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Anisotropic differential conductance of a mixed-parity superconductor/ferromagnet structure
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We study the electronic transport properties of a superconductor (S) with a mixed s+p-wave pairing attached to
a ferromagnetic metal (F) and a normal electrode (N) in an SFN configuration. Using the quasiclassical Green