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Bulk Bogoliubov Fermi arcs in non-Hermitian superconducting systems

Jorge Cayao and Annica M. Black-Schaffer
Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden

(Received 17 August 2022; revised 7 February 2023; accepted 16 March 2023; published 23 March 2023)

We consider a non-Hermitian superconducting system by coupling a conventional superconductor to a
ferromagnet lead and demonstrate the emergence of exceptional points when an external Zeeman field is applied.
We discover that, depending on the non-Hermiticity and the Zeeman field, the exceptional points mark the ends of
lines with zero real energy, thus giving rise to topologically protected and highly tunable bulk Fermi arcs, which
we coin bulk Bogoliubov Fermi arcs due to their superconducting nature. We show that these bulk Bogoliubov
Fermi arcs are the non-Hermitian counterparts of the Hermitian topological phase transition but are much more
prevalent and also experimentally detectable through large spectral signatures.
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I. INTRODUCTION

Topological materials have spurred much interest in the last
decade, not only because they represent new states of matter
but also due to their potential applications [1–4]. While initial
studies focused on isolated systems described by Hermitian
models [5–7], topological concepts have more recently been
extended to open and dissipative setups modeled by effective
non-Hermitian (NH) Hamiltonians [8–10]. Interestingly, NH
systems have been shown to realize unexpected topological
phases in systems ranging from classical metamaterials to
condensed-matter setups with no Hermitian analogs [11–16].

The intriguing topological properties of NH systems occur
due to a class of degeneracies known as exceptional points
(EPs) [17–26], where both eigenvalues and eigenvectors coa-
lesce. The emergent NH topology due to EPs has already been
shown to lead to a plethora of topological phenomena [13,14],
such as enhanced sensing performance [27,28], unidirectional
lasing [29,30], and bulk Fermi arcs [31–41], none with a
Hermitian counterpart. The bulk Fermi arcs are particularly
fascinating as they are genuine bulk topological states that
appear at zero real energy connecting EPs in momentum
space, unlike the standard topological zero-energy states in
Hermitian systems only emerging at boundaries [5–7].

Bulk Fermi arcs have so far been primarily studied in
normal-state systems [31,33,35–41], while only limited evi-
dence exists in superconductors, and then often using rather
unrealistic sources of non-Hermiticity, such as an unconven-
tional order parameter [32,34] or a need for Dirac materials
[42,43]. A more realistic and experimentally relevant platform
for NH physics is simple material junctions between con-
ventional superconductors and normal metals [44–47], which
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have already proven powerful for revealing boundary states
[48–53] and odd-frequency pairing [54]. However, the real-
ization of bulk Fermi arcs due to NH topology using only
conventional superconductors still remains an open problem.

In this work, we consider an experimentally feasible NH
superconducting system and demonstrate the formation of
stable bulk Fermi arcs, which are superconducting bulk ex-
citations and thus we coin them bulk Bogoliubov Fermi
arcs (BBFAs). In particular, we engineer a realistic NH
superconducting system by coupling a semi-infinite ferro-
magnet lead to a conventional superconductor with spin-orbit
coupling, which is experimentally a feasible structure for
superconductor-semiconductor [55–57] and ferromagnet sys-
tems [58–62]. We discover the emergence of different types
of EPs under an applied magnetic (Zeeman) field, marking
the ends of regions with zero real energy and thus defining the
formation of stable BBFAs. We further show that the BBFAs
are naturally connected to the Hermitian topological phase
transition, but importantly appear at lower Zeeman fields and
in an overall larger parameter space. We also find that these
unique bulk states dramatically increase the spectral weight,
thus offering simple detection, e.g., using angle-resolved pho-
toemission spectroscopy (ARPES). Our results reveal that
the interplay of non-Hermiticity and conventional super-
conductivity gives rise to unexpected bulk phenomena that
can considerably enhance the properties of superconducting
systems.

