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We consider a two-dimensional generalization of the Su-Schrieffer-Heeger model which is known to possess
a nontrivial topological band structure. For this model, which is characterized by a single parameter, the hopping
ratio 0 � r � 1, the inhomogeneous superconducting phases induced by an attractive-U Hubbard interaction
are studied using mean-field theory. We show, analytically and by numerical diagonalization, that in lattices with
open boundaries, phases with enhanced superconducting order on the corners or the edges can appear, depending
on the filling. For finite samples at half filling, the corner site superconducting transition temperature can be much
larger than that of the bulk. A novel proximity effect thus arises for Tc,bulk < T < Tc,corner , in which the corner
site creates a nonzero tail of the superconducting order in the bulk. We show that such tails should be observable
for a range of r and U values.
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I. INTRODUCTION

In this paper, we consider the effects of attractive on-site
interactions in a two-dimensional Su-Schrieffer-Heeger (2D
SSH) model. This model is an extension of the well-known
SSH chain [1,2] to two dimensions, with alternating weak
(t1) and strong (t2) bonds along both spatial directions. In
finite lattices, the noninteracting model has edge and cor-
ner modes in the appropriate topological sectors and is an
example of higher-order topological insulators (HOTIs) [3].
Using the Bogoliubov–de Gennes formalism, we show that
adding a Hubbard-type attractive on-site interaction results in
a variety of inhomogeneous superconducting states in which
the pairing is site dependent. Figure 1 shows examples of the
possible different kinds of low-temperature superconducting
phases—one can obtain phases for which the pairing order is
quasi-one-dimensional [Fig. 1(a)], essentially restricted to the
edges, is largest in the bulk and very small on the periphery
[Fig. 1(b)], or is enhanced on the corner sites [Fig. 1(c)]. The
spatial and thermal properties of these phases depend on the
Hubbard interaction strength as well as on the ratio of hopping
amplitudes of the model, r = t1/t2.

HOTIs have been much studied recently. The formation
of electric multipole moments and charge pumping in such
a lattice has been addressed [4,5]. Photonic systems based
on the 2D SSH model were investigated in [6]. A clas-
sification scheme for topological superconductors and the

bulk-boundary correspondence in Bogoliubov–de Gennes–
type models was discussed in [3,7,8]. In this paper we
consider only the simplest possibility of s-wave pairing; how-
ever, we expect that similarly interesting edge and corner
phenomena should appear when the basic model is extended
to permit other types of superconducting pairing. The present
study constitutes, for example, a good starting point for inves-
tigations of corner and edge Majorana fermions [9,10].

While edge modes and resulting higher-order topologi-
cal superconducting phases have been reported before in the
literature, as on the honeycomb lattice [11–13], the present
model is of particular interest since it provides an analytically
tractable example with a tunable parameter, whose ground
state and finite-temperature properties can be described in
detail. Furthermore, we observe an interesting interplay be-
tween surface and bulk superconductivity which has not been
reported in HOTI structures so far.

This paper is organized as follows. In Sec. II we introduce
the model, and the Bogoliubov–de Gennes (BdG) mean-field
approach used here. In Sec. III we present results obtained
by numerical diagonalization in 2D SSH systems. The de-
pendence of local pairing order parameters on interaction
strength, hopping ratio, and chemical potential is described.
The critical temperatures of corner and bulk superconductivity
are obtained. For a range of temperatures, a mixed state is
shown to exist in open boundary condition (OBC) systems.
Section IV presents a theoretical analysis, starting with the so-
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(a) (b) (c)

FIG. 1. Spatial variation of the local superconducting order pa-
rameters in a finite 2D Su-Schrieffer-Heeger lattice for different band
fillings: (a) 1/4 filling (in the edge band), (b) 0.362 filling (in the
central bulk band), and (c) 1/2 filling. The parameters used are
r = 0.1 and V = 1.

lution for systems with periodic boundary conditions and then
its generalization to topologically nontrivial finite systems.
We conclude in Sec. V with a discussion and perspectives for
future work.

