
of the chemical potential which separates both phases is μc = w

(dashed black line) for the Kitaev chain. The MZMs are represented
as green circles and are labeled as γ1 and γ2. (b) The MZM γ2 within
the bulk of the wire is shuttled to the right by tuning the chemical
potentials μ̄m(t ) for n keys each with length R/n. The chemical
potentials are tuned from a value μR to μL. Illustrated is the specific
case of n = 3 with the first key having been completely pressed while
the second key is in motion.

Our work is predominantly concerned with the case of
transport using multiple piano keys, as illustrated in Fig. 1(b).
We consider now the division of the right section of the chain
into n keys each with equal length R/n. The MZM γ2 may
be shuttled to the far right edge by successively pressing each
adjacent key beginning with the key located at the initial phase
boundary. The amount of time allocated to pressing each key
is given by τ/n. We remark that as soon as one key completes
a press, the next key is set into motion instantly. The scheme
used to change the chemical potential for a single key, as
described in Eqs. (2) and (3), is adapted for each key in this
case. Let the chemical potential of a key be denoted by μ̄m(t )
where m = 0, 1, 2, . . ., n − 1 labels a key’s pressing order.
The chemical potential of the mth key can be formulated as
a rescaling and shifting of time applied to Eq. (2):

μ̄m(t ) = μ(nt − mτ ). (4)

Both Eqs. (3) and (4) ensure that the chemical potential of the
mth key is tuned only when t ∈ [mτ/n, (m + 1)τ/n].

We briefly comment on the use of electric gates to tune
each key in experiment. First, we note that the size of a key

is controlled by the size of its corresponding gate. In practice,
electric gates can be manufactured with a size on the scale
of ∼10 nm using methods such as electron beam lithography,
see Refs. [73,74] for details. In our simulations, we consider
a superconducting wire with a length of ∼1–2 μm and study
MZM transport using a maximum of n = 15 keys. This means
that the smallest key that we consider has a size of ∼70 nm
which is within the realm of experimental feasibility.

B. Diabatic error of single piano key

As previously mentioned, the diabatic error is defined to
be the transition probability between the ground state and the
excited states. A general expression for the diabatic error may
be given as

P = 1 − |〈� f |U (τ )|�i〉|2, (5)

where |�i〉 is the initial ground state, |� f 〉 is the instanta-
neous ground state of the final Hamiltonian, and U (τ ) is a
time evolution unitary. Within the context of this work, U (τ )
encapsulates the details of transporting the MZM γ2 over a
total time τ ; see Appendix B for details.

We review an analytical calculation of the diabatic error
that is accumulated for a single piano key. As demonstrated
in Ref. [59], much of the underlying physics of the diabatic
error can be captured by a simple Landau-Zener model. This
calculation hinges on two simplifying assumptions. First, it is
assumed that most of the contributions to the diabatic error
originate from transitions between the ground state and the
first excited state. Second, it is assumed that these transitions
are most probable when the key is near the critical point that
separates the two topologically distinct phases.

In reference to the first assumption, let us define the ground
state and first excited state. We consider the BCS ground
state |�〉 such that dl |�〉 = 0, where dl , l = 0, 1, 2, . . ., N − 1
are fermionic operators for Bogoliubov quasiparticles. The
energy associated with creating a quasiparticle is εl > 0 where
ε0 < ε1 < · · · < εN−1. Since Hkit conserves parity, we con-
sider the first excited state that is within the same parity sector
as the ground state. This first excited state must be occupied
by two quasiparticles, one with energy ε0 and another with
energy ε1:

|X 〉 = d†
0 d†

1 |�〉. (6)

The operator d0 is unique in that it contains both MZMs,
namely d0 = (1/2)(γ1 + iγ2). The energy of the MZMs is
exponentially suppressed by their separation distance �x such
that ε0 ∼ e−�x/ξ where ξ is the superconducting coherence
length. When this energy splitting vanishes, which occurs in
the large separation limit �x � ξ or when model parame-
ters are fine-tuned, the opposite parity state d†

0 |�〉 becomes
degenerate with |�〉. In these limits, the setup of the states
presented can be equally applied to this opposite parity ground
state. In either case, since ε0 	 ε1, the energy gap between the
ground state and first excited state of the same parity can be
well-approximated by ε1.