II. NH SUPERCONDUCTING SYSTEM

We consider an open system by coupling a conventional su-
perconductor to a semi-infinite ferromagnet lead, as illustrated
in Fig. 1. This material junction is modeled by the effective
NH Hamiltonian given by

Heff = H1D
closed + �r (ω = 0), (1)

where H1D
closed describes the closed, i.e., Hermitian, su-

perconductor and �r (ω = 0) is a spin-dependent retarded
self-energy evaluated at zero frequency, appearing due to the
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FIG. 1. Sketch of a NH superconducting system: a one-
dimensional (1D) superconductor (orange) subjected to a Zeeman
field (dashed gray arrow) coupled to a ferromagnet lead (green).

coupling to the semi-infinite ferromagnet lead. For H1D
closed we

consider 1D conventional spin-singlet s-wave superconduc-
tors with spin-orbit coupling (SOC), motivated both by them
realizing (Hermitian) topological superconductivity [63,64]
and because they describe superconductor-semiconductor sys-
tems within experimental reach [55–57]. Similarly, the use
of ferromagnets in these hybrid structures has also recently
been demonstrated [58–62]. Thus, we set H1D

closed = ξkτz +
iαkσyτz + Bσxτz + �σyτy, where ξk = (h̄2k2/2m − μ) is the
kinetic energy with k along x, μ is the chemical potential,
α is the Rashba SOC strength, and � characterizes the spin-
singlet s-wave superconducting order parameter. Without loss
of generality, we assume α = 1, m = 1, and h̄ = 1. Also, B
is a Zeeman field from an applied magnetic field along the
x axis, inducing a (Hermitian) topological phase transition
at Bc = ±

√
�2 + μ2 [63,64]. The self-energy �r can be ob-

tained analytically [47,54] and is given in the wide band limit
by �r

e,h(ω = 0) = −i	σ0 − iγ σz in both the electron (e) and
hole (h) parts. Here, 	 = (	↑ + 	↓)/2 and γ = (	↑ − 	↓)/2,
where 	σ = π |t ′|2ρσ

L with t ′ being the hopping amplitude into
the lead from the superconductor and ρσ

L being the surface
density of states of the lead for spin σ =↑ and ↓. We finally
note that this effective NH Hamiltonian Heff exhibits particle-
hole symmetry given by H (k) = −Ĉ−1H (−k)Ĉ, where Ĉ =
σ0τxC, with C being the complex conjugation [48–53]. As we
show below, this symmetry is important for understanding the
properties of the system.

The pure imaginary (Im) self-energy renders Heff in Eq. (1)
NH [65]. We are here particularly interested in the emergence
of EPs and the formation of bulk Fermi arcs. For this purpose,
we first obtain the eigenvalues

Eeν (hν ) = −i	 ±
√

A1(k) + (−1)ν2
√

A2(k), (2)

where ν = 1(2) labels the first (second) e-like and h-like
eigenvalues and

A1 = ξ 2
k + α2k2 + B2 + �2 − γ 2,

A2 = ξ 2
k (B2 + α2k2) + B2�2 − γ 2ξ 2

k . (3)

The immediate observation from Eqs. (2) and (3) is that
in the Hermitian regime, 	↑,↓ = 0, the four eigenvalues in
Eq. (2) are real (Re), but at any 	↑,↓ �= 0, all four eigenvalues
generally acquire an Im part reflecting the emergence of NH
physics. Due to the retarded nature of the self-energy, these
imaginary parts of the eigenvalues are expected to be negative.
The inverse of this Im part characterizes the quasiparticle life-
time in the superconductor [44], thus giving a clear physical
interpretation of non-Hermiticity. For 	↑ = 	↓, we get γ = 0
and all the four eigenvalues share the same Im term, −i	. The

situation becomes decisively more interesting when 	↑ �= 	↓,
as that gives rise to eigenvalues with different Im terms.

Moreover, it is important to note that the particle-hole
symmetry of Heff implies that, if Ei is an eigenvalue, then
−E∗

i is also an eigenvalue. Taking into account the four eigen-
values above, this symmetry requirement can be satisfied in
two distinct ways. First, we can have pairs of eigenvalues
(E+, E−), with E± = ±E − i	 located symmetrically at op-
posite sides of the Im axis, where E± = −E∗

∓. Here, the ±
subscript denotes the electron and hole levels in Eq. (2), with
E being the (real-valued) energy and 	 being the decay rate or
lifetime of the quasiparticle. Second, it is also possible to have
independent nondegenerate self-conjugate eigenvalues locate
on the Im axis, where always E± = −E∗

±. In this context, the
bifurcation of two modes with E± = −E∗

∓ into two modes
with zero real energy and different lifetimes with E± = −E∗

±
is a nontrivial effect that defines an EP in open systems.
As a consequence, a nondegenerate pole E = −i	 on the
imaginary axis cannot acquire a nonzero real part without
breaking the self-conjugation symmetry imposed by particle-
hole symmetry [48–53]. As we see next, this, together with the
impact of the couplings, has important consequences for the
emergence of EPs and bulk Bogoliubov Fermi arcs in Eq. (1).