II. ATTRACTIVE HUBBARD MODEL ON
THE 2D SSH LATTICE

A. The noninteracting Hamiltonian

The 2D SSH tight-binding model is defined for sites ly-
ing on vertices of a square lattice of side a and involves
two different nearest-neighbor hopping amplitudes, t1 and t2.
Along the horizontal (x) direction, the sequence of hopping
amplitudes is alternating, just as in the parent one-dimensional
(1D) SSH model [1,2]. The same is true for the hopping along
the vertical (y) direction, as shown in Figs. 2(a) and 2(b). We
will assume t1 � t2 and discuss properties of this model as
a function of the hopping ratio r = t1/t2 � 1. The hopping

(a) (b)

(d)(c)

FIG. 2. Two finite systems showing (a) a nontrivial case and
(b) and the trivial case (black dots represent lattice sites, t1 is rep-
resented by thin blue bonds, and t2 is shown by thick green bonds).
(c) DOS for the OBC nontrivial lattice. Bands in this DOS plot are
labeled by B (bulk) and E (edge), and the peak at E = 0 includes a
contribution C (corner). (d) DOS for the OBC trivial case. The PBC
lattice has the same DOS as the OBC trivial lattice when the latter
has enough unit cells. In these calculations, r = 0.25.

amplitudes are furthermore assumed to be positive (since the
sign changes can be gauged away). The noninteracting Hamil-
tonian, discussed in detail in [14], is then

H0 = −
∑
〈i, j〉

ti jc
†
iσ c jσ + H.c., (1)

where 〈i, j〉 denote nearest-neighbor sites i and j and σ de-
notes spin. The unit cell consists of four sites. The infinite
system or the finite system with periodic boundary conditions
(PBCs) can be diagonalized by Fourier transforming. Note
that the energy spectrum can be obtained very easily since the
problem is separable in x and y variables, giving rise to two
1D SSH spectra. The 2D spectrum is just the direct sum of
the energy bands of the 1D SSH model, ε1D(kx ) and ε1D(ky).
The wave functions are products of the 1D SSH wave func-
tions, that is, ψ (kx, ky) = ψ1D(kx )ψ1D(ky). The corresponding
energy bands are given by

ε
(n)
2D (kx, ky) = ±ε1D(kx ) ± ε1D(ky), (2)

ε1D(k) = t2
√

1 + r2 + 2r cos 2ka, (3)

where the wave vectors lie in the Brillouin zone, −π/2a �
k j � π/2a ( j = x, y). See Appendix A for the k-space Hamil-
tonian and the band structure. The parameter determining the
spectral properties is r, while t2 serves only to set the global
scale of energy. The four choices of sign in the above expres-
sion for ε2D (++,+−,−+,−−) correspond to four bands
which we henceforth label by n = 1, . . . , 4. The two over-
lapping central bands (n = 2, 3, corresponding to +−,−+)
intersect along the diagonals, where ε

(2)
2D = ε

(3)
2D = 0. They

transform into each other under the mirror symmetries that
exchange kx ↔ ±ky. The energy spectrum is particle-hole
symmetric as the model is bipartite. When r < 1

2 , a gap sep-
arates the lateral bands from the central bands. There are
logarithmic Van Hove singularities at ε = 0 and at the centers
of the two lateral bands.

With OBCs, topologically protected states can arise at the
edges depending on the bond configuration. We use the term
“weak edge” when all sites lying on the edge are connected to
the interior by weak bonds. This configuration results in the
appearance of 1D edge modes, which have wave modulations
along the edge but decay exponentially along the direction
perpendicular to the edge. Where two weak edges meet, there
is an additional “zero-dimensional” corner mode which is
exponentially decaying in both directions. The localization
length ξ is that of the edge states of the 1D SSH chain and
depends on the hopping ratio, ξ = 2a/| ln r|. A precursor of
this 2D lattice, a ladder-type system of two coupled chains,
was studied in [15,16].