Invoking the second assumption, we consider the dynamics
of the relevant eigenmodes when the piano key is in the vicin-
ity of criticality. We briefly mention the behavior of the MZMs
in this regime. As detailed in Ref. [59], γ1 on the far left edge
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(a) (b)

FIG. 2. Energy ε of the first excited state as the MZM γ2 is transported using (a) a single piano key and (b) six piano keys. The numerical
results (solid blue curves) were obtained using exact diagonalization for a Kitaev chain with N = 240 sites where the left and right sections are
equal, L = R = 120 sites. A smooth tuning function f (t/τ ) = sin2(πt/2τ ) was used to adjust the chemical potential in each key. The analytical
expression for the energy from Eq. (8) is shown (red dot-dashed curves). For the single key protocol in panel (a), the analytical expression
matches well with the numerical result in the critical regime. In the case of multiple keys in panel (b), the analytical expression overestimates
the minimum gap for the first and intermediate keys; however, it captures well the minimum gap of the final key. In numerical calculations, we
use parameters w = 3.0 meV, �SC = 0.6 meV, and δμ = 0.2 meV.

is unaffected when criticality is achieved while γ2 delocalizes
across the region occupied by the key. When the key moves
further into the nontrivial phase, γ2 localizes on the far right
edge. However, the bulk eigenmode represented by d1 also
becomes localized within the piano key region in this critical
regime. Its energy ε1 can be estimated by considering the key
as its own separate chain with length R. If R is sufficiently
large, then this energy can be approximated by the expression
for the bulk spectrum:

ε(k) =
√

[μ(t ) + w cos k]2 + �2
SC sin2 k, (7)

where k is the momentum. Specializing to μ(t ) > 0, criticality
occurs when μ(t ) = w with the bulk gap closing at momen-
tum k = π . Knowing that the momentum resolution is π/R
due to the finite size of the key, the lowest energy bulk mode is
expected to have momentum k = π + π/R. The energy of this
bulk mode, ε(π + π/R), is precisely what we seek. Assuming
that π/R 	 1, we expand the terms cos(π + π/R) ≈ −1 and
sin(π + π/R) ≈ −π/R in Eq. (7), and subsequently obtain an
estimate for ε1:

ε1 ≈
√

[μ(t ) − w]2 +
(

π�SC

R

)2

. (8)

The picture that we have so far is that of a two-level system
with an energy gap given by Eq. (8). An effective Hamiltonian
describing this low energy subspace is given as

Heff = 1

2

⎛
⎜⎝μ(t ) − w

π�SC

R
π�SC

R
−μ(t ) + w

⎞
⎟⎠. (9)

The basis of this effective Hamiltonian consists of the ground
state |�〉 and the first excited state |X 〉 of the Kitaev Hamil-
tonian in the case where the energy gap vanishes at criticality,
which occurs when either �SC = 0 or R → ∞. As will be

discussed, relevant to the calculation of the diabatic error are
the instantaneous eigenstates of Eq. (9) which represent the
ground state and first excited state in the case of a finite energy
gap of π�SC/R at criticality.

We now specialize to the case where the chemical poten-
tial changes symmetrically around the critical point, namely
μL = w − δμ and μR = w + δμ for δμ > 0. The effective
Hamiltonian becomes

Heff = 1

2

(
δμ[1 − 2g(t/τ )] π�SC

R
π�SC

R −δμ[1 − 2g(t/τ )]

)
, (10)

where we have explicitly used Eq. (2). In Fig. 2(a), we com-
pare the energy gap to the energy of the first excited state in
the Kitaev chain as a single key is tuned using the established
chemical potential configuration.

