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Absence of Ginzburg-Landau mechanism for vestigial order in the normal phase
above a two-component superconductor
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A two-component superconductor may hypothetically support a vestigial order phase above its superconduct-
ing transition temperature, with rotational or time-reversal symmetry spontaneously broken while remaining
nonsuperconducting. This has been suggested as an explanation for the observed normal state nematicity
of the nematic superconductor MxBi2Se3. We examine the condition for this vestigial order to occur within
Ginzburg-Landau theory with order parameter fluctuations, on both the nematic and chiral sides of the theory.
Contrary to prior theoretical results, we rule out a large portion of parameter space for possible vestigial order.
We argue that very extreme anisotropy is one prerequisite for the formation of a stable vestigial phase via this
mechanism, which is likely not met in real materials.
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I. INTRODUCTION

Superconductivity in doped topological insulator Bi2Se3

has captured much recent attention. While the crystal is sup-
posed to have D3d symmetry that sees threefold rotational
symmetry in the basal plane, twofold anisotropy in the su-
perconducting phase in the basal plane has been observed in
experiments [1–6]. See Yonezawa [7] for a review. Nematic
superconductivity is a proposed explanation [8]. More pre-
cisely, it has been proposed that the superconducting order
parameter belongs to a two-dimensional representation, and
the energetics is such that, below the superconducting tran-
sition, the order parameter picks a state with spontaneously
broken rotational symmetry (other than the other possibility
where time-reversal symmetry is broken; compare the case for
UPt3 [9,10]).

If the order parameter belongs to a two-dimensional repre-
sentation, one expects an internal degree of freedom (rotation
of the order parameter in this case) to reveal itself under
suitable circumstances. However, so far no experiments have
convincingly shown this degree of freedom. One may expect
that external stress can reorient the order parameter [11], but
an experiment at Argonne National Laboratory [12] turns out
to be negative. In a related experiment on multidomain sample
at Kyoto University [13], only changes in the relative sizes
of the domains were found. One might also expect that there
should be special features in the upper critical field such as
kinks as a function of the magnitude of the field [14] (cf.
Ref. [15]) or angle in the plane [16]. Neither has been reported
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so far, and a recent experiment [17] specifically looking for
these features was not able to find one. We [18] and others
[19] have predicted the existence of half quantum vortices or
skyrmions (which are unique to multicomponent order param-
eters but absent in single-component systems). We have also
investigated the special features in the shear stress tensor due
to the multidimensional nature of the order parameter [20].
Experiments examining these predictions have not yet been
reported.

A nematic superconducting order breaks both gauge and
rotational symmetry. In principle the symmetries are not nec-
essarily broken at the same temperature. A few years ago,
Ref. [21] predicted that “vestigial nematic order” can exist
in this system: As the temperature is lowered, the symmetry-
preserving normal state first makes a transition into a state
with broken rotational symmetry, and only later is gauge
symmetry broken, forming the nematic superconducting state.
This possibility is unique to a multicomponent order param-
eter: A superconductor with an order parameter belonging to
a one-dimensional representation, even if it is not an s-wave
superconductor, cannot exhibit this vestigial order. Observa-
tion of this “vestigial nematic state” would be a “smoking
gun” of this nature of the order parameter. Electronic nematic-
ity in the normal phase was first reported in Ref. [22], and
then Ref. [23] claimed to observe the double transitions, with
a vestigial order phase sandwiched in between normal and
superconducting phases. In particular, the length change of
the sample as a function of temperature or field was moni-
tored. A rapid and direction-dependent change as a function
of temperature above the superconducting transition was ob-
served and interpreted by these authors as a step indicating
a first-order transition into a vestigial nematic-ordered state.
It is remarkable that the relative change in length is only of
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order 10−7, even smaller than the distortion from perfect D3d

found at room temperatures by another group [24]. We are
therefore not sufficiently convinced by Ref. [23]: Their result
may simply reflect a broadened superconducting transition
due to, e.g., sample inhomogeneity. We are thus motivated to
consider the criterion for vestigial order in more detail in this
paper. Time-reversal-symmetry-breaking vestigial order asso-
ciated with a superconductor was discussed in Refs. [25,26].
Vestigial orders have been recently discussed in many other
systems [27,28].

As mentioned above, a two-component order parameter
can instead break the time-reversal symmetry and form a
chiral superconductor. A unifying Ginzburg-Landau (GL)
theory in two complementary regions of parameter space de-
scribes chiral and nematic superconductors, respectively. To
be more specific, the sign of β2 introduced in (3) controls
the choice: negative for nematic and positive for chiral. While
only the nematic side of the theory is experimentally relevant
to MxBi2Se3, we study both sides of the theory. The rele-
vance of chiral superconductivity in MxBi2Se3 is discussed in
Refs. [29–31].

In this paper, we set out to find vestigial order for both the
chiral and the nematic sides of the GL theory using a modified
Luttinger-Ward (LW) approach, and find none. For the region
|β2/β1| < 1/2 [β1 is also given in (3)], we expect a second-
order transition from the normal phase to the appropriate
(chiral or nematic) superconducting phase, without a vestigial
order in between. For β2/β1 < −1/2 (“deeply nematic”) or
β2/β1 > 1/2 (“deeply chiral”), we predict a joint first-order
transition directly into the appropriate superconducting phase
and no vestigial order for physically relevant choices of pa-
rameters. Our negative result contradicts Refs. [21,23] but is
not inconsistent with Ref. [26]. Comparisons with these prior
works will be made as we present our result. Previously, we
made available a preprint [32] that erroneously predicted a
vestigial nematic phase in the deep nematic region. We will
comment on the difference in Sec. IV A.

The organization of this paper is as follows. In Sec. II we
introduce the effective Hamiltonian for the two-component
order parameter, and also the concept of a vestigial order. In
Sec. III we give the formulas of the LW formalism with UV-
divergence subtraction. We report and discuss our results for
the chiral and nematic cases in Secs. IV and V, respectively.
Section VI is the conclusion.

II. THEORETICAL MODEL

The superconductors in question can all be described by a
two-component complex order parameter field

η(�r) =
(

ηx(�r)
ηy(�r)

)
. (1)

As the notation suggests, under rotations about the z axis,
η transforms just like a vector in the xy plane. Focusing on
the case with trigonal symmetry, one can write down a phe-
nomenological effective Hamiltonian density H = HK + Hi,
split into the kinetic part HK and the interaction Hi:

βHK = α(η∗
j η j ) + K1(∂iη j )

∗(∂iη j ) + K2(∂iηi )
∗(∂ jη j )

+ K3(∂iη j )
∗(∂ jηi ) + Kzz(∂zη j )

∗(∂zη j )

+ K ′

2
[(∂zη

∗
y )(∂xηx − ∂yηy) + (∂zη

∗
x )(∂xηy + ∂yηx )

+ c.c.], (2)

βHi = β1

2
(η∗

i ηi )(η
∗
j η j ) + β2

2
(ηiηi )

∗(η jη j ). (3)

Repeated indices i or j = x, y are summed over, and “c.c.”
stands for complex conjugate. The parameter α labels the
temperature, as is usual in the GL theory. We may also write
α = α′(T − T0), where T0 is the mean-field critical temper-
ature of superconductivity, and we are interested only in the
small-α limit. β = (kBT )−1 ≈ (kBT0)−1 is the usual inverted
temperature and can be regarded as approximately a constant.
Effective Hamiltonian density of this form has been adopted in
the literature [16,21], and the notation here is in line with our
previous papers [11,20]. The gradient terms proportional to
K1,2,3 exhaust all allowed possibilities in a completely cylin-
drically symmetric or a D6 system, while K ′ is additionally
allowed by the lower D3d symmetry [33]. The “Fermi surface
warping” discussed in Ref. [34] is one possible origin of such
a K ′ term [35]. The thermodynamics is formally governed by
the partition function Z = ∫

DηDη†e− ∫
d3r βH.

Stability requires β1 > 0 and β2 > −β1, so that Hi is
bounded from below. If β2 < 0, the uniform mean-field
ground state of H has a finite and real η up to an overall phase
factor. This is the nematic superconducting state that breaks
both global U(1) and rotational symmetry. On the other hand,
if β2 > 0, the mean-field ground state favors ηx = ±iηy. This
is the chiral superconducting state, which is invariant under
spatial rotation, but breaks the time-reversal symmetry along
with the global U(1) symmetry.