The total densities of states (DOSs) of the finite nontrivial
and trivial 2D SSH lattice are shown in Figs. 2(c) and 2(d),
respectively. The nontrivial system has two supplementary
bands corresponding to the quasi-1D edge modes. The spec-
trum has four gaps for small r, which close when r = 1/3.
If present, each of the zero-dimensional modes localized on
corners of the square contributes a delta function δ(E ) to the
density of states. As for the trivial system (no weak edges),
we will not consider it any further since the edge and corner
phenomena under discussion here are not present in this case.
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In the interacting problem, an attractive on-site Hubbard
term Hint is added to H0 with

Hint = −V
∑

i

n̂iσ n̂iσ̄ (4)

(V > 0), where n̂iσ = c†
iσ ciσ is the number of electrons of spin

σ on site i and σ̄ represents the opposite spin of σ . We assume
that the instability of interest is the s-wave superconducting
instability. In particular, at half filling, a competing charge
density wave instability could exist but could be suppressed
by doping or adding a small next-nearest-neighbor hopping.
To proceed, we use a standard mean-field approximation to
write the following effective total Hamiltonian:

HBdG =
∑

iσ

(uHF
i − μi )c

†
iσ ciσ

−
∑

σ

∑
〈i, j〉

ti j (c
†
iσ c jσ + H.c.) +

∑
i

(�ic
†
i↑c†

i↓ + H.c.),

(5)

where μi is the chemical potential. The mean fields are
the Hartree-Fock shift uHF

i = −V 〈c†
i↑ci↑〉 and the (real) lo-

cal superconducting order parameters (OPs) �i = V 〈ci↑ci↓〉.
These quantities are determined self-consistently for different
choices of band filling and boundary conditions. They are site
independent in the infinite lattice and in finite systems with
periodic boundary conditions but become site dependent when
there are edges.

III. NUMERICAL RESULTS

A. Order parameter results

We now present numerical solutions of the BdG equa-
tions for finite 2D SSH samples. The real-space method used
to solve Eq. (5) was originally developed to study the in-
homogeneous superconducting state in disordered systems
[17]. It has also been applied to study periodic systems such
as the checkerboard Hubbard model [18]. The calculation
determines the pairing order parameter �i for each site self-
consistently as follows: an initial ansatz is made for the
BdG Hamiltonian using randomly chosen values for the OPs
�

(0)
i . The Hamiltonian is diagonalized numerically to find the

eigenvalues Eζ and corresponding eigenvectors {uζ , vζ }. New
values of �i are computed using the expression

�
(1)
i = Vi

∑
ζ

v∗
iζ uiζ [1 − 2 f (Eζ , T )], (6)

where f (Eζ , T ) is the Fermi-Dirac distribution. These �
(1)
i

are injected back into the BdG Hamiltonian, and the calcula-
tion is iterated until convergence is reached. The calculations
have been done under a fixed bandwidth condition; that is,
we vary the hopping ratio r while keeping the bandwidth
W = 2(t1 + t2) = 4t constant. Results are reported in units of
t , the average hopping amplitude.

In Fig. 1 we illustrate the local OP distribution for different
band fillings in a 20 × 20 lattice subjected to OBCs, with
r = 0.1 and V = 1. Note that in all the open systems consid-
ered, all four edges are taken to be weak edges. Defining the
total filling 〈n〉 = 1

Nsites

∑
i 〈c†

i ci〉, Fig. 1(a) correspond to the

(a) (c)(b)

FIG. 3. Plots of the LDOS of corner, edge, and bulk sites for
different band fillings. The parameters used are r = 0.1 and V = 1.

edge band being half-filled or the system being quarter-filled
(〈n〉 = 0.25, μ = 1.90t). Here, the OP is largest on the edges
and decays exponentially into the interior, as we will show
later. In Fig. 1(b), the central bulk band is partially filled
(〈n〉 = 0.362, μ = 0.19t). The OP is accordingly largest in
the bulk of the sample. In Fig. 1(c), the system is at half
filling (〈n〉 = 0.5, μ = 0). Here, the OP is strongest on the
four corner sites, followed by the bulk, while the edges have
negligibly small OP. The local densities of states (LDOSs) for
these three band fillings on the corner, edge, and bulk sites
are shown in Fig. 3. These plots rationalize the site-dependent
superconductivity pattern. The gap in the LDOS is seen only
at the edge sites in Fig. 3(a), the bulk sites in Fig. 3(b), and
both corner and bulk sites in Fig. 3(c). The most interesting
situations, corresponding to the cases in Figs. 3(a) and 3(c),
are discussed below.