We first consider the case where the tuning function
changes linearly with time: f (t/τ ) = t/τ . It is convenient to
shift the time axis as t → t + τ/2 which results in criticality
occurring at t = 0. The effective Hamiltonian reads

Heff,lin =

⎛
⎜⎝−δμ

τ
t

π�SC

2R
π�SC

2R

δμ

τ
t

⎞
⎟⎠, (11)

where t ∈ [−τ/2, τ/2]. The calculation of the diabatic error,
as stated in Eq. (5), requires knowledge of the time evolu-
tion of the system. Here, the time evolution operator may be
obtained by solving the Schrödinger equation in the basis of
the eigenstates of Eq. (11) with the initial condition |ψ (0)〉 ≡
|�i〉. The exact expressions for the matrix elements of this
time evolution operator have been calculated in Refs. [75,76]
and take the form of parabolic cylinder functions. Using the
results therein, we obtain an approximate expression for the
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diabatic error:

Plin(τ ) ∼ e−π�τ/2r +
( r

τ�

)2 1

(1 + r2)3
, (12)

where

� = π�SC

2R
, r = δμ

2�
. (13)

We note that the minimum gap is given by 2� while r is
roughly the ratio between the maximum and minimum gaps
if � 	 δμ. The expression in Eq. (12) is valid for τ �
4δμ/(δμ2 + �2) which comes from the asymptotic expansion
of the parabolic cylinder functions for simultaneously large
argument and large parameter.

The diabatic error in this effective two-level system setup
features oscillations which are not captured by Eq. (12).
These oscillations originate from accidental closed orbits in
the Bloch sphere which may reduce the diabatic error for
fine-tuned parameters. We omit these oscillations since they
are expected to be largely suppressed in the Kitaev chain
simulations. This suppression stems from the fact that exci-
tations from the ground state are more likely to leak into the
continuum of excited states than to return back to the ground
state itself. This is observed in our numerical results for the di-
abatic error, which will be discussed in Sec. III. Nonetheless,
we have verified numerically that Eq. (12) describes well the
overall profile of the diabatic error in the case of the two-level
system.

The exponentially decaying first term in Eq. (12) is the
familiar Landau-Zener formula and originates from the fact
that the system contains a parabolic avoided level crossing
at criticality. However, the correction term, which goes as a
power law in τ , is directly related to how smoothly the energy
levels change at the temporal endpoints of the tuning. The
competition between both types of behavior crucially depends
on the size of the minimum gap relative to the maximum
gap as characterized by r: As the minimum gap grows, the
power-law behavior begins to dominate at shorter τ .

The specific power law which manifests as τ grows is
highly dependent on the nonanalyticity of the tuning function
at the temporal endpoints [77]. In particular, if the first M
time-derivatives of f (t/τ ) vanish at the endpoints, then the
diabatic error is expected to go as τ−2(M+1). For the case
of linear tuning, the first time-derivative is nonzero at these
endpoints which leads to M = 0 and so τ−2 as expected.

We also consider the smooth tuning function f (t/τ ) =
sin2(πt/2τ ). We shift the time axis in the same manner as
for the linear tuning function and from Eq. (10), obtain the
following effective Hamiltonian:

Heff,sin =

⎛
⎜⎜⎝

−δμ

2
sin

(
πt

τ

)
π�SC

2R
π�SC

2R

δμ

2
sin

(
πt

τ

)
⎞
⎟⎟⎠. (14)

Using seminumerical methods augmented with the general
form of the expressions found in Ref. [76], we determine a
suitable approximation for the diabatic error:

Psin(τ ) ∼ e−�τ/r + 6r2

(τ�)4

1

(1 + r2)4
. (15)

As with the linear case, the first term of Eq. (15) corre-
sponds to the Landau-Zener formula while the second term
is a power-law correction. The τ−4 dependence is consis-
tent with expectations from general theory. Here, the first
time-derivative of f (t/τ ) vanishes at the endpoints while the
second time-derivative is nonzero. We then have M = 1 which
suggests that the diabatic error goes as τ−4 for long times.