It turns out that the physics is more intuitively represented
in the alternative basis

� =
(

φ↑
φ↓

)
≡ 1√

2

(
ηx + iηy

ηx − iηy

)
. (4)

As the notation suggests, we will adopt the analogy of �

being a (pseudo)spin-1/2 object. The original η is related to
� by a change of spin quantization axis in this language. We
will take the thermodynamic limit, pass to the Fourier space,
and rescale the momenta so that HK appears in a much more
pleasing form:

βHK =
∫

p
�†(p)(ε0(p) σ0 + εx(p) σx + εy(p) σy)�(p),

ε0(p) = p2
x + p2

y + p2
z + α,

εx(p) = C1
(
p2

x − p2
y

)
/2 + C2 pz py,

εy(p) = C1 px py + C2 pz px,

C1 = K2 + K3

2K1 + K2 + K3
,

C2 = K ′
√

Kz(2K1 + K2 + K3)
. (5)

We introduce the shorthand notation
∫

p ≡ ∫
d3 p/(2π )3; σx,y,z

are the usual Pauli matrices, and σ0 is the identity matrix.
Terms without derivatives are not affected by the rescaling. In
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FIG. 1. A visual guide for translating between β2/β1 and g2/g1

(note that the relation is nonlinear). The ratios control critical behav-
ior of the system. DN, N, C, and DC, deep nematic, nematic, chiral,
and deep chiral, respectively.

the pseudospin language, εx and εy are effectively spin-orbit
coupling terms.

In terms of �, Hi can be written as

βHi = g1

2
(|φ↑|4 + |φ↓|4) + g2 |φ↑|2|φ↓|2

=
∑

i=x,y,z

λi

2
(�†σi�)2,

(6)

where g1 = β1 and g2 = β1 + 2β2. The stability requirement
is g1 > 0, g2 > −g1. The mean-field nematic (chiral) super-
conducting phase requires g1 to be greater (smaller) than g2.
In the second line, the coefficients are λx = λy = (g1 + g2)/2
and λz = g1. This form is often more useful in calculation.

In the mean-field description, the global U(1) symmetry
and rotational (time-reversal) symmetry are both sponta-
neously broken at the critical temperature for a nematic
(chiral) superconductor. When fluctuation is included, how-
ever, a priori there is no reason for everything to occur at
once. Indeed, a nonzero expectation value of 〈�†σz�〉 breaks
the time-reversal symmetry but still respects the global U(1)
symmetry. For the rotational symmetry, 〈�†σx,y�〉 is the
analogous quantity. Either may be nonvanishing while 〈�〉
itself remains zero. Reference [21] proposed the existence of
〈�†σx,y�〉 �= 0 ordering mediated by superconducting fluc-
tuation above Tc in MxBi2Se3, giving rise to the so-called
vestigial nematic order. Historically, the idea of such bilin-
ears can be found in the study of the “metallic superfluid”
[36] and “supercounterfluid” [37] and was subsequently seen
in several other models for a multicomponent superfluid or
superconductor [25,38–41].

In the spin-1/2 metaphor, the vestigial nematic order dis-
cussed here is a spin order in the xy plane: a superposition
of up and down spin. The fact that 〈�†σx,y�〉 �= 0 requires
〈φ∗

↑φ↓〉 �= 0. Equation (6) suggests that the order is favored
only when g2 < 0, and one expects no vestigial order at all
for g1 > g2 > 0. This criterion contradicts the previous theo-
retical result [21,23] and is indeed the initial motivation of the
present work. However, it will presently be shown that g2 < 0
alone is insufficient to stabilize the vestigial nematic phase.

On the chiral side, we will later deduce a similar necessary
(but insufficient) condition g2 > 2g1 for the vestigial phase,
but we do not see a simple way to read this off from (6). These
g2 < 0 and g2 > 2g1 regions correspond to the deep nematic
and deep chiral regions introduced in the previous section; see
Fig. 1.

We note that the deep nematic region g2 < 0, while
not obviously forbidden, seems not easily attained, either.
Calculations of these GL coefficients from various micro-
scopic models are given in the Supplemental Material of

Refs. [19,42]. It appears to us that, of all the models discussed
in these two references, none exhibits a negative g2 [43].

Unfortunately, a treatment using 〈�†σi�〉 as the or-
der parameter is far from straightforward. The authors of
Ref. [21] attempted this but were forced to employ a
Hubbard-Stratonovich decoupling which fails to account for
all scattering channels, and this is likely the main cause of
their error. (See the Appendix of Ref. [26] and the present
authors’ preprint [32] for further discussion.) Here we appeal
to the spin metaphor again: A spin order and an effective
Zeeman splitting along the direction of the order mutually
imply each other. We therefore look instead at the self-energy
of � and employ the Zeeman part as the order parameter for
the vestigial phase.

III. RENORMALIZED BOSONIC SELF-ENERGY METHOD

The celebrated LW functional [44] is the natural method
to treat self-energy in a self-consistent way. To make it work
for the bosonic � field, we have to make a simple extension
so that the UV divergence of a bosonic field theory is handled
properly. A well-known extra complication of this divergence-
removal process is present in d = 4 [45–48], but the problem
at hand effectively lives in d = 3, and the process is very
straightforward. We will state the formulas here, and inter-
ested readers are referred to Appendix A for a more detailed
discussion.

In d = 3, the temperature parameter α is the only quantity
that receives UV-divergent correction. Following the standard
procedure of perturbative renormalization [49], a counterterm
δα|�|2 is added to βH to cancel the divergence. This coun-
terterm is determined order by order in perturbation theory in
any preferred renormalization scheme, and without reference
to any self-consistent condition yet.

We assume that the theory is translationally invariant and
take the thermodynamic limit. Let G(k) be the (variational)
momentum-space matrix propagator of the interacting theory:

(2π )3δ(3)(k − q) [G(k)]i j

≡
∫

d3x
∫

d3y ei(k·x−q·y) 〈φ∗
i (x)φ j (y)〉. (7)

The free-energy density functional 
[G] now reads

β
[G] =
∫

k
Tr ln G(k)−1

−
∫

k
Tr{[G(k)−1 − G0(k)−1]G(k)}

+ δα

∫
k
TrG(k) + �LW[G]. (8)

We have introduced the shorthand
∫

k = ∫
d3k/(2π )3, and

Tr here refers exclusively to the matrix trace. G0 is the
free propagator. The LW functional �LW[G] is defined as
usual to be the generating functional of two-particle irre-
ducible self-energy diagrams [44,50]. The first line of (8)
is the noninteracting part, and the second line vanishes in
the noninteracting limit. This free energy itself still contains
a UV-divergent additive constant, but the physically rele-
vant quantity (
[G] − 
[G0]) is UV finite to all orders in
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perturbation theory. This claim will be shown explicitly to
one-loop order in the subsequent calculations, and the general
argument is presented in Appendix A.

Superfluid order can be incorporated into this formalism,
too. We restrict ourselves to a uniform order �̄ ≡ 〈�〉 �= 0
here, and let the fluctuating part be �̃ ≡ � − �̄. Now that �̄

breaks the U(1) symmetry, we have to adopt the Nambu spinor
notation to effectively account for four real scalar degrees of
freedom:

� =

⎛
⎜⎜⎝

ψ11

ψ12

ψ21

ψ22

⎞
⎟⎟⎠ ≡

⎛
⎜⎜⎝

φ̃↑
φ̃∗

↑
φ̃↓
φ̃∗

↓

⎞
⎟⎟⎠. (9)

Expanding the original H yields additional effective self-
energy and cubic interaction for �; let us put

βH[�] = βH[�̄] + βH[�̃] + 1

2
�†M� + 1

3!
Ni jkψiψ jψk,

(10)
where the coefficients M and Ni jk are, of course, dependent
on �̄ (and �̄†).

Let G̃ be the 4 × 4 matrix propagator of the � field and G̃0

be the noninteracting limit of that. The free-energy density
with possible superconducting order is

β
[G̃] = 1

2

∫
k

Tr ln G̃(k)−1

− 1

2

∫
k

Tr{[G̃(k)−1 − G̃0(k)−1]G̃(k)}

+ 1

2

∫
k
Tr[(δα + M)G̃(k)] + �̃LW[G̃]

+H[�̄] + δα|�̄|2. (11)

The LW functional �̃LW is defined as the generator of
two-particle irreducible (2PI) self-energy diagrams for the
� field, taking into account the effective cubic interaction
1
3! Ni jkψiψ jψk .

Great care must be taken, however, when interpreting the
result with superfluid order. It has been known [45,50] that
similar approaches (within Hartree-Fock-like approximation)
always predict first-order transitions even when second-order
ones are expected on symmetry grounds, and the solutions
always weakly violate the Goldstone theorem in the superfluid
phase; it is believed that these methods do not adequately
handle the strong critical fluctuation when the spectrum is
nearly gapless. Unfortunately, our d = 3 renormalized variant
turns out to be no different. Such artifacts will be discussed in
more detail when they are encountered.