1. Chemical potential at the band center (half filling)

In Fig. 4, we plot T = 0 order parameters as a function of
V for several values of the hopping ratio r. The system sizes
are large enough that the results have converged, and the error
bars are smaller than the size of the symbols used in the plots.
Figure 4(a) shows the quantity �bulk defined as the value of
the OP at one of the four equivalent central sites of the sample.
For comparison, we also show values of the order parameter
computed for PBCs �, which, of course, is independent of
the position. At half filling, we note that, as the hopping ratio
r increases from 0 to 1, �bulk decreases. Figure 4(b) shows

(a) (b)

FIG. 4. Plots of the T = 0 order parameters versus V with fitting
curves. (a) � for PBC (upward triangles with dashed line) and �bulk

for OBC (downward triangles with solid line); (b) �corner for OBC
(circles with solid line). Points indicate numerical results, and the
solid lines are fits to the analytical expressions (see text).

104507-3



WANG, RAI, HAAS, AND JAGANNATHAN PHYSICAL REVIEW B 107, 104507 (2023)

TABLE I. Values of fitting parameters for zero-temperature cor-
ner site order parameters �corner (0) fit to the function f (V ) for
different r.

r

0.0 0.1 0.5 0.9 1.0

�corner (0)
c1 0.44 0.44 0.32 0.04 0
c2 0 0.02 4.96 23.32 26.27
c3 0 8.33 28.96 34.40 34.27

�corner defined as the value of the order parameter at one of
the four (equivalent) corner sites. Figure 4 shows that, when
r = 0, all of the order parameters are proportional to V . This
is due to the form of the density of states, which is sharply
peaked around E = 0, as explained in Sec. IV. In contrast,
for r approaching 1, the order parameters vary as exp−√

cst/V ,
as obtained for the half-filled square lattice [19]. This type of
scaling with V is expected when the Fermi level is located at
a logarithmic Van Hove singularity [20,21]. For intermediate
values of r the corner OP is well fitted by an extrapolation
between the linear and exponential terms as follows:

f (V ) = c1V + c2 exp−√
c3/V . (7)

Values of the fitted constants are given in Table I for each
of the OPs. Note that c2 vanishes when r → 0, so that the
variation is purely linear in V in this limit, while for r = 1,
the linear term vanishes. These behaviors will be explained in
Sec. IV.

2. Chemical potential in the edge band

When the chemical potential lies within the edge band (i.e.,
just above 1

4 filling), a superconducting gap is opened in the
edge band, as can be seen in Fig. 3(a). The spatial dependence
of the order parameter is governed by the spatial properties
of the 1D SSH edge modes, which are well known. One
thus observes, in addition to the two-sublattice structure, an
exponential decay of the order parameter as a function of the
distance from the edge. Figure 5(a) presents a log-linear plot

(a) (b)

FIG. 5. (a) Plot of the log of the local order parameter ln(�i )
versus distance to the edge under V = 1 and r = 0.25, showing the
exponential decay and the odd-even oscillation (see text). (b) Plot of
localization length ξ as a function of 1/| ln r|. The points show the
values of ξ for different ratios of r, while the line shows the expected
theoretical dependence. r = 0.1, 0.15, 0.2, 0.25, 0.3, 0.333 from left
to right.

FIG. 6. PBC critical temperatures plotted vs V for ratio values of
0.0, 0.1, 0.5, 0.9, and 1.0.

of the local order parameter �i versus the distance from the
edge. Figure 5(b) shows the values of the fitted localization
length ξ (points) of the exponential decay of �i as a function
of the hopping ratio r, along with the expected dependence
given by ξ = a/| ln(r)| (line). We define �edge as the local
order parameter of one of the two equivalent sites at the center
of one of the four equivalent edges. Finally, �edge has the
standard BCS dependence on V , namely, �edge ∼ exp−cst/V .