C. Diabatic error of multiple piano keys

We now consider the multiple piano key case as described
in Sec. II A. Suppose that the diabatic error which results from
pressing the mth key is denoted as Pm. In general, the total
diabatic error P is computed by summing over the diabatic er-
rors corresponding to all possible transition paths which start
in the ground state and end in the excited state. To simplify
calculations, we restrict the number of possible transitions to
be one per key. In terms of each Pm, we have

P =
∑
{ C}

n∏
m=1

PCm
m (1 − Pm)1−Cm , (16)

where C is a vector of length n with elements Cm ∈ {0, 1}.
Here, Cm = 1 corresponds to a transition while Cm = 0 oth-
erwise. The number of transitions is always odd and leads to
a restriction on the set { C}, namely that

∑n
m=1 Cm mod 2 = 1.

We note that the expression in Eq. (16) does not account for
interference between different transition paths which manifest
as Stückelberg phases in the diabatic error [78,79]. As such,
one may view this expression as the result of averaging over
the oscillations emerging from these phases.

We assume that Pm for each key, depending on the tuning
function used, can take the form of Eq. (12) or Eq. (15) with
the replacements R → R/n and τ → τ/n. We emphasize that
this assumption leads to Pm being identical for each key which
is not necessarily true in our simulations of the Kitaev chain;
this will be discussed later. From the expected analytical form
of Pm, one can see that Pm 	 1 for sufficiently large τ/n
which results in the suppression of the higher-order terms
PmPm+1Pm+2 . . . in Eq. (16). This leads to a simple approxi-
mation for the total diabatic error:

P ≈
n∑

m=1

Pm. (17)

We note that the assumption of having each key share the
same diabatic error, although simple and intuitive, is generally
untrue. The reason for this stems from the actual minimum
gap found for each key. As shown in Fig. 2(b), the first
and intermediate keys (m = 0, 1, 2, . . . n − 2) have roughly
the same minimum gap which differs from the prediction of
Eq. (13) with the replacement R → R/n. Conversely, there is
agreement between the minimum gap featured for the final
key (m = n − 1) and the predicted value.

The different minimum gaps may be understood by con-
sidering the behavior of the eigenmode corresponding to d1 as
each key is pressed. We previously noted that when a key un-
dergoes criticality, this eigenmode becomes localized within
the key. The length scale over which this localization occurs
is given by R/n + ζ for some ζ > 0 which describes the
decay of the eigenmode into neighboring sections of the chain.
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(a)

(b)

(c)

(d)

FIG. 3. Numerical results for the diabatic error P as a function of the total time τ it takes to transport the MZM γ2 over a fixed distance
using n equally sized piano keys. The results featured in the left column correspond to a linear tuning of the chemical potential in each key
while the results in the right column correspond to smooth tuning. For each tuning, results are shown for a Kitaev chain with N = 120, 240
sites. Each plot displays an inset on log-log scale which illustrates the power-law behavior of the diabatic errors. When linear tuning is used,
the diabatic error goes as τ−2 at large τ while for smooth tuning it goes as τ−4. The regions which are shaded in gray correspond to the cases
where a single key is optimal for transport (n∗ = 1) while within the unshaded regions, multiple keys are optimal (n∗ > 1). In all simulations,
we use parameters w = 3 meV, �SC = 0.6 meV, and δμ = 0.2 meV.

The final key is distinct in that it features the termination of
the chain to the right. It follows that the localization length
of the eigenmode in this instance is expected to be smaller
compared to those of the other keys. In view of Eq. (13), the
minimum gap may be estimated by making the replacement
R → R/n + ζ . Accordingly, the minimum gap for the final
key should be comparatively larger which is consistent with
results from numerical calculations, see Fig. 2(b). Though it
may be instructive to calculate ζ for each key, we do not
discuss this in detail as our general conclusions remain un-
changed provided that ζ itself is not too large.