IV. THE CHIRAL SIDE

A. Decoupled limit

Let us first focus on the story of the chiral side of the
theory (g1 < g2) given the much cleaner algebra, even though
MxBi2Se3 is on the nematic side. Most of the physics is
in fact very similar on either side. We will start with the
decoupled limit with C1 = C2 = 0, so called because the ef-
fective spin-orbit coupling vanishes. The gradient term now

FIG. 2. (a) The two-loop Hartree-Fock vacuum diagram con-
tributing to the LW functional �LW. (b) The associated one-loop
proper self-energy diagram.

has full rotational invariance, but the interaction still distin-
guishes the z direction from the rest; so the theory enjoys full
cylindrical symmetry. We will confine ourselves to α > 0. In
the subsequent discussion, apart from the (self-explanatory)
superconducting and vestigial phases, we will refer to the
high-temperature phase without any ordering as the “symmet-
ric phase.”

The main approximation here is the truncation of �LW to
the Hartree-Fock term represented by the Feynman diagram
in Fig. 2(a). In terms of the full propagator G, it reads

�LW ≈
∑

i=x,y,z

λi

2

{[∫
k

Tr(σiG(k))
]2

+ Tr

[
σi

(∫
p

G(p)

)
σi

(∫
k

G(k)

)]}
, (12)

where the second form of (6) is used. We have not specify
our ansatz for G, but any sensible choice would make (12)
UV divergent. We will simply assume that the integrals are
regularized in some suitable scheme and press on.

The noninteracting propagator is identified as G0(k) =
(k2 + α)−1σ0. The proper self-energy diagram generated by
(12) is depicted in Fig. 2(b). It represents a momentum-
independent energy shift. We therefore adopt the ansatz

G(k)−1 = (k2 + α + h0)σ0 + �h · �σ , (13)

where h0 and �h = (hx, hy, hz ) are the variational parameters.
The traceless part �h · �σ is the induced Zeeman splitting: Non-
vanishing hx or hy indicates vestigial nematic order, while
a nonzero hz implies vestigial chiral order. It is necessary
to allow for h0 variation: While α is fixed by the physical
temperature, it is the average energy gap of the symmetric
phase only. Any other solution can in principle have a different
value of average gap at the same temperature, reflected by a
h0 �= 0 [51].

We opt for the following condition to specify the renormal-
ization counterterm δα: In the symmetric phase, the one-loop
correction in Fig. 2(b) should be exactly canceled by the
counterterm, leaving the renormalized value α unchanged.
This is accomplished by choosing

δα = −(2g1 + g2)
∫

k

1

k2 + α

= −(λx + λy + λz )
∫

k

1

k2 + α
, (14)

also regularized with the same suitable scheme used in (12).
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With all the necessary ingredients in place, the free-energy
density 
 given in (8) can be calculated up to the Hartree-Fock
approximation. As mentioned earlier, one needs to discard
a UV-divergent additive constant, and then the expression
is manifestly UV finite. One recognizes that the gap matrix
[(α + h0)σ0 + �h · �σ ] has eigenvalues α + h0 ± |�h| and defines
the quantities

m1 =
√

α + h0 + |�h| � 0,

m2 =
√

α + h0 − |�h| � 0 (15)

to be the square root of the eigenvalues. Now the free-energy
density relative to the symmetric phase can be conveniently
written as

β(
 − 
s) = 1

12π

(
m3

1 + m3
2

) − α

4π
(m1 + m2)

+ (2g1 + g2)

64π2
(m1 + m2 − 2

√
α)2

+ 1

64π2|�h|2
[
g2

(
h2

x + h2
y

)

+ (2g1 − g2)h2
z

]
(m1 − m2)2 + 1

3π
α3/2, (16)

where 
s is the free-energy density of the symmetric solution
m1 = m2 = √

α.
Any vestigial order is indicated by m1 �= m2. On the chiral

side, (2g1 − g2) < g2; it is clear that for any given |�h|, the
lowest 
 is always obtained by choosing hx = hy = 0; and
the order, if it exists, must be purely chiral. We will adopt this
choice from here on.

To proceed, we first introduce the dimensionless quantities

u ≡ (m1 + m2 − 2
√

a)/
√

a,

v ≡ (m1 − m2)/
√

a. (17)

The physically meaningful range of values is u � −2, |v| <

(u + 2). The symmetric phase corresponds to u = v = 0, and
a vestigial chiral order is indicated by v �= 0. The free energy
(16) has a very clean dimensionless form in terms of u and v:(

4π

α3/2

)
β(
 − 
s)

=
(

1

2
+ (2g1 + g2)

16π
√

α

)
u2

+ u3

12
+

(
1

2
+ (2g1 − g2)

16π
√

α

)
v2 + uv2

4
. (18)

This expression is bounded from below within the physical
region.

The symmetric solution u = v = 0 is always a stationary
point. If (2g1 − g2) > 0, it is always a stable equilibrium,
thus confirming our previous assertion that (2g1 − g2) < 0 is
a necessary condition for a vestigial chiral phase. When the
quantity is negative, the sign of the v2 coefficient changes at
the instability temperature αcc,

√
αcc = g2 − 2g1

8π
, (19)

FIG. 3. The landscape of free-energy density 
 on the entire uv

plane. The shaded region is unphysical. The dots represent stationary
points, and the arrows points toward the direction of lower 
. Only
the v > 0 side is plotted here; the other side is symmetrical. (a) At
high temperature (α > αc2), the symmetric state u = v = 0 is the
stable minimum inside the physical region. (b) As the temperature
is lowered, the saddle point is drawn toward the symmetric state, and
it is within the physical region for αc2 > α > αcc. (We zoom in on
the symmetric state, and the maximum on the far left is not shown.)
Note that the u + 2 = v edge may have a lower free energy than the
symmetric state after the saddle point has crossed into the physical
region. (c) The saddle point eventually collapses in on the symmetric
state and annihilates at α = αcc. Below this temperature there is no
stable equilibrium.

and renders the symmetric phase unstable. The vanishing of
this coefficient is equivalent to a diverging chiral suscepti-
bility and may be naively taken as the critical point of a
second-order transition into the vestigial chiral phase. Alas,
this textbook interpretation fails utterly for the present prob-
lem: A closer look at (18) reveals that there exists no stable
solution for α < αcc.

Let us elaborate. Since (18) is only a cubic polynomial,
its stationary points on the full uv plane can be exactly
found. In the α → ∞ limit, these are as follows: local
minimum (u, v) = (0, 0) (the symmetric solution), local max-
imum (−4, 0), and two saddle points (−2,±2). Apart from
(0,0), the other stationary points are outside the physical re-
gion, and (0,0) is the global minimum inside the physical
region. See Fig. 3(a) for a sketch.

As α is lowered, the symmetric solution remains at (0,0),
the local maximum moves down in the −u direction, and
the two saddle points draw nearer toward (0,0). At α = αc2

[52], the saddle points cross the edges |v| = (u + 2) into the
physical region. That is, an initially gapless (m2 = 0) solution
of the saddle point equations becomes available. See Fig. 3(b).
This gapless solution at αc2 has a special implication when
we discuss the superconducting order later. Eventually, at
αcc the saddle points and the minimum merge, leaving the
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symmetric solution unstable in the v direction. This is de-
picted in Fig. 3(c).

In fact, below αc2, the edges of the physical region are
lower in free energy than the saddle points, and the saddle
points are drawing closer to the symmetric solution continu-
ously. Therefore, at some point in the range αcc < α < αc2,
the edges already are lower than the symmetric solution, and
(18) no longer has an equilibrium. One thing left out of the
analysis is the superconducting order: It is therefore natural to
conjecture that a joint first-order transition into the supercon-
ducting phase takes place within αcc < α < αc2.

B. Joint first-order transition

Let us now produce evidence for the above conjecture
using (11). We assume a uniform chiral superconducting order
φ̄↑ = 0, φ̄↓ = φ̄, chosen to be real. There is another degener-
ate choice with the spin reversed. Clearly, the chiral Zeeman
self-energy and the chiral superconducting order mutually fa-
vor each other, and we will leave out other components in the
subsequent analysis. Given the form of the interaction (6), one
expects the pseudospin to be conserved even in the presence
of the superconducting order. This leads us to write down the
variational matrix propagator:

G̃(p) =

⎛
⎜⎜⎝

ε0(p) + h0 + hz r1e−iθ1

r1eiθ1 ε0(p) + h0 + hz

ε0(p) + h0 − hz r2e−iθ2

r2eiθ2 ε0(p) + h0 − hz

⎞
⎟⎟⎠. (20)

The phases θ1 and θ2 of the off-diagonal components are
undetermined a priori, even though the superconducting order
itself has been set to be real. The amplitudes r1, r2 are positive.