B. Finite-temperature results

Figure 6 shows results for the critical temperature of the
periodic model at half filling Tc,PBC plotted against V for
different choices of the hopping ratio. Lines are fits to the data
using the form exp−√

cst/V .
For OBCs and a range of r values, we find distinct transi-

tion temperatures for the bulk and corner OPs. This kind of
two-step transition with corner (or surface) superconductivity
followed by bulk superconductivity can be found more gen-
erally in systems with boundary surface states, as shown in
[22–24]. The temperature dependence of the order parameter
at bulk and corner sites, as well as for PBCs, is shown in Fig. 7
for r = 0.5 and V = 1. Figure 7 shows that the corner and

FIG. 7. Inset: T dependence of �corner and �bulk for OBC and
of � for the r = 0.5 and V = 1 lattice. The main plot shows �bulk

versus T . The low-temperature region T < Tc,PBC is shaded gray, and
the tail of the bulk OP has been fitted to the expression given in the
text.
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bulk sites have different transition temperatures. The bulk OP,
which is expected to go to zero at the bulk transition temper-
ature Tc,PBC, actually shows a nonzero tail above this critical
temperature. This tail arises from a proximity effect due to the
corner site where the OP is still nonzero, and it accordingly
vanishes when T = Tc,corner. One expects that the tail should
be proportional to the corner OP and should also depend on R,
the distance of the midpoint from the corner as e−R/λ(T ). Here,
λ(T ) is the correlation length. Close to the bulk transition the
correlation length should vary as λ(T ) = A/

√
T − Tc,PBC in

mean-field theory. In this formula the prefactor A depends on
the hopping ratio, increasing monotonically as r → 1. Indeed,
as shown in Fig. 7, the tail is well fitted by this form. The tail is
clearly visible only within a range of r values. For very small
hopping ratios, the correlation length λ(T ) is too short for the
tail to be observable. For larger r ∼ 1, the correlation length is
large, and corner and bulk critical temperatures are very close,
so that no tail is observed.

IV. THEORETICAL ANALYSIS

A. Calculation for periodic boundary conditions

We begin by considering a translationally invariant 2D
SSH square of side L with N = (L/2a)2 unit cells, subject to
periodic boundary conditions. Due to the lattice symmetries,
all sites have the same order parameter, �i = �. We outline
the gap equation that is obeyed in the particle-hole-symmetric
half-filled lattice, μ = 0. We will consider the weak-coupling
limit and small V and define the expectation values b�k by

b(n)
�k = 〈

η
(n)
�k↓ η

(n)

−�k↑
〉
, (8)

with all other expectation values of two annihilation operators
assumed to vanish by the symmetries of the problem. η

(n)
�kσ

are
eigenmodes in Fourier representation. The order parameter
� can be written in terms of a sum over bands using the
transformation to the diagonal basis. One has � = ∑

n �(n),
where

�(n) = V

4N

∑
�k

b(n)
�k . (9)

One can additionally simplify by assuming that only the two
central bands contribute and fix the band index at n = 2 (it
suffices to keep only one of the two central bands in the sums
over �k by virtue of their symmetry under the exchange of kx

and ky). The BdG equations for different �k decouple, giving
rise to 2 × 2 matrices of the form

H�k =
(

ε2D(�k) �

� −ε2D(�k)

)
, (10)

where ε2D(�k) is given by Eq. (2). Diagonalization yields

quasiparticle energies of the form E (�k) =
√

ε2
2D(�k) + �2. As

in the standard case, the gap equation is obtained from the
self-consistency condition, which reads

�(T ) = V

2

∫
dε ρ(ε)

�(T )

E
th(βE/2), (11)

where β = 1/kBT is the inverse temperature and ε = ε2D is
the single-particle energy. This gap equation predicts that, for

fixed V , the order parameter �(0) decreases as a function of
r. In particular, for small r, perturbative expansion predicts a
decrease of the OP proportional to r2. This is, indeed, seen in
Fig. 4.

In the limit r → 0, the gap equation can be solved to obtain
the T = 0 order parameter �(0) as a function of V . As the
width of the central band tends to zero, the DOS can be
approximately replaced by a delta function Aδ(E ), where A ≈
0.5 is the fraction of states lying within this band (neglect-
ing correction of the order of 1/L). The gap equation yields
�(0) ∼ V . The critical temperature can be determined from
the gap equation from the requirement that �(Tc) = 0. In the
limit of small r, Tc scales similarly to the OP, that is, Tc ∝ V .