III. EPS AND BULK BOGOLIUBOV FERMI ARCS

To begin, we study the emergence of second-order EPs,
appearing when two eigenvalues, and their respective eigen-
vectors, coalesce [18,20]. This means searching for regimes
where two eigenvalues merge and their eigenvectors become
parallel. By analyzing Eq. (2) and the behavior of A1,2, we
realize that there are two possibilities for second-order EPs.
First, the two Eeν

(Ehν
) eigenvalues can coalesce when A1 >

0 and 2
√

A2 = 0, giving rise to EPs with finite Re ener-
gies. These EPs need finite SOC and γ , but notably do not
require superconductivity, but are tied to properties of the
normal state. We thus do not focus on them here [66]. The
other possibility for EPs is more interesting: the ν = 1 elec-
tron (Ee1 ) and hole (Eh1 ) eigenvalues coalesce for k values
where Re(2

√
A2) = A1 > 0 and Im(2

√
A2) = 0, which leads

to ReEj1 = 0 and ImEj1 �= 0, j = e and h. Remarkably, the
latter two conditions also guarantee an existence of bulk Fermi
arcs [31,37–40]. However, unlike the bulk Fermi arcs earlier
only found in normal-state systems [31,37–40], here they
consist of superconducting, or Bogoliubov, quasiparticle ex-
citations, and we therefore name them bulk Bogoliubov Fermi
arcs (BBFAs).

The stability of the EPs and BBFAs is ensured by the
underlying particle-hole symmetry of Heff discussed in Sec. II.
Specifically, particle-hole symmetry enables a robustness of
EPs formed by two levels with zero Re energies and differ-
ent lifetimes obeying self-conjugation symmetry E± = −E∗

±,
which is the case for the second-order EPs discussed above.
In this situation it is natural to define a NH spectral topolog-
ical invariant N that counts the number of eigenvalues with
zero Re energies. This definition links to the invariant used
in particle-hole symmetric NH systems [8,34] and also con-
nects to the classification of topology of S matrices [48–53].
In detail, for two particle-hole symmetric eigenvalues, be-
fore the EP, both have finite Re and Im parts, leading to a
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FIG. 2. EPs and bulk Bogoliubov Fermi arcs. (a, c) Re (blue)
and Im (red) parts of eigenvalues as a function of momentum k
at two different magnetic fields B. Shaded orange regions indicate
zero real energies (BBFAs) with their borders marking the EPs.
(b) ReEe1h1 = Re(Ee1 − Eh1 ) as a function of k and B, with orange
regions indicating ReEe1(h1 ) = 0. (d) ReEe1 at k = 0 as a function
of B and the chemical potential μ, with the orange region indicat-
ing ReEe1 = 0. Yellow dashed lines depict the Hermitian TPT at
Bc = ±

√
�2 + μ2. Parameters: μ = �, 	↑ = 2�, and 	↓ = 0.

topologically trivial gapped phase with N = 0. At the EP, the
two eigenvalues merge at zero Re energy, generating N = 2
and signaling a transition from a gapped to a gapless phase
that is topologically nontrivial. Within the BBFA region, the
number N = 2 does not change, revealing that BBFAs repre-
sent a robust and NH bulk topological phenomenon [67].

The momenta kEP for the above EPs can be obtained
by solving A1 = Re(2

√
A2), as those also satisfy

Im(2
√

A2) = 0. We also verify that the corresponding
eigenvectors become parallel at the EPs (see the
Appendix, Sec. 1). For vanishingly small SOC, the
EPs appear at very low Zeeman fields (B 	 �)

when γ ∼ �. In this case, we find ±k±
EP = ±

√
k2

F ± κ2,

where kF =
√

2mμ/h̄2 and κ =
√

(2m/h̄2)
√

B2 − (� − γ )2.
Assuming μ �= 0, kF > κ implies four different real EP
momenta, but is otherwise reduced to two. For stronger
SOC, B ∼ � is needed for similar values of γ to find
EPs. To visualize these EPs, we plot in Figs. 2(a) and 2(c)
the eigenvalues as a function of k at two finite B, with
the Re and Im parts shown in blue and red, respectively.
We observe that the Re parts of the lowest two levels
vanish for a range of negative and positive k, while the
Im parts split up, indicated by shaded orange regions.
These orange regions, with ReE = 0 and ImE �= 0, define
the topologically protected BBFAs. The end points of the
BBFAs are at the EP momenta, where both eigenvalues and
eigenvectors fully coalesce. Analytically, we find the EPs
when A1 = Re(2