Again, the result is most conveniently expressed in terms
of the square roots of the eigenvalues of the 4 × 4 gap matrix
G̃(p = 0). We thus define

m11 =
√

α + h0 + hz + r1,

m12 =
√

α + h0 + hz − r1,

m21 =
√

α + h0 − hz + r2,

m22 =
√

α + h0 − hz − r2. (21)

It can be shown that θ1 drops out of the free energy completely,
and θ2 = 0 always minimizes the free energy. Furthermore,
all stationary solutions satisfy m11 − m12 = 0. So we will set
θ2 = 0 and m11 = m12 = m1 from here. The resultant free-
energy density is

β
 = 1

24π

(
2m3

1 + m3
21 + m3

22

) − α

8π
(2m1 + m21 + m22)

+αφ̄2+g1

2
φ̄4+ g1

128π2
[8(m1 − √

α)2 + 3(m21 − √
α)2

+ 3(m22 − √
α)2 + 2(m21 − √

α)2(m22 − √
α)2]

+ g2

32π2
(m1 − √

α)(m21 + m22 − 2
√

α)

− g1

8π
φ̄2(3m21 + m22 − 4

√
α) − g2

4π
φ̄2(m1 − √

α).

(22)

We proceed to solve the saddle point equations ∂
/∂m1 =
∂
/∂m21 = ∂
/∂m22 = ∂
/∂φ̄ = 0. All previously found
stationary points (the symmetric solution and the pair of sad-
dle points) remain solutions with φ̄ = 0. In addition, there
exist stationary points with φ̄ �= 0 not connected to the sym-
metric solution. As the temperature is lowered, a pair of
φ̄ �= 0 solutions come into existence through a saddle-node
bifurcation, one a local maximum and the other a minimum.
See Fig. 4(a). When the temperature is further lowered, the
maximum is continuously connected to the aforementioned

gapless, nonsuperconducting solution at αc2, and ceases to
exist for α < αc2. The other solution rapidly overtakes the
symmetric state to become the global minimum in free energy
at some α > αcc, before the symmetric state turns unstable.

FIG. 4. (a) Superconducting order parameter φ̄ and (b) smallest
energy gap m2

22 vs α for the superconducting solution, plotted at
g2/g1 = 2.5. The dotted branch is the unstable solution that anni-
hilates as it becomes gapless at αcc slightly bigger than zero, and
the solid line is the (meta)stable branch that continues on to lower
temperature. φ̄ is in units of

√
g1, and everything else is in units of g2

1.
We see that m2

22 �= 0 explicitly violates Goldstone’s theorem. (c) The
schematic illustration of the conjectured actual superconducting so-
lution (dashed line) alongside the Hartree-Fock solution (solid line).
The dotted line represents the first-order transition temperature. As
marked on the diagram, the artifact dominates the apparent first-order
jump given by the Hartree-Fock solution.
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Neither branch of the superconducting solutions exhibits a
gapless Goldstone mode: See Fig. 4(b).

This is reminiscent to the typical result obtained from
similar self-energy methods; see Ref. [45] and, in particular,
Appendix G of Ref. [50]. In these other reported cases, the
bifurcation structure is seen as an artifact of the method: The
normal gapless solution is physically expected to be the onset
of degenerate superconducting minima, rather than the ter-
mination of degenerate maxima. We therefore conjecture the
following: A pair of superconducting local minima (related
by time reversal) grow out of the gapless, normal solution at
αc2. They continue to exist and become the true equilibrium
solution at some α > αc. See Fig. 4(c).

Apart from qualitatively establishing the joint first-order
transition into the superconducting phase, we believe that any
quantitative results here should be taken with more than a few
grains of salt. In particular, (22) indicates a very strong first-
order transition, but we believe much of this jump is an artifact
of the self-energy method. Unfortunately, we have no other
way to estimate the magnitude of the jump.

C. Away from the decoupled limit

Finally, one may restore C1,C2 �= 0 and redo the calcu-
lation to see if the effective spin-orbit coupling changes the
picture. The renormalization counterterm δα is changed ac-
cordingly:

δα = −(2g1 + g2)
∫

k

ε0(k)

ε0(k)2 − εx(k)2 − εy(k)2
. (23)

An analytic evaluation of 
 is now impossible even in the
noninteracting limit, and we perform an expansion in powers
of C1 and C2. It can be seen that the first-order correction
vanishes, and quadratic correction terms are proportional to
the parameter J ≡ ( 8

15C2
1 + 2

15C2
2 ), coming from the angular

average of (ε2
x + ε2

y ). We estimate that the typical value of J
would be of the order of 0.1 or smaller (see Appendix B),
though we cannot definitely rule out a bigger, more extreme
value. As noted in Ref. [21], the theory is still cylindrically
symmetric at this order; the threefold anisotropy sets in only at
cubic order in C1 and C2. In the absence of a superconducting
order, this first correction to the free energy reads

β
 = (decoupled limit)

+ J

8π
(m1 + m2)−1

{[(
m4

1 + m3
1m2 + m2

1m2
2

+ m1m3
2 + m4

2

) − 5α
(
m2

1 + m1m2 + m2
2

)]
+ (2g1 + g2)

8π

[
5
(
m3

1 + 2m2
1m2 + 2m1m2

2 + m3
2

)

− 5

2

√
α
(
5m2

1 + 14m1m2 + 5m2
2

)]

+ (2g1 − g2)

8π

[
5

4
(m1 + m2)(m1 − m2)2

− (m1 − m2)4

4(m1 + m2)

]}
+ · · · ; (24)

m1 and m2 are defined in (15).

We adopt a different strategy to analyze this free en-
ergy. The above expression is Taylor expanded in terms of
the dimensionless variables u and v introduced in (17), and
the series is truncated to contain only u2, uv2, v2, and v4,
in the spirit of the GL theory. Completing the square on u
generates a (negative) correction to the v4 coefficient, valid
for v small enough. If the overall effective quartic coefficient
is positive, we argue that a second-order transition to the
vestigial phase does take place; otherwise the joint first-order
transition remains the only possibility. Applying the criterion
to the decoupled limit (18), one sees that the intrinsic v4 coef-
ficient is absent, and the correction from u fluctuation makes
the overall effective v4 coefficient negative. Indeed there is no
vestigial phase as we have already concluded. For the present
expression (24), we have(

4π

α3/2

)
β
 ≈

[
1

2
+ 15

16
J +

(
2g1 + g2

16π
√

α

)(
1 + 15

4
J

)]
u2

+
[

1

2
+ 5

16
J +

(
2g1 − g2

16π
√

α

)(
1 + 5

4
J

)]
v2

+
[

1

4
+ 15

32
J +

(
2g1 + g2

16π
√

α

)
5

8
J

]
uv2

+ J

[
1

64
−

(
2g1 − g2

16π
√

α

)
1

16

]
v4. (25)

At first glance, the effective spin-orbit coupling does tend
to stabilize the vestigial phase by generating a positive v4

term. (2g1 − g2) < 0 is still required for nontrivial behavior,
and the instability temperature αcc now takes an O(J ) correc-
tion:

√
αcc = (g2 − 2g1)

8π

(
1 + 5

8
J + · · ·

)
. (26)

In principle one would want to expand every expression to
O(J ), but the ratio Rc ≡ (g2 + 2g1)/(g2 − 2g1) � 1 is uncon-
strained and potentially very big. The product RcJ � J may or
may not be small, and extra attention is due when analyzing
the result. At αcc, taking into account the u fluctuation, the
effective v4 coefficient is(

3

64
J + O(J2)

)
−

[
1
4 + 15

32 J + (
5J

16+10J

)
Rc

]2

1
3 + 15

16 J + (
4+15J
8+5J

)
Rc

. (27)

The first term is the “intrinsic” v4 coefficient, and the second
term comes from the u fluctuation. It can be numerically
checked that (27) is never positive for any Rc � 1 for any
given J . Nevertheless, the expression is only meaningful for
small J , and we can only rule out the vestigial chiral phase
when effective spin-orbit coupling is not strong.