For nonzero r the integral in Eq. (11) is determined by
the logarithmic Van Hove singularity at E = 0. Instead of
the standard BCS form, Tc ∝ exp−1/N0V , that is expected for
a regular density of states (where N0 is the DOS at the Fermi
level), the critical temperature here has a V dependence given
by Tc ∼ exp−√

cst/V [20,21]. These behaviors are confirmed by
the numerical calculations, as shown in Fig. 6.

B. Calculation for open boundary conditions

Consider an open square sample of side L with two weak
edges which meet at the corner situated at the origin. Thus,
two perpendicular sets of 1D edge modes and one zero-
dimensional corner mode are present, in addition to the bulk
modes. The extension to situations with more than one corner
mode is straightforward. To simplify the analyses, we will
assume that the sample is large so that the number of bulk
modes is much larger than the number of edge modes, which
is smaller by a factor of 1/

√
N . For convenience, we assign

site index O to the corner site on the top left, site index B to
the site in the middle of the 2D sample, and site index E to the
central site of one of the two equivalent weak edges (the upper
edge and the left edge). We will consider the superconducting
OP at three specific locations as follows:

(i) For the corner site OP (site index i = O), �corner =
V 〈cO↓cO↑〉.

(ii) For the OP at the bulk site(s) of the sample (site index
i = B), �bulk = V 〈cB↓cB↑〉.

(iii) For the OP for a site at the midpoint(s) of a weak edge
(site index i = E ), �edge = V 〈cE↓cE↑〉.

Let εν be the eigenvalues of the noninteracting Hamil-
tonian (1) and {ην} be the eigenmodes. We will suppose
that they are ordered such that the first index ν = 1 denotes
the corner mode, followed by the edge modes denoted by
ν = 2, . . . , 2L − 1, and, finally, the 2D bulk modes (ν =
2L, . . . , L2). By diagonalization one obtains the transforma-
tion U which relates one from the real-space basis set {ci} to
the expansion in a new basis {ην}, i.e.,

c j =
∑

ν

Uiνην, ην =
∑

i

U −1
νi ci, (12)

where U −1 = U T , with the matrix U being real. The absence
of translational symmetry makes it difficult to solve the cou-
pled gap equations for OBCs. However, with simplifications,
some limiting cases are solvable, as shown below.
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1. System at half filling

In terms of the U transformation matrix, one can write the
order parameter for the midpoint at T = 0, �bulk, as follows:

�bulk = V
∑

ν∈bulk

U 2
Bνbνν, (13)

where contributions of expectation values bμν = 〈ημ↓ην↑〉 for
μ �= ν are neglected. In the small-r limit, the corner mode
contribution and edge mode contributions can be dropped—
the former decays very fast and therefore is zero in the center
of the sample, and the latter is very small because the edge
band is far from the Fermi level. One has then

�bulk ≈ V

4N

∑
ν∈bulk

bνν, (14)

where the sum is over the bulk modes ν � 2L. In the equa-
tion above, we have simplified by replacing the coefficients
U 2

Mμ by their average value U
2 = 1/4N . To compute bμμ,

we assume that the interaction term can be decomposed into
2 × 2 blocks Hν in the space {cν↓, c†

ν↑}, as in the periodic case.
In the case of bulk modes, the energies εν are essentially the
same as the energies ε2D in Eq. (2). As a result, one obtains the
same gap equation as in Eq. (11). In conclusion, �bulk ≈ �,
and the bulk OP is essentially the same as the order parameter
found for PBCs.

One can proceed in a similar way for the corner site OP
�corner. One finds

�corner = VU 2
11b11 + V

∑
ν∈bulk

U 2
Oνbνν + · · ·

≈ a1V + a2�, (15)

where the numerical index of the corner site is 1 and �

represents the bulk OP given by Eq. (11). In the second line,
the coefficients U 2

Oν have been replaced by their average value,
written as a2/N , with a2 < 1 being a constant of the order of 1.
In addition, we used the result of the BdG Hamiltonian for the
η0 mode, which gives b11 = 1. The constant a1 = U 2

11. Both
the coefficients a1 and a2 depend on the hopping ratio.

When r → 0, a1 → 1
4 , and a2 → 0. Then �corner = V/4.