III. NUMERICAL RESULTS

We numerically simulate the piano key transport of the
MZM γ2 on a Kitaev chain and calculate the diabatic error that

is accumulated throughout this protocol. The diabatic error
is calculated using Eq. (5) where the time evolution opera-
tor U (τ ) is constructed using a time discretization scheme
while the square of the matrix element is evaluated using
covariance matrices, see Appendices B and C for details. In all
simulations, the chemical potential in each key is tuned sym-
metrically around the critical value w, as detailed in Sec. II B,
with δμ = 0.2 meV. The coupling amplitudes are chosen to
be w = 3 meV and �SC = 0.6 meV. We consider chain sizes
of N = 120 sites and N = 240 sites which correspond to
physical lengths l ∼ 1 μm and l ∼ 2 μm, respectively, for
nanowires with lattice spacing a ∼ 10−2 μm. The left and
right chain sections are set to be equal, L = R = N/2.

Our main results for the diabatic error are shown in Fig. 3
for both linear and smooth tuning functions. For each tun-
ing, results corresponding to two different chain sizes are
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shown. When the chain size increases while the number
of keys used n is fixed, the size of each key naturally in-
creases. We comment that each key must then be pressed
for a longer amount of time to achieve a particular value
for the diabatic error. This is reflected in the different time
scales between results. Furthermore, we observe that regard-
less of the choice of tuning or choice of n, the behavior of
the diabatic error may be divided into two distinct regimes:
an exponential regime for short total times and a power-
law regime for long total times. This is consistent with the
analytical predictions discussed in preceding sections. We
note that as n increases, the power-law behavior sets in at
shorter total times while the size of the exponential regime
shrinks.

The tuning functions have the effect of modifying the de-
tails of the decay rate in the exponential regime as well as
the precise τ -dependence in the power-law regime. In the ex-
ponential regime, the diabatic error decays faster when linear
tuning is used. This makes the choice of linear tuning appeal-
ing if relatively large diabatic errors are tolerated. However,
for the power-law regime, linear tuning results in a ∼τ−2

behavior while for smooth tuning this is ∼τ−4. This in turn
makes smooth tuning appealing if relatively small diabatic
errors are desired. We remark that an ideal tuning function
is one which passes slowly through the critical point and
contains a large number of vanishing time-derivatives at its
endpoints, starting with the first time-derivative. The former
requirement results in a faster initial exponential decay while
the latter leads to a larger negative power-law behavior at long
total times.

We compare the results for the diabatic error to the an-
alytical expressions found in Secs. II B and II C. As shown
in Fig. 4, we examine the results corresponding to n = 4 as
a representative example and note that similar conclusions
may be drawn for all other results. Specifically, the numerical
results are compared to the total diabatic error expression in
Eq. (17) in tandem with Eqs. (12) and (15) depending on the
tuning function used. Two versions of Eq. (17) are considered.
In one version, which we denote as Ppredict, the minimum gaps
corresponding to each key are naively assumed to be identical
and given by Eq. (13). In the other version, which is denoted
as Pactual, the minimum gaps of each key are evaluated numer-
ically from the instantaneous spectrum and are inserted into
Eq. (17). From Fig. 4, we see that Ppredict fails to accurately
capture the true exponential decay of the diabatic error. This
is expected since, as was previously discussed in Sec. II C,
the first and intermediate keys feature minimum gaps which
are smaller compared to the predicted values. When the actual
minimum gaps are used instead, we observe good agreement
between Pactual and numerical results. For either expression,
the power-law behavior is described well, though an underes-
timate of the results is observed.

It is practical to establish a tolerance for the diabatic error
and examine the number of keys that should be used such that
this tolerance is achieved in the shortest amount of time. This
is the motivation behind Fig. 5, which shows the total time
as a function of n for a selection of error tolerances. Each of
the results in Fig. 5 feature a minimum corresponding to a
number of keys n∗. Generally, we observe that this optimal
number of keys grows with the value of the error tolerance.