√
A2), while the BBFAs satisfy the less

stringent condition A1 � Re(2
√

A2). By increasing B, the

inner EPs (closer to k = 0) merge, giving rise to a single,
longer, BBFA connecting the outer EPs [see Fig. 2(c)]. To
support the generic occurrence of EPs and BBFAs, we plot in
Fig. 2(b) the property ReEe1h1 = Re(Ee1 − Eh1 ) as a function
of k and B. Here, the orange region indicates ReEe1h1 = 0,
thus revealing that the formation of BBFAs occurs in a large
parameter region that is also highly tunable by the external
field B. We have also verified that for small μ, which is
commonly controlled by doping or gating [44], the EPs and
BBFAs require very low Zeeman fields (B 	 �), even for
strong SOC. We also stress that, while SOC is not needed for
these NH phenomena, its finite value shapes the profile of the
spectrum such that weaker SOC enables larger separation of
outer EPs, thus favoring the formation of longer BBFAs.

The BBFAs in Fig. 2 have an interesting connection to the
topological phase transition (TPT) in the Hermitian regime of
the system, occurring at the Zeeman field Bc = ±

√
μ2 + �2.

In fact, the vanishing of ReE at the BBFA is highly remi-
niscent of the Hermitian TPT, as both close the energy gap.
However, the TPT occurs at a single k and only for B � �. To
illustrate the situation, we plot in Fig. 2(d) the property ReEe1

as a function of μ and B, with the orange region indicating
ReEe1 = 0. We also mark the Hermitian TPT with yellow
dashed lines. The main feature we note is that, while the
gap closing in the Hermitian regime (TPT) occurs along a
single line in parameter space, the gap closing in the NH
case (BBFA) occurs in a much larger parameter regime and
also at much lower B. To provide further insight, we can
study the lowest positive level at μ = 0 and k = 0: Ee1 =
−i	 +

√
(B − �)2 − γ 2. Here, the gap closes, ReEe1 = 0,

at B = � ± γ , which makes it evident that it is the non-
Hermiticity causing the substantial lower B compared to the
Hermitian TPT at Bc = �. We can thus view the topologically
protected BBFA as the natural NH extension of the Hermitian
TPT, while at the same time being much more prevalent in
parameter space than the TPT. This may lead to advantageous
effects, e.g., allowing realization of Majorana zero modes at
Zeeman fields lower than those in purely Hermitian systems.

IV. TWOFOLD SECOND-ORDER EPS

Having established the existence of EPs with BBFAs, we
next identify another interesting type of EPs in superconduct-
ing systems: twofold second-order EPs, which occur when
the Re part of all four eigenvalues coalesce, but their Im
parts merge into two distinct values. Although this might
naively be viewed as a fourth-order EP, their distinct Im parts
restrict them from being of the fourth order and it is more
appropriate to refer to them as twofold second-order EPs.
As before, the EPs are determined by the behavior of A1,2

in Eq. (2). In fact, when A1 � 0, 0 � |2Re
√

A2| � |A1|, and
Im

√
A2 = 0, we find twofold second-order EPs for the strict

equality and BBFAs for the inequality, since the Re parts of all
four eigenvalues (Eeν

and Ehν
) coalesce at zero energy. The EP

momenta can be found by solving A2 = 0, acquiring compli-

cated expressions, but which reduce to ±k±
EP∗ = ±

√
k2

F ± κ2∗

for vanishing SOC, where κ∗ =
√

(2mB�)/(h̄2
√

γ 2 − B2).
For kF > κ∗, the system exhibits four real EP momenta while
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FIG. 3. Twofold second-order EPs. (a) Re (blue) and Im (red)
parts of eigenvalues as a function of momentum k for μ = � and B =
0.3�. Shaded orange regions indicate zero real energies (BBFAs)
with their borders marking the EPs. (b) Re(Eeh ) = Re(Ee1 + Ee2 −
Eh1 − Eh1 ) as a function of B and k for μ = � and 	↑ = 4�, with
orange regions indicating Re(Eeh ) = 0. (c, d) Same as panels (a) and
(b) but for μ = 0.1�. Parameters: 	↑ = 4� and 	↓ = 0.