Similarly, in this limit, the critical temperature for the transi-
tion at the corner can be shown to scale as Tc,corner ∼ V .

When r ∼ 1, all coefficients of the U matrix are of the
same order of magnitude, O(1/

√
N ). In this case, bulk modes

contribute to leading order to all �i, while the corner and edge
modes can be neglected. This results in bulk OP and corner
OP of the same order of magnitude, and both are similar to
� computed for the periodic case. This explains the results
shown in Fig. 4 for the corner and bulk order parameters as a
function of V for different hopping ratios r.

2. Chemical potential in an edge band

When the Fermi level lies within an edge band, the su-
perconducting gap opens within this band. The edge mode
contributions are the most important, and the OP is the largest
on the edges. Writing out the expansion of �edge, one has

�edge = V
∑

ν∈edge

U 2
Eν〈cν↓cν↑〉 + · · · , (16)

where i is the index of the midpoint of a weak edge and
the sum runs over the indices μ = 2, 2L − 1. As before, we
approximate the coefficients U 2

Eν by their average values. The
equation can then be simplified to give the self-consistent
equation for this OP at T = 0 as follows:

�edge ≈ V

4
√

N

∑
ν

�edge√
(εν − uHFν − μ)2 + �2

edge

. (17)

In this expression, for small r the single-particle energies εν

are essentially the one-dimensional energies ε1D written in
Eq. (2). Qualitatively, the above equation predicts that when
the chemical potential lies within this band, the solution for
the OP is expected to have the usual BCS form [25]. The
numerical results described in Sec. III are in good accord with
the analysis given here.

V. CONCLUSIONS

We have presented a detailed study of the inhomogeneous
superconducting states found in the 2D extension of the Su-
Schrieffer-Heeger model. We have focused on topologically
nontrivial finite systems, where edge modes give rise to corner
and edge superconducting phases. The present model is of
particular interest since it provides an analytically tractable
example which can be solved in real space. We have discussed
the band structure of the noninteracting model and solutions
in some simple limits for the interacting model treated in
Bogoliubov–de Gennes mean-field theory. Numerical solu-
tions have been obtained for the full range of hopping ratio
t1/t2. Depending on the hopping ratio and the band filling,
we showed that the critical temperatures for these transitions
scale in different ways with the Hubbard interaction V . The
dependence can be linear or vary as an exponential square root
or follow the standard BCS form.

We have obtained the phase diagram of the superconduct-
ing phase and shown that an interesting mixed phase can occur
above the bulk transition temperature Tc, in which the bulk can
have a nonzero superconducting order induced by a proximity
effect from the corners.

An interesting direction for future work consists of ex-
tending the length of the unit cell of the 1D chains used in
defining the 2D model. One can get edge and corner modes
in 2D systems by considering chains of period 3, following a
{t1t2t1} sequence in the x and y directions. This is a member
of a set of finite sequences which in the infinite limit give
rise to the Fibonacci quasicrystal, known to host topologi-
cal edge modes [26,27]. It is not difficult to generalize our
model to three dimensions by taking a direct product of three
orthogonal SSH chains, in which case, vertex edge, surface,
and bulk modes should appear. Variants of the 2D SSH model
in the presence of next-nearest-neighbor hoppings were re-
cently considered experimentally [28–30] and theoretically
[6,31]. As we discuss in the Appendix B, this term, when
small enough, does not result in qualitative changes in the
above findings.