(a)

(b)

FIG. 4. Comparison between the numerical results for the dia-
batic error in the case of n = 4 with two versions of Eq. (17). The
expression Ppredict (solid red curves) assumes that the minimum gap
of each key is equal and given by the two-level model prediction,
see Eq. (13). Pactual (dashed black curves) uses the actual minimum
gaps extracted from the instantaneous spectrum which we calculate
numerically. The exponential decay of the diabatic error is more
accurately captured by Pactual. For either expression, the power-law
behavior is well-described despite being slightly underestimated.
These results and expressions correspond to a chain with N = 240
sites. The remaining parameters used are identical to those found in
the main results, see Fig. 3.

For vanishingly small values of the tolerance, a single key
becomes optimal and so n∗ = 1.

Another practical approach reverses the previous analysis
and involves fixing the total time and examining the number
of keys that should be used such that the diabatic error is
minimized. This is demonstrated in Fig. 6 where we plot the
diabatic error as a function of n for select values of the total
time. Similar to the previous approach, an optimal number
of keys n∗ emerges. As the total time increases, this optimal
number falls and eventually achieves a value n∗ = 1 when
relatively large total times are reached.

In view of the preceding discussion on the optimal key
number n∗, whether it be with respect to the total time or
diabatic error tolerance, we return to the main results shown
in Fig. 3 and categorize our results based on the value of
n∗. Specifically, we divide the results into two regions based
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(a)

(b)

FIG. 5. Total time as a function of the number of keys used in
transport for select tolerance values of the diabatic error. The optimal
values n∗ for the number of keys are highlighted as red symbols.
As the tolerance for the diabatic error increases, n∗ shifts to larger
values. The parameters used are identical to those found in the main
results for a chain with N = 240 sites.

on whether n∗ = 1, which represents a single key advantage
(illustrated in gray in Fig. 3), or n∗ > 1, which represents a
multiple key advantage (illustrated in white). The boundary
between both regions is defined using the intersection of the
n = 1 and n = 2 results.

IV. CONCLUSION

We have studied the diabatic error that is produced as
an MZM is transported across a topological superconducting
wire using the piano key approach where sections of the wire
are electrically gated. We specifically focused on transport
which is conducted using a series of equally sized keys. Our
work serves as a generalization of Ref. [59] which considered
single key transport and established that the diabatic error in
this case can be adequately modeled by the Landau-Zener
transition probability. In the case of multiple key transport,
we demonstrated using numerical simulations that the diabatic
error displays a prominent power-law behavior alongside the
usual exponential decay which corresponds to the familiar
Landau-Zener result. We reviewed the calculation of the di-

(a)

(b)

FIG. 6. Diabatic error as a function of the number of keys used
in transport for select values of the total time. The optimal values
n∗ for the number of keys are highlighted as red symbols. As the
total time increases, n∗ shifts to smaller values and eventually n∗ = 1
is achieved when the total time is sufficiently large. The parameters
used are identical to those found in the main results for a chain with
N = 240 sites.

abatic error and included additional correction terms which
accurately describe this power-law behavior observed. The
extent of these power-law corrections depends crucially on
the analyticity of the chemical potential tuning function at
the beginning and end of each key press. Crucially, while the
usual Landau-Zener result for the diabatic error would suggest
that transport is optimal when several small (in length) keys
are used instead of one large key, the power-law corrections
imply the opposite. This results in a nontrivial optimal number
of keys n∗ given total time or error constraints on the transport
of the MZMs.