In conclusion, for a range of physically reasonable pa-
rameters, the vestigial chiral order cannot exist above a
weak-coupling two-component chiral superconductor via the
Ginzburg-Landau mechanism investigated in this paper and
Refs. [21,27]. Even though there is an apparent divergence
in chiral susceptibility, this does not indicate a second-order
phase transition, since there is no (meta)stable nonsupercon-
ducting state available below the instability temperature αcc.
Instead, the system undergoes a joint first-order transition into
the superconducting phase at a temperature slightly above
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αcc. This negative result holds for arbitrary ratio of coupling
constants Rc but requires the coefficient J to be small. Recall
that J is a measure of the size of anisotropic gradient terms
in the effective Hamiltonian. The typical value of J is small,
however, and it already takes some extreme choice of param-
eters to bring J ∼ O(1).

D. Comparison with Fischer and Berg [26]

Fischer and Berg [26] considered a very similar model of
two-component order parameters with tetragonal symmetry,
instead of the trigonal symmetry considered in this paper.
They identified effectively the same g2 > 2g1 criterion. They
also found a stable vestigial chiral phase at larger g2 in their
numerical calculation.

Technically, our model and theirs differ in two ways. First,
using the second form of (6), all three λx,y,z can take arbitrary
values in the tetragonal case, while the trigonal symmetry
imposes λx = λy in addition. Second, the form of allowed
effective spin-orbit coupling is different under tetragonal sym-
metry. To the order at which we are working, the spin-orbit
coupling term is replaced by its angular average, and the
difference amounts to a change in the J parameter. The in-
teraction terms practically have the same form with different
coupling constants. Thus our negative result, with minimal
modification, should be applicable for the tetragonal symme-
try, too.

One key technical difference between our method and Fis-
cher and Berg’s [26] is the removal of UV divergence. We
argue that (for a weak-coupling superconductor) the long-
wavelength physics of the finite-temperature phase transition
cannot depend on anything at the atomic scale, that all relevant
scales of the problem are much smaller compared with the size
of the Brillouin zone, and that it is very natural to subtract
off the UV divergence. We expect to see small g1 and g2

compared with lattice scales, reflecting the smallness of the
Ginzburg parameter or the ratio Tc/EF .

On the other hand, Fischer and Berg [26] regularized their
model with a lattice. The inverse lattice spacing becomes their
momentum unit, and Tc is their energy unit. The vestigial
chiral phase found in their numerical calculation required not
only a large ratio of (g2 − 2g1)/(g2 + 2g1), but also that g1, g2

individually are of order unity in their chosen units. It is not
clear to us that their theory contained any small parameter,
and the parameter range where the vestigial chiral phase was
found seems unlikely to be realized in real materials. They did
not find a vestigial chiral phase when the coupling constant is
sufficiently small compared with the cutoff; this is consistent
with our negative result.

We also note that the harmonic variational approach
adopted by Fischer and Berg [26] is in effect identical to
our LW approach with Hartree-Fock approximation. The LW
approach, however, offers a clear direction for systematic im-
provement.

V. THE NEMATIC SIDE

A. Nonexistence of vestigial order

Most of the result from the previous section can be directly
transplanted to the nematic case (g2 < g1). The free energy

(16) is valid irrespective of the values of g1 and g2. This
time, one always chooses hz = 0 for the minimum, and any
possible vestigial order is always purely nematic. We note that
the theory in the decoupled limit does not possess a preferred
nematic orientation due to its full cylindrical symmetry; an
orientation must be randomly and spontaneously chosen in the
ordered phase. This is but an artifact of the fourth-order GL
theory in the decoupled limit: The effective spin-orbit terms
and the sixth-order terms in the GL expansion would break
the rotational symmetry down to sixfold [11,16].

Once hz is set to zero, one recognizes that all results in
Sec. IV A automatically apply if (2g1 − g2) is replaced by g2.
In particular, the symmetric solution becomes unstable if g2 <

0, and the instability occurs at αcn = (g2/8π )2. However, no
vestigial nematic phase is to be found, as no stable minimum
of free energy exists below αcn without superconducting order.
A joint first-order superconducting transition at a temperature
slightly above αcn is again the real answer.

The calculation for correction due to effective spin-orbit
coupling proceeds in the same manner, but the coefficients
naturally turn out to have different values. The leading cor-
rection to the free energy is

β
 = (decoupled limit)

+ J

64π
(m1 + m2)−1

{[(
9m4

1 + 9m3
1m2 + 4m2

1m2
2

+ 9m1m3
2 + 9m4

2

) − 5α
(
7m2

1 + 10m1m2 + 7m2
2

)]
+ (2g1 + g2)

8π

[
5
(
7m3

1 + 17m2
1m2 + 17m1m2

2 + 7m3
2

)
− 10

√
α
(
13m2

1 + 22m1m2 + 13m2
2

)]
+ g2

8π

[
19(m1 + m2)(m1 − m2)2

+ 4m1m2(m1 − m2)2

(m1 + m2)

]}
+ · · · . (28)

The instability temperature is again shifted by O(J ):

√
αcn = − g2

8π

(
1 + 5

4
J + · · ·

)
. (29)

Expanding in terms of u, v defined in (17) yields(
4π

α3/2

)
β
 ≈

[
1

2
+ 15

16
J +

(
2g1 + g2

16π
√

α

)(
1 + 15

4
J

)]
u2

+
[

1

2
+ 5

8
J +

(
g2

16π
√

α

)(
1 + 5

2
J

)]
v2

+
[

1

4
+ 15

32
J +

(
2g1 + g2

16π
√

α

)
5

16
J

]
uv2

+ J

[
1

128
−

(
g2

16π
√

α

)
1

32

]
v4. (30)

Going through the same exercise of eliminating u using its
saddle point equation, the overall effective v4 coefficient thus
generated is again found to be always negative for all J .
(Again, note that the approximation is not valid for large J .)
We can once again conclude that there is no vestigial nematic
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FIG. 5. The perturbative RG flow. The dark shaded region is
unstable, and the light shaded regions are the deep nematic (g2 < 0)
and deep chiral (g2 > 2g1) regions. The four fixed points are labeled
on the diagram: G, Gaussian; H, Heisenberg; I, Ising; N, nematic.

phase when J is sufficiently small to justify the perturbative
treatment.

B. Symmetry and renormalization group

There are in fact a lot of prior hints on our negative result.
The renormalization group (RG) analysis [53] in d = 4 − ε

reveals four fixed points for our model: the Gaussian fixed
point g1 = g2 = 0, the Heisenberg fixed point with g1 = g2,
the Ising fixed point with g2 = 0, and the nematic fixed point
in between; see Fig. 5. Without effective spin-orbit coupling,
at one-loop order, the nematic fixed point sits on top the
Heisenberg fixed point; the separation of the two is stabilized
either by the two-loop contribution or by the inclusion of spin-
orbit coupling as a perturbation. This suggests the picture:
For g1 > g2 > 0, the system goes from the normal symmetric
phase straight into the nematic superconducting phase through
a second-order transition, and something else must happen for
g2 < 0.

Along the g2 = 0 line, the two pseudospins are not coupled
by the interaction. If we further switch off the effective spin-
orbit coupling, the theory enjoys an enhanced SU(2) × SU(2)
symmetry. The g2 = 0 boundary should therefore be very
robust given the symmetry protection. It also makes ample
sense that a line of enhanced symmetry separates the two
regions in the parameter space that have markedly different
critical behaviors.

The fact that vestigial order is not to be found in the g2 < 0
region may be more surprising. However, we note that conven-
tional wisdom [53] indeed calls for a first-order transition for
this and other similar situations.

It is much harder to frame the story on the chiral side in
terms of the renormalization group. Perturbative calculations
reveal no fixed point for g2 > g1. While there exist claims of a
chiral fixed point [54,55], the result appears to at least require
a number of spin components much larger than 2 [56–58].
More importantly, nothing special can be said about the g2 =
2g1 line.

VI. CONCLUSION

The central (negative) result presented in this paper is
the following: Within Ginzburg-Landau theory with fluctu-

FIG. 6. The proposed phase diagram. The shaded region repre-
sents superconductivity, and the unshaded, high-temperature phase is
symmetric (normal without vestigial order). The solid phase bound-
ary represents the second-order transition, and the dashed boundary
represents the joint first-order transition.

ations, in a region of the parameter space centered around
the effective spin-orbit-decoupled limit, vestigial order cannot
exist in the normal state of a weak-coupling two-component
superconductor. We argue in Appendix B that the physically
relevant range of parameters is near the decoupled limit.