only two exist when kF < κ∗, leading to a strong control
by μ. As expected, the eigenvectors associated with the
eigenvalues also coalesce at the twofold EPs (see the Ap-
pendix, Sec. A2). The EP conditions may naively seem hard
to achieve, but we verify that, although they need stronger
non-Hermiticity (γ > �) than the second-order EPs in the
previous section, they actually appear at weaker Zeeman
fields (0 < B � �).

To visualize the twofold second-order EPs, we plot in
Figs. 3(a) and 3(c) the eigenvalues at large γ , weak B, and two
different values of chemical potential set by μ with the Re and
Im parts depicted in blue and red, respectively. At high μ, the
Re parts of all four eigenvalues merge at zero energy for two
small ranges of positive and negative k forming BBFAs, while
their Im parts split and form lobes within these regimes at two
different values, marked as orange regions in Fig. 3(a). These
orange BBFA regions are terminated by the EP momenta
±k±

EP∗ . The formation of BBFAs can be also seen in Fig. 3(b)
where we plot Re(Eeh) = Re(Ee1 + Ee2 − Eh1 − Eh1 ), which
clearly illustrates the appearance of BBFAs for all B < �, see
orange regions. At low μ, Figs. 4(c) and 4(d) show how the
inner EPs (±k−

EP∗ ) merge and leave a much longer zero-energy
line now connecting the outer EPs (±k+

EP∗ ) and thus giving rise
to much more extended BBFAs.

An interesting property of the BBFAs from the twofold
second-order EPs in Figs. 3(a) and 3(c) is that they are distinct
from the BBFAs from the second-order EPs in Figs. 2(a) and
2(c). This can be seen by noting that the Im parts associated
with the two types of BBFAs exhibit a different structure.
This then implies that the lifetimes, defined by the inverse
of the Im part of eigenvalues, acquire distinctly different
behaviors for the two BBFAs. Moreover, we note that the

FIG. 4. Spectral signatures. Spectral function A(ω, k) as a func-
tion of frequency ω and k with clear features of the BBFAs from
second-order (a, b) and twofold second-order (c,d) EPs. Line cuts of
A (b, d) with EPs (red), BBFAs (orange), and the region beyond (light
blue). In panels (a) and (b) B = 1.1�, μ = �, and 	↑ = 2�, while
in panels (c) and (d) B = 0.3�, μ = 0.1�, and 	↑ = 4�. Remaining
parameter: 	↓ = 0.

twofold second-order EPs need B values much lower than
those of the second-order EPs, appearing even for B 	 �,
which makes them highly tunable with a small external mag-
netic field, even much smaller than required to reach the
Hermitian TPT.

V. SPECTRAL SIGNATURES

Having demonstrated the emergence of two different
types of EPs and BBFAs, we finally show that these NH
effects can be directly probed by the spectral function
A(k, ω) = −ImTr(Gr − Ga), where Gr = (ω − Heff )−1 and
Ga = (Gr )† represent the retarded and advanced Green’s func-
tions, respectively [68,69]. This approach to obtain A(k, ω)
is common and directly reveals the power of Green’s func-
tions. Furthermore, we point out that the spectral function is a
measurable observable that can be accessed by tools such as
ARPES [70–75].

To visualize the behavior of the spectral function, we plot
A in Figs. 4(a) and 4(c) as a function of frequency ω and
k for parameters generally favoring the formation of BBFAs
and EPs found in the previous two sections, respectively. In
Figs. 4(b) and 4(d) we extract line cuts for distinct k-values
spanning the EP momenta. We directly observe the emergence
of high-intensity regions at ω = 0 for a line of momentum val-
ues bounded by the EP momenta, thus directly revealing the
formation of the BBFAs. Even though both BBFAs produce
quite similar spectral weight signatures, they exhibit subtle
and interesting differences tied to the different structures of
their eigenvalues. This can be understood by noting that A
is a sum of Lorentzians centered at ReEjν , with their height
and width characterized by ImEjν [31]. As a consequence,
at the EPs, marked by red lines in Figs. 4(b) and 4(d), the
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spectral function undergoes a transition along k from hav-
ing two or more resonances to having a single resonance
centered at ω = 0. The ω = 0 resonances between the red
curves, depicted by orange lines in Figs. 4(b) and 4(d) and
directly revealing the BBFA, are notably higher and narrower
for the twofold second-order EP system in Fig. 4(d) com-
pared to the second-order EP system in Fig. 4(b). This is
due to the distinctly different Im parts of the eigenvalues,
or lifetimes, of the two different types of EPs. More coales-
cence among the Im parts, as for the twofold second-order
EPs, results in higher and narrower spectral peaks also for
its accompanying BBFAs. This explicitly illustrates how the
properties of the EPs determine the physical manifestation of
the BBFAs.