The presence of these power-law corrections suggests that
one cannot continue to exponentially suppress unwanted tran-
sitions by simply stretching the tuning function over longer
times. When this is done, the power-law corrections become
significant compared to the exponentially small contribution
to the diabatic error. Ideally, the reduction of the diabatic error
beyond the exponential regime should be done by choosing a
tuning function such that its first nonvanishing time-derivative
at the endpoints is of a high rank. This rank directly affects
the specific power-law correction that is realized. However,
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we also note that in the presence of noise in the chemical
potential, this may not be effective—there is an expectation
that with the addition of noise, the first time-derivatives of the
tuning functions at the endpoints will become discontinuous
leading to a universal τ−2 behavior in the diabatic error as dis-
cussed in Ref. [65]. This requires further investigation. Also,
as noted above, our work considers a simplified model of
transport where each key shares the same size and tuning time.
Future work may consider optimizing the protocol further by
lifting some of these restrictions. An examination of the ideas
presented here is of great interest especially from the purview
of future experiments.
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APPENDIX A: KITAEV CHAIN IN THE MAJORANA BASIS

We review certain details of the Kitaev chain which are
relevant in the numerical calculation of the diabatic error.
First, it is convenient to recast the Hamiltonian for the Kitaev
chain in Eq. (1) in terms of Majorana operators:

H = − i

2

N∑
j=1

μ jγ
A
j γ B

j + i

4
(�SC − w)

N−1∑
j=1

γ A
j γ B

j+1

+ i

4
(�SC + w)

N−1∑
j=1

γ B
j γ A

j+1, (A1)

where γ A
j = c j + c†

j and γ B
j = −i(c j − c†

j ). In the Bogoli-

ubov de-Gennes (BdG) form with the Nambu vector  =
(γ A

1 , γ B
1 , γ A

2 , γ B
2 , . . ., γ A

N , γ B
N )T, Eq. (A1) reads

H = i

2
†A , (A2)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 B

−B A2 B

−B A3 B

. . .
. . .

. . .

−B AN−1 B

−B AN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

with Aj = −i(μ j/2)σ y and B = (�SC/4)σ x − i(w/4)σ y.
Here, σ i, i = x, y, z are Pauli matrices. Since the matrix A
is real and skew-symmetric, there exists a real, orthogonal
transformation W such that A is brought into a block-diagonal
form [3]. Namely,

A = WT

⎛
⎝ N⊕

j=1

ε j iσ
y

⎞
⎠W, (A4)

where ±iε j , ε j > 0 are the eigenvalues of A. In our numerics,
we determine the transformation W using the methods of
Ref. [80].

By inserting Eq. (A4) into the Hamiltonian in Eq. (A2),
a transformation of the Nambu vector  can be identified as
� = W . The vector � contains operators which are Ma-
jorana in character since they obey the same anticommutation
relations. Denoting these new operators as ηk , the Hamiltonian
can be expressed in a canonical form:

H = −1

2
�†

⎛
⎝ N⊕

j=1

ε jσ
y

⎞
⎠ � = i

N∑
j=1

ε jη2 j−1η2 j . (A5)

We note that the usual Bogoliubov operators can be defined
from these Majorana operators, namely d j = (1/2)(η2 j−1 +
iη2 j ). These operators along with the orthogonal transfor-
mation W will become important when we discuss the
covariance matrix formalism.

APPENDIX B: TIME EVOLUTION OPERATOR

We describe the method by which the time evolution op-
erator is constructed in our numerical simulations. In general,
the time evolution operator takes the form

U (t ) = T exp

(
− i

h̄

∫ t

0
dt ′H (t ′)

)
, (B1)

where T is the time ordering operator. The single-particle
counterpart of Eq. (B1), which we denote as U (t ), is what we
compute in simulations. To determine U (t ), let us consider the
evolution of a general Majorana operator:

γ = v ·  =
N∑

j=1

(
v2 j−1γ

A
j + v2 jγ

B
j

)
, (B2)

where v = (v1, v2, . . . , v2N )T contains complex coefficients.
The time evolution of γ is given by

γ → U (t )†γU (t ). (B3)

To motivate the specific form of U (t ), we consider the
simple case where the Hamiltonian H is time-independent.
Then, Eq. (B3) may be expanded using the Baker-Campbell-
Hausdorff formula:

U (t )†γU (t ) = exp

(
i

h̄
Ht

)
γ exp

(
− i

h̄
Ht

)
,

= γ +
[
− i

h̄
Ht, γ

]

+ 1

2!