To recap, for 0 < g2 < 2g1 we still obtain a second-order
phase transition into the nematic or chiral superconducting
phase, similar to the simple mean-field prediction. The system
must be outside this range, i.e., in the respective deep nematic
or chiral regime, to deviate from the mean-field behavior.
Even then, we predict a joint first-order transition rather than a
vestigial order phase. The 0 < g2 < 2g1 criterion was priorly
obtained by Fischer and Berg [26]. This is summarized in the
phase diagram in Fig. 6.

On the nematic side, existing renormalization group anal-
ysis and symmetry arguments [53] already hinted at the
g2 < 0 criterion. However, it does comes as a surprise that
no vestigial nematic phase is found at all. Our result con-
tradicts Hecker and Schmalian’s [21]. We believe that the
Hubbard-Stratonovich decoupling adopted in their analysis
underestimates the interaction strength and results in their
error. It is also worth noting that the existing calculations of
GL coefficients from various microscopic models (see Sup-
plemental Material of Refs. [19,42] for the calculation; see
also Ref. [43]) all result in g2 > 0; that is, none is in the deep
nematic region.

Fischer and Berg [26] found a stable vestigial chiral phase
for a similar model with tetragonal symmetry, but only when
the coupling constants are comparable in size to the large-
momentum cutoff in their numerical analysis. We argue that
this regime is not physically relevant. For weaker coupling,
their result is consistent with ours.

One certain conclusion can be drawn from this paper: The
normal state anisotropy observed in MxBi2Se3 [22,23] cannot
be interpreted as a vestigial order associated with the underly-
ing superconductivity. Whatever else the origin of this normal
state anisotropy is, it is likely to have important implications
for the pairing mechanism leading to the superconductivity.
Our result can readily be generalized to other unconventional
superconductors and superfluids with two-component order
parameters but different symmetries.
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FIG. 7. The (a) three-loop and (b) four-loop divergent vacuum
diagrams contributing to �LW; (c) the two-loop proper self-energy
obtained from the three-loop vacuum diagram.
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APPENDIX A: RENORMALIZED BOSONIC
LUTTINGER-WARD FORMALISM

In this Appendix, we justify the treatment of the countert-
erm δα and argue that the result is UV finite to all orders of
approximation.

The proof for UV finiteness of (8) is in fact almost trivial:
The theory given by (2) and (3) is super-renormalizable in d =
3, and the usual power-counting argument [49] shows that
there is a grand total of three UV-divergent vacuum Feynman
diagrams contributing to �LW. The two-loop Hartree-Fock
diagram in Fig. 2(a) is treated in the main text, and the other
diagrams are shown here in Fig. 7. The three-loop diagram
yields a logarithmic-divergent proper self-energy insertion
affecting α only, and a corresponding two-loop contribution
to δα can be computed in perturbation theory. The four-loop
diagram only contains a diverging additive constant that does
not affect any physics. One only needs to explicitly check
the UV finiteness for the two- and three-loop cases. We thus
consider the matter settled and move on to show that (8) does
yield the desired thermodynamic potential.

The perturbative construction of the original LW formalism
can be found in many textbooks, and we recommend the very
accessible review given by Eder [59]. Essentially, one first
shows that the noninteracting part of (8) yields the desired
free energy for the noninteracting theory. Then the interaction
is adiabatically turned on, and one proceeds to show that the
variation of the LW functional �LW matches the change in free
energy. Note that the whole derivation is in a sense formulated
in the “bare” theory. In the condensed matter context, the
formalism is usually employed to treat an electronic model

that either is explicitly defined on a lattice or has a k-space
Brillouin zone, and UV divergence and superfluid order (the
two conceptual difficulties here for boson gas) are not even
present. There is no need for renormalization, and there is
no distinction between bare and renormalized theories for the
fermionic case.

At first glance, it seems that if one is to recognize (G−1
0 +

δα) as the “bare free propagator,” then one arrives at (8) im-
mediately. However, there is a conceptual issue: δα is negative
and divergent, and this “bare free propagator” represents a
theory without stable equilibrium; the noninteracting partition
function does not even exist, and consequently it cannot be
used as a starting point to construct the interacting free energy.
The key point is that δα should only be turned on together with
the quartic interaction. The original proof must be adapted to
accommodate δα as a two-leg interaction vertex, and the rest
is otherwise straightforward.

The extension to include the superfluid order (11) is also
technically straightforward with the conceptual fine print.
This time, one may actually desire a negative renormalized
value for α, but there is of course no such thing as a non-
interacting bosonic theory with a negative energy gap. A
prescription for the “noninteracting theory” (as good as any
other stable choice) is to start with a noninteracting value
of α = 0+. Then α is adiabatically taken to the desired neg-
ative value, together with the switching-on of δα and the
quartic interaction. The other new addition is the effective
three-leg interaction vertex in the presence of the superfluid
order. Adapting the proof to include these new elements is not
difficult.

APPENDIX B: NUMERICAL ESTIMATION
OF GL COEFFICIENTS

In the main text, we investigate the effective Hamiltonians
(5) and (6) for small C1 and C2. We will estimate these ratios
for MxBi2Se3.

Estimations for C1 are readily available in the existing
literature. Reference [19] gave values of 1/3 and 1/2 for two
different models. The present authors estimated from reported
Hc2 anisotropy (for M = Cu) that (K2 + K3)/2K1 ≈ 0.6 [18],
and this translates to C1 ≈ 0.4.

The ratio C2 involves K ′ and Kz, both much less docu-
mented. K ′ embodies the breaking of hexagonal symmetry in
the basal plane down to trigonal, which is unlikely to be big
judging from the crystal structure. Within the weak-coupling
approximation, such a term originates from the anisotropy
of the Fermi surface; the normal state Fermi surface was
experimentally reconstructed in Refs. [60,61] at different dop-
ing levels, and it appears to us that neither group reported
a significant departure from full isotropy in the basal plane.
While a numerical estimation is unavailable, we believe the
ratio K ′/K1 is likely to be much smaller than order unity.

The authors of Ref. [26] adopted Kz/K1 = 10−2 in their
model intended to approximate Sr2RuO4. However, this
choice is only vaguely guided by the observation that there
is “extreme anisotropy” in the real material and of course
is not directly related to MxBi2Se3. The ratio of anisotropic
Hc2 (field direction parallel vs perpendicular to the basal
plane) equals the ratio

√
Kz/(2K1 + K2 + K3) and

√
Kz/K1,
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depending on the relative nematic orientation; see Ref. [15].
Based on the available Hc2 measurements [2,6,62], we put
Kz/K1 in the neighborhood of 1/10.

Combining the above observations, we believe C2 is at
most of order unity, possibly much less. This puts the effec-
tive spin-orbit coefficient J � 0.2, justifying our perturbative
treatment. Conversely, to get J ≈ 1, assuming the extreme
C1 = 1 and keeping the estimation Kz/K1 ≈ 1/10, a ratio of
K ′/K1 > 2 is required, indicating a fairly large anisotropy not
seen in the material.

We also note that in the two-dimensional (2D) limit of
Kz/K1 → 0, C1 → 1 according to Ref. [19], while C2 di-

verges. Therefore the quasi-2D limit is another way to get a
large J . This calls for (K ′/K1)2 > (Kz/K1) if we seek J ≈ 1.
Very extreme anisotropy in the z direction is needed if the
basal plane is only weakly threefold anisotropic. Again this is
irrelevant to real materials.

Finally, on a somewhat different track, we want to
remark that the chemical potential for superconducting
MxBi2Se3 is reported to be of the order of 100 meV or
more in Ref. [63], while its Tc is below 4 K. The ra-
tio Tc/EF is therefore a small number, and the application
of our result (based on GL analysis) to MxBi2Se3 is well
justified.

[1] K. Matano, M. Kriener, K. Segawa, Y. Ando, and G.-Q. Zheng,
Spin-rotation symmetry breaking in the superconducting state
of CuxBi2Se3, Nat. Phys. 12, 852 (2016).

[2] Y. Pan, A. M. Nikitin, G. K. Araizi, Y. K. Huang, Y.
Matsushita, T. Naka, and A. de Visser, Rotational sym-
metry breaking in the topological superconductor SrxBi2Se3

probed by upper-critical field experiments, Sci. Rep. 6, 28632
(2016).

[3] T. Asaba, B. J. Lawson, C. Tinsman, L. Chen, P. Corbae, G. Li,
Y. Qiu, Y. S. Hor, L. Fu, and L. Li, Rotational Symmetry Break-
ing in a Trigonal Superconductor Nb-Doped Bi2Se3, Phys. Rev.
X 7, 011009 (2017).