VI. CONCLUSIONS

In summary, we show the formation of topologically
protected bulk Fermi arcs in realistic NH superconducting
systems and coin them BBFAs due to their superconducting
nature. These BBFAs are zero-energy bulk states, unlike the
Majorana zero-energy modes appearing as boundary states
in Hermitian topological superconductors. Still, we are able
to establish as a by-product a connection between BBFAs
and the Hermitian topological phase transition, obtaining that
the BBFAs are much more prevalent in parameter space and
also are highly tunable by both the chemical potential and
the external magnetic field. Interestingly, unlike Hermitian
topological superconductors, the NH superconductor requires
lower Zeeman fields to undergo the topological phase tran-
sition. We also reveal that the BBFAs induce large spectral
features which can be directly detected by ARPES.

Furthermore, it is important to point out that systems simi-
lar to those modelled here have already been fabricated using,
e.g., Al/InAs superconductor-semiconductor hybrid struc-
tures [55–57,76–78], showing both good proximity-induced
superconductivity and controllable couplings to leads, plac-
ing our findings clearly within experimental reach. Along
these lines, we also stress that ferromagnets in such hybrid
systems are currently being studied [58–62], and, despite
challenges, this provides promising results supporting the
feasibility of our proposal. Our results can also be extended
to higher dimensions, resulting in, e.g., bulk Bogoliubov
Fermi surfaces and volumes. By uncovering unique phe-
nomena emerging from the interplay of non-Hermiticity and
conventional superconductivity, our work opens the route for
greatly enhancing functionalities of superconducting hybrid
structures.
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APPENDIX: COALESCENCE OF EIGENFUNCTIONS
AT EPs

In this work we study EPs in NH superconductors with
SOC, described by the effective Hamiltonian Heff in Eq. (1).
For this reason in the main text we present the complex
spectrum showing the coalescence of eigenvalues at EPs. To
further support the nature of these EPs, here we show that the
eigenfunctions at the identified EPs become parallel, namely,
they coalesce, as expected. It is important to note that, even
though the matrix structure of the effective Hamiltonian Heff

given by Eq. (1) is not complicated, the resulting expressions
for the eigenfunctions are lengthy and not particularly enlight-
ening, which motivates a numerical solution. The Hamiltonian
Heff has four eigenvalues {Ee1 , Ee2 , Eh1 , Eh2} given by Eq. (2)
and four eigenvectors {�e1 , �e2 , �h1 , �h2} which we below
obtain for the two types of EPs discussed in Secs. III and IV,
respectively.

1. Coalescence of the two lowest eigenfunctions

To identify the EPs when the two lowest levels coalesce,
we need to find the momenta at which they occur following
the conditions discussed in Sec. III. In particular, we need
to solve A1 = 2

√
A2 and find real values of k that allow

A1 > 0 and Im(2
√

A2) = 0. We thus find four EP momenta,
denoted here as ±k±

EP, whose expressions are rather com-

plicated but for zero SOC reduce to ±k±
EP = ±

√
k2

F ± κ2,

where kF =
√

2mμ/h̄2 and κ =
√

(2m/h̄2)
√

B2 − (� − γ )2,

as discussed in Sec. III. We find that at ±k±
EP the two lowest

levels {Ee1 , Eh1} and their respective eigenfunctions {�e1 , �h1}
coalesce,

ReEe1 ≡ ReEh1 = 0, (A1)

ImEe1 ≡ ImEh1 �= 0, (A2)

�e1 ≡ �h1 . (A3)

We visualize this coalescence in Fig. 5, where we repeat
Figs. 2(a) and 2(c) now with additional curves for the
eigenvector overlaps 〈�e1 |�e2〉, 〈�e1 |�h2〉, 〈�e1 |�h1〉, and
〈�e2 |�h2〉. At the EPs, marked by the borders of the orange
regions, the overlap involving �e1 and �h1 reaches 1 and
we have also verified that here �e1 = �h1 . Thus, the overlap
reaching 1 reveals that these eigenvectors coalesce and thus
become parallel. Therefore, both the eigenvalues {Ee1 , Eh1}
and their eigenvectors {�e1 , �h1} coalesce at the EPs, as dis-
cussed in Sec. III.