{
− i

h̄
Ht,

[
− i

h̄
Ht, γ

]}
+ · · · . (B4)

By invoking the form of the Hamiltonian in Eq. (A2) along
with the Majorana anticommutation relations {γ J

j , γ J ′
j′ } =

2δ j j′δJJ ′ , one can show that the first commutator in the ex-
pansion becomes

[−iHt, γ ] = 2t (Av) · . (B5)
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Through iteration, the higher-order commutators are similarly
evaluated and the following result is deduced:

U (t )†γU (t ) = e2At/h̄v · . (B6)

The matrix exponential e2At/h̄ plays the role of a single-
particle time evolution operator since it acts directly on the
coefficients v which characterize the Majorana operator. Gen-
eralizing this result to a time-dependent H , we have that

U (τ ) = T exp

(
2

h̄

∫ τ

0
dtA(t )

)
, (B7)

where the total transport time τ has been reintroduced. In sim-
ulations, U (τ ) is approximated by discretizing time and taking
a time ordered product of individual matrix exponentials. This
is given by

U (τ ) ≈ T
Ns∏

p=1

exp

(
2

h̄
�tA(tp)

)
, (B8)

where �t is the size of a time step and Ns is the number of
time steps. We use �t ∼ 10−5 ns and determine the number of
steps Ns accordingly for each simulation such that τ = Ns�t .
Typical values for the number of time steps range from Ns ∼
104 − 105.

APPENDIX C: COVARIANCE MATRIX FORMALISM

We demonstrate the application of covariance matrices in
the calculation of the diabatic error. This section uses the
results of Ref. [81] and we remark that additional details
regarding covariance matrices are detailed therein. Let us con-
sider the ground state |�〉 of the Kitaev chain. The elements
of the covariance matrix corresponding to the ground state are
given by

Mpq = − i

2
〈�|[ηp, ηq]|�〉, (C1)

where ηp are the Majorana operators found in the canonical
form of the Hamiltonian in Eq. (A5). By definition, the co-

variance matrix is real, contains only zeros along its diagonal,
Mpp = 0, and is skew-symmetric, Mpq = −Mqp.

By using the Bogoliubov operators dk introduced in Ap-
pendix A, one can show that the covariance matrix in the
canonical basis of operators � takes the simple form

M =
N⊕

j=1

iσ y. (C2)

It is useful to consider a change of basis. In particular, we
switch to the basis of the original Majorana operators  using
the orthogonal transformation W from Appendix A. In view
of the definition in Eq. (C1), we have

Mpq =
∑
p′q′

Wpp′Wqq′

(
− i

2
〈�|[γp′ , γq′ ]|�〉

)
. (C3)

Defining M0,pq = −(i/2)〈�|[γp, γq]|�〉, the following ma-
trix equation is obtained:

M = WM0WT . (C4)
The time evolution of the covariance matrix M0 in this origi-
nal Majorana basis is straightforward:

M0(t ) = U (t )†M0U (t ), (C5)

where U (t ) is a single-particle time evolution operator.
Recall from Eq. (5) that the diabatic error requires the

evaluation of |〈� f |U (τ )|�i〉|2. This quantity can be viewed
as the squared overlap between the final ground state |� f 〉
and the time-evolved initial ground state U (τ )|�i〉. In terms
of covariance matrices, this overlap is given by

|〈� f |U (τ )|�i〉|2 = |2−N Pf(M0, f + M0,i(τ ))|, (C6)

where M0,i(t ) and M0, f are the covariance matrices of
the time-evolved initial ground state and final ground state,
respectively, while Pf(· · · ) denotes the Pfaffian. Note that
M0,i(t ) is determined using the covariance matrix of the
initial ground state, M0,i, in conjunction with Eq. (C5).
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