[4] J. Shen, W.-Y. He, N. F. Q. Yuan, Z. Huang, C.-W. Cho, S. H.
Lee, Y. S. Hor, K. T. Law, and R. Lortz, Nematic topological su-
perconducting phase in Nb-doped Bi2Se3, npj Quantum Mater.
2, 59 (2017).

[5] S. Yonezawa, K. Tajiri, S. Nakata, Y. Nagai, Z. Wang, K.
Segawa, Y. Ando, and Y. Maeno, Thermodynamic evidence for
nematic superconductivity in CuxBi2Se3, Nat. Phys. 13, 123
(2017).

[6] M. P. Smylie, K. Willa, H. Claus, A. E. Koshelev, K. W.
Song, W.-K. Kwok, Z. Islam, G. D. Gu, J. A. Schneeloch,
R. D. Zhong, and U. Welp, Superconducting and normal-state
anisotropy of the doped topological insulator Sr0.1Bi2Se3, Sci.
Rep. 8, 7666 (2018).

[7] S. Yonezawa, Nematic superconductivity in doped Bi2Se3 topo-
logical superconductors, Condens. Matter 4, 2 (2018).

[8] L. Fu, Odd-parity topological superconductor with nematic or-
der: Application to CuxBi2Se3, Phys. Rev. B 90, 100509 (2014).

[9] J. A. Sauls, The order parameter for the superconducting phases
of UPt3, Adv. Phys. 43, 113 (1994).

[10] R. Joynt and L. Taillefer, The superconducting phases of UPt3,
Rev. Mod. Phys. 74, 235 (2002).

[11] P. T. How and S.-K. Yip, Signatures of nematic superconduc-
tivity in doped Bi2Se3 under applied stress, Phys. Rev. B 100,
134508 (2019).

[12] K. Willa, Evidence for nematic superconductivity in supercon-
ducting doped topological insulator NbxBi2Se3 and SrxBi2Se3,
talk at Spin Phenomena Interdisciplinary Center, https://www.
youtube.com/watch?v=gVuzkKCU1xg.

[13] I. Kostylev, S. Yonezawa, Z. Wang, Y. Ando, and Y.
Maeno, Uniaxial-strain control of nematic superconductivity in
SrxBi2Se3, Nat. Commun. 11, 4152 (2020).

[14] K. Willa, R. Willa, K. W. Song, G. D. Gu, J. A. Schneeloch, R.
Zhong, A. E. Koshelev, W.-K. Kwok, and U. Welp, Nanocalori-
metric evidence for nematic superconductivity in the doped

topological insulator Sr0.1Bi2Se3, Phys. Rev. B 98, 184509
(2018).

[15] D. W. Hess, T. A. Tokuyasu, and J. A. Sauls, Broken symmetry
in an unconventional superconductor: a model for the double
transition in UPt3, J. Phys.: Condens. Matter 1, 8135 (1989).

[16] J. W. F. Venderbos, V. Kozii, and L. Fu, Identification of nematic
superconductivity from the upper critical field, Phys. Rev. B 94,
094522 (2016).

[17] M. I. Bannikov, R. S. Akzyanov, N. K. Zhurbina, S. I.
Khaldeev, Y. G. Selivanov, V. V. Zavyalov, A. L. Rakhmanov,
and A. Y. Kuntsevich, Breaking of Ginzburg-Landau descrip-
tion in the temperature dependence of the anisotropy in a
nematic superconductor, Phys. Rev. B 104, L220502 (2021).

[18] P. T. How and S.-K. Yip, Half quantum vortices in a nematic
superconductor, Phys. Rev. Res. 2, 043192 (2020).

[19] A. A. Zyuzin, J. Garaud, and E. Babaev, Nematic Skyrmions
in Odd-Parity Superconductors, Phys. Rev. Lett. 119, 167001
(2017).

[20] P. T. How and S.-K. Yip, Shear modulus anomaly of unconven-
tional superconductors in a symmetry breaking field, Phys. Rev.
B 104, L020506 (2021).

[21] M. Hecker and J. Schmalian, Vestigial nematic order and super-
conductivity in the doped topological insulator CuxBi2Se3, npj
Quantum Mater. 3, 26 (2018).

[22] Y. Sun, S. Kittaka, T. Sakakibara, K. Machida, J. Wang, J. Wen,
X. Xing, Z. Shi, and T. Tamegai, Quasiparticle Evidence for
the Nematic State above Tc in SrxBi2Se3, Phys. Rev. Lett. 123,
027002 (2019).

[23] C.-W. Cho, J. Shen, J. Lyu, O. Atanov, Q. Chen, S. H. Lee,
Y. S. Hor, D. J. Gawryluk, E. Pomjakushina, M. Bartkowiak, M.
Hecker, J. Schmalian, and R. Lortz, Z3-vestigial nematic order
due to superconducting fluctuations in the doped topological
insulators NbxBi2Se3 and CuxBi2Se3, Nat. Commun. 11, 3056
(2020).

[24] A. Y. Kuntsevich, M. A. Bryzgalov, V. A. Prudkoglyad, V. P.
Martovitskii, Y. G. Selivanov, and E. G. Chizhevskii, Structural
distortion behind the nematic superconductivity in SrxBi2Se3,
New J. Phys. 20, 103022 (2018).

[25] T. A. Bojesen, E. Babaev, and A. Sudbø, Phase transitions and
anomalous normal state in superconductors with broken time-
reversal symmetry, Phys. Rev. B 89, 104509 (2014).

[26] M. H. Fischer and E. Berg, Fluctuation and strain effects in a
chiral p-wave superconductor, Phys. Rev. B 93, 054501 (2016).

[27] R. M. Fernandes, P. P. Orth, and J. Schmalian, Intertwined
vestigial order in quantum materials: Nematicity and beyond,
Annu. Rev. Condens. Matter Phys. 10, 133 (2019).

104514-11

https://doi.org/10.1038/nphys3781
https://doi.org/10.1038/srep28632
https://doi.org/10.1103/PhysRevX.7.011009
https://doi.org/10.1038/s41535-017-0064-1
https://doi.org/10.1038/nphys3907
https://doi.org/10.1038/s41598-018-26032-0
https://doi.org/10.3390/condmat4010002
https://doi.org/10.1103/PhysRevB.90.100509
https://doi.org/10.1080/00018739400101475
https://doi.org/10.1103/RevModPhys.74.235
https://doi.org/10.1103/PhysRevB.100.134508
https://www.youtube.com/watch?v=gVuzkKCU1xg
https://doi.org/10.1038/s41467-020-17913-y
https://doi.org/10.1103/PhysRevB.98.184509
https://doi.org/10.1088/0953-8984/1/43/014
https://doi.org/10.1103/PhysRevB.94.094522
https://doi.org/10.1103/PhysRevB.104.L220502
https://doi.org/10.1103/PhysRevResearch.2.043192
https://doi.org/10.1103/PhysRevLett.119.167001
https://doi.org/10.1103/PhysRevB.104.L020506
https://doi.org/10.1038/s41535-018-0098-z
https://doi.org/10.1103/PhysRevLett.123.027002
https://doi.org/10.1038/s41467-020-16871-9
https://doi.org/10.1088/1367-2630/aae595
https://doi.org/10.1103/PhysRevB.89.104509
https://doi.org/10.1103/PhysRevB.93.054501
https://doi.org/10.1146/annurev-conmatphys-031218-013200


P. T. HOW AND S. K. YIP PHYSICAL REVIEW B 107, 104514 (2023)

[28] V. Grinenko, D. Weston, F. Caglieris, C. Wuttke, C. Hess, T.
Gottschall, I. Maccari, D. Gorbunov, S. Zherlitsyn, J. Wosnitza,
A. Rydh, K. Kihou, C.-H. Lee, R. Sarkar, S. Dengre, J. Garaud,
A. Charnukha, R. Hühne, K. Nielsch, B. Büchner et al., State
with spontaneously broken time-reversal symmetry above the
superconducting phase transition, Nat. Phys. 17, 1254 (2021).

[29] N. F. Q. Yuan, W.-Y. He, and K. T. Law, Superconductivity-
induced ferromagnetism and weyl superconductivity in Nb-
doped Bi2Se3, Phys. Rev. B 95, 201109(R) (2017).

[30] L. Chirolli, Chiral superconductivity in thin films of doped
Bi2Se3, Phys. Rev. B 98, 014505 (2018).

[31] H. Uematsu, T. Mizushima, A. Tsuruta, S. Fujimoto, and J. A.
Sauls, Chiral Higgs Mode in Nematic Superconductors, Phys.
Rev. Lett. 123, 237001 (2019).