The s-wave superconducting phases we considered here
are topologically trivial. Introducing gauge fields or spin-orbit
interactions are some means to induce topologically non-
trivial superconducting phases, as in [32]. Adding spin-orbit
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FIG. 8. (a) Band structure of the periodic 2D SSH model on
a square lattice. Here, the high-symmetry points are M( π

2a , π

2a ),
X ( π

2a , 0.0), and �(0.0, 0.0). (b) Band structure of the SSH model
on a ribbon with periodic boundary conditions in one direction and
open boundaries in the other direction. Here, the path in momentum
space is one-dimensional, and the high-symmetry points are �(0.0)
and M( π

2a ). We use r = 0.25.

interactions should lead to new interesting edge phenomena
and competition between order parameters of different pair-
ing symmetries close to the edges, as discussed in [33]. A
recent paper introduced a route towards a 2D topological
superconductivity starting from SSH chains [34]. In this work,
however, boundary phenomena were not discussed, and it
would be interesting to study their model predictions for fi-
nite samples. Last, but not least, Floquet topological systems
such as those discussed in [35,36] constitute another class of
systems likely to host interesting edge and corner supercon-
ducting states.

Future work will involve going beyond mean-field the-
ory to investigate the stability of the low-dimensional phases
described in this work. It will be interesting to see how the re-
sults are modified when fluctuations are included. It would be
an interesting experimental challenge to realize edge and cor-
ner superconductivity. Two-dimensional SSH lattices could be
realized by the bottom-up assembly of atoms, a method which
has been used to fabricate “designer” structures, as described
in [37]. Obtaining a 2D SSH lattice in the noninteracting limit
should be possible, with the attractive Hubbard Hamiltonian
being harder to obtain. If such a system is realized, electronic
properties of the edge and corner superconducting phases
could be probed by scanning tunneling spectroscopy.

FIG. 9. (a) Illustration of the 2D SSH model, including intracel-
lular next-nearest-neighbor hoppings. t1 is represented by the thin
blue bonds, whereas t2 is depicted by the thick green bonds. The
intracellular next-nearest-neighbor (NNN) hopping tNNN is repre-
sented by the orange bonds. (b) Band structure of the periodic 2D
SSH model with NNN hoppings. Here, the high-symmetry points
are M( π

2a , π

2a ), X ( π

2a , 0.0), and �(0.0, 0.0). (c) Band structure of the
2D SSH model on a ribbon structure with NNN hopping. Here, we
used t1 = 0.4, t2 = 1.6, and tNNN = 0.2.
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APPENDIX A: MODEL ANALYSIS IN MOMENTUM SPACE

In each unit cell of the periodic lattice, we label the top left,
top right, bottom left, and bottom right sites with a numerical
index starting from 1. In momentum space, the noninteracting
4 × 4 matrix Hmomentum is given by

Hmomentum =

⎛
⎜⎜⎝

0 α(kx ) β(ky) 0
α∗(kx ) 0 0 β(ky)
β∗(ky) 0 0 α(kx )

0 β∗(ky) α∗(kx ) 0

⎞
⎟⎟⎠. (A1)

Here, the matrix elements are

α(kx ) = H12 = H34 = t1eikxa + t2e−ikxa, (A2)

β(ky) = H13 = H24 = t1eikya + t2e−ikya. (A3)

In Fig. 8(a), the two orange dispersion curves correspond
to the central bulk band in Fig. 2, whereas the blue disper-
sion curves belong to the two lateral bulk bands. When open
boundary conditions are applied in one direction, as shown

in Fig. 8(b), two additional edge bands emerge, which are
represented by the two green curves in Fig. 8. Furthermore,
the flat purple band at energy 0 stems from the corner sites.

APPENDIX B: EFFECTS OF INTRACELLULAR
NEXT-NEAREST-NEIGHBOR HOPPING

In order to make a comparison with recent experimental
and theoretical work on related systems that include longer-
range hopping [6,28–31], here, we consider the effects of two
additional intracellular next-nearest-neighbor hopping matrix
elements tNNN. Comparing the band structures of the lattices
in Figs. 8(a) and 9(b), the only qualitative difference is an
asymmetry with respect to the dispersions of the top and
bottom curves because next-nearest-neighbor hopping breaks
the chiral symmetry and the particle-hole symmetry is lost.
Furthermore, in Figs. 8(b) and 9(c), the two green edge bands
and purple near-flat corner band still exist when introducing
tNNN. These features remain the same also when the two
diagonal tNNN’s are not equal to each other.
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