2. Coalescence of all four eigenfunctions

In the case of the twofold EPs, we again follow the con-
ditions for finding the EP momenta discussed in Sec. IV.
Thus, we solve A2 = 0 for k and then choose the ones that
provide A1 < 0. Under these conditions, we find four mo-
menta ±k±

EP∗ , two positive and two negative, which at zero

SOC reduce to the simpler forms ±k±
EP∗ = ±

√
k2

F ± κ2∗ , where

κ∗ =
√

(2mB�)/(h̄2
√

γ 2 − B2). It is worth noting that ±k±
EP∗

104515-5
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FIG. 5. Second-order EPs. (a) Re (blue) and Im (red) parts of
eigenvalues as a function of momentum k for B = 0.9� (a) and
B = 1.1� (b). Shaded orange regions indicate zero real energies
(BBFAs) with their borders marking the EPs. Dotted gray, dashed-
dot magenta, brown, and green curves show the absolute value of the
eigenfunction overlaps |〈ψe1 |ψe2 〉| and |〈ψeν

|ψh′
ν
〉|, with ν, ν ′ = 1, 2,

while cyan curves show 〈ψeν (hν )|ψeν (hν )〉 = 1. Parameters are the
same as those in Fig. 2.

generally appear around Fermi momenta ±kF, and even
become equal to ±kF at zero Zeeman field. Beyond these sim-
plifying limits, we have numerically verified that, at ±k±

EP∗ , the
four eigenvalues and their respective eigenvectors coalesce in
pairs: the pair of eigenvalues {Eeν

, Ehν
} and its eigenvectors

{�eν
, �hν

} with ν = 1 and 2 merge into a single value or
vector. More precisely, the following relations hold:

ReEeν
≡ ReEhν

= 0,

ImEeν
≡ ImEhν

�= 0

�eν
≡ �hν

.

(A4)

We note that, at these EPs ±k±
EP∗ , each pair merges into the

same zero real energy but their imaginary parts and eigenvec-
tors remain distinct between the two pairs. This is the reason

FIG. 6. Twofold second-order EPs. (a) Re (blue) and Im (red)
parts of eigenvalues as a function of momentum k for μ = � (a) and
μ = 0.1� (b). Shaded orange regions indicate zero real energies
(BBFAs) with their borders marking the EPs. Dotted gray, dashed-
dot magenta, brown, and green curves show the absolute value of
the overlaps |〈ψe1 |ψe2 〉| and |〈ψeν

|ψh′
ν
〉|, with ν, ν ′ = 1, 2, while

cyan curve indicates 〈ψeν (hν )|ψeν (hν )〉 = 1. Parameters are the same
as those in Fig. 3.

why we refer to these EPs as twofold second-order EPs and
not as fourth-order EPs.

It is thus clear that {Eeν
, Ehν

} and their respective eigen-
vectors {�eν

, �hν
} coalesce at −k+

EP∗ . We illustrate this in
Fig. 6, where we replot Figs. 3(a) and 3(c) of the main text,
now also with the eigenvector overlaps 〈�e1 |�e2〉, 〈�e1 |�h2〉,
〈�e1 |�h1〉, and 〈�e2 |�h2〉. Clearly, at the twofold EPs, at the
borders of the orange regions, the overlap 〈�eν

|�hν
〉 reaches

1, indicating that �eν
and �hν

become parallel (see brown
and green dashed curves). We verify that this is indeed the
case by directly inspecting the eigenvector structure where,
at the EPs, we obtain �eν

= �hν
. We also note that �e1 and

�e2 become parallel at another EP at finite real energy, whose
discussion has recently been reported in Ref. [79]. Therefore,
we conclude that {Eeν

, Ehν
}, and their eigenvectors {�eν

, �hν
},

coalesce at the twofold EPs discussed in Sec. IV.
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