[32] P. T. How and S. K. Yip, Criterion for vestigial order above
a nematic superconductor, arXiv:2207.04714 [cond-mat.supr-
con].

[33] Y. S. Barash and A. V. Galaktionov, Anisotropy of magnetic
properties of exotic superconductors, Zh. Eksp. Teor. Fiz. 100,
1699 (1991).

[34] R. S. Akzyanov, D. A. Khokhlov, and A. L. Rakhmanov, Ne-
matic superconductivity in topological insulators induced by
hexagonal warping, Phys. Rev. B 102, 094511 (2020).

[35] If one attempts to construct this effective theory starting from
the approximate k · p electron Hamiltonian of MxBi2Se3 [19],
then K ′ (accidentally) vanishes. This is an artifact of the k · p
approximation.

[36] E. Babaev, A. Sudbø, and N. W. Ashcroft, A superconductor to
superfluid phase transition in liquid metallic hydrogen, Nature
(London) 431, 666 (2004).

[37] A. Kuklov, N. Prokof’ev, and B. Svistunov, Commensurate
Two-Component Bosons in an Optical Lattice: Ground State
Phase Diagram, Phys. Rev. Lett. 92, 050402 (2004).

[38] A. B. Kuklov, M. Matsumoto, N. V. Prokof’ev, B. V. Svistunov,
and M. Troyer, Deconfined Criticality: Generic First-Order
Transition in the SU(2) Symmetry Case, Phys. Rev. Lett. 101,
050405 (2008).

[39] E. V. Herland, E. Babaev, and A. Sudbø, Phase transitions in a
three dimensional U (1) × U (1) lattice London superconductor:
Metallic superfluid and charge-4e superconducting states, Phys.
Rev. B 82, 134511 (2010).

[40] T. A. Bojesen, E. Babaev, and A. Sudbø, Time reversal sym-
metry breakdown in normal and superconducting states in
frustrated three-band systems, Phys. Rev. B 88, 220511(R)
(2013).

[41] Subsequent discussions are often framed in terms of the or-
dering in relative phase between field components and thus
bear less superficial resemblance to the present scenario. Of
course, the models and the mechanisms discussed there are very
different.

[42] J. W. F. Venderbos, V. Kozii, and L. Fu, Odd-parity supercon-
ductors with two-component order parameters: Nematic and
chiral, full gap, and Majorana node, Phys. Rev. B 94, 180504
(2016).

[43] The authors of Ref. [42] wrote the quartic terms of the free
energy in a different form: Their B1 and B2 are proportional
to our β1 + β2 and −β2, respectively. The sign of our g2 is thus
the same as that of B1 − B2 in their Supplemental Material. It
seems to us that this quantity is always non-negative for every
model discussed there.

[44] J. M. Luttinger and J. C. Ward, Ground-State Energy of a many-
fermion system. II, Phys. Rev. 118, 1417 (1960).

[45] G. Baym and G. Grinstein, Phase transition in the σ model at
finite temperature, Phys. Rev. D 15, 2897 (1977).

[46] H. van Hees and J. Knoll, Renormalization in self-consistent
approximation schemes at finite temperature: Theory, Phys.
Rev. D 65, 025010 (2001).

[47] J.-P. Blaizot, E. Iancu, and U. Reinosa, Renormalization of �-
derivable approximations in scalar field theories, Nucl. Phys. A
736, 149 (2004).

[48] J. Berges, S. Borsányi, U. Reinosa, and J. Serreau, Nonpertur-
bative renormalization for 2PI effective action techniques, Ann.
Phys. (Amsterdam) 320, 344 (2005).

[49] E. Fradkin, Quantum Field Theory: An Integrated Approach
(Princeton University Press, Princeton, NJ, 2021).

[50] D. Hügel, P. Werner, L. Pollet, and H. U. R. Strand, Bosonic
self-energy functional theory, Phys. Rev. B 94, 195119 (2016).

[51] The omission of the h0 variation in our previous preprint [32]
was the single mistake that led to its erroneous conclusion. It
amounted to an extra constraint placed on the system. With
h0 artificially set to zero here, one can recover the result of
Ref. [32].

[52] The closed-form expression of αc2 can be obtained by solving
the saddle point equations with the additional condition u = v.
It is unwieldy and not particularly useful, and we choose to omit
the explicit expression here.

[53] A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of
Phase Transitions, Monographs in Natural Philosophy (Perga-
mon, New York, 1979).

[54] H. Kawamura, Renormalization-group approach to the frus-
trated Heisenberg antiferromagnet on the layered-triangular
lattice, J. Phys. Soc. Jpn. 55, 2157 (1986).

[55] H. Kawamura, Renormalization-group analysis of chiral transi-
tions, Phys. Rev. B 38, 4916 (1988).

[56] S. A. Antonenko, A. I. Sokolov, and K. B. Varnashev, Chiral
transitions in three-dimensional magnets and higher order ε-
expansion, Phys. Lett. A 208, 161 (1995).

[57] B. Delamotte, D. Mouhanna, and M. Tissier, Nonperturbative
renormalization-group approach to frustrated magnets, Phys.
Rev. B 69, 134413 (2004).

[58] A. O. Sorokin, Weak first-order transition and pseudoscaling
behavior in the universality class of the O(N ) Ising model,
Theor. Math. Phys. 200, 1193 (2019).

[59] R. Eder, Analytical properties of self-energy and Luttinger-
Ward functional, in Many-Body Methods for Real Materials
(Lecture Notes of the Autumn School on Correlated Electrons
2019), Modeling and Simulation Vol. 9, edited by E. Pavarini,
E. Koch, and S. Zhang (Forschungszentrum Jülich, Jülich, Ger-
many, 2019).

[60] E. Lahoud, E. Maniv, M. S. Petrushevsky, M. Naamneh, A.
Ribak, S. Wiedmann, L. Petaccia, Z. Salman, K. B. Chashka,
Y. Dagan, and A. Kanigel, Evolution of the Fermi surface of
a doped topological insulator with carrier concentration, Phys.
Rev. B 88, 195107 (2013).

[61] A. Almoalem, I. Silber, S. Sandik, M. Lotem, A. Ribak, Y.
Nitzav, A. Y. Kuntsevich, O. A. Sobolevskiy, Y. G. Selivanov,
V. A. Prudkoglyad, M. Shi, L. Petaccia, M. Goldstein, Y. Dagan,
and A. Kanigel, Link between superconductivity and a Lifshitz
transition in intercalated Bi2Se3, Phys. Rev. B 103, 174518
(2021).

104514-12

https://doi.org/10.1038/s41567-021-01350-9
https://doi.org/10.1103/PhysRevB.95.201109
https://doi.org/10.1103/PhysRevB.98.014505
https://doi.org/10.1103/PhysRevLett.123.237001
http://arxiv.org/abs/arXiv:2207.04714
https://doi.org/10.1103/PhysRevB.102.094511
https://doi.org/10.1038/nature02910
https://doi.org/10.1103/PhysRevLett.92.050402
https://doi.org/10.1103/PhysRevLett.101.050405
https://doi.org/10.1103/PhysRevB.82.134511
https://doi.org/10.1103/PhysRevB.88.220511
https://doi.org/10.1103/PhysRevB.94.180504
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRevD.15.2897
https://doi.org/10.1103/PhysRevD.65.025010
https://doi.org/10.1016/j.nuclphysa.2004.02.019
https://doi.org/10.1016/j.aop.2005.06.001
https://doi.org/10.1103/PhysRevB.94.195119
https://doi.org/10.1143/JPSJ.55.2157
https://doi.org/10.1103/PhysRevB.38.4916
https://doi.org/10.1016/0375-9601(95)00736-M
https://doi.org/10.1103/PhysRevB.69.134413
https://doi.org/10.1134/S0040577919080117
https://doi.org/10.1103/PhysRevB.88.195107
https://doi.org/10.1103/PhysRevB.103.174518


ABSENCE OF GINZBURG-LANDAU MECHANISM … PHYSICAL REVIEW B 107, 104514 (2023)

[62] M. Kriener, K. Segawa, Z. Ren, S. Sasaki, and Y. Ando, Bulk
Superconducting Phase with a Full Energy Gap in the Doped
Topological Insulator CuxBi2Se3, Phys. Rev. Lett. 106, 127004
(2011).

[63] L. A. Wray, S.-Y. Xu, Y. Xia, Y. S. Hor, D. Qian, A. V. Fedorov,
H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Observation
of topological order in a superconducting doped topological
insulator, Nat. Phys. 6, 855 (2010).

104514-13

https://doi.org/10.1103/PhysRevLett.106.127004
https://doi.org/10.1038/nphys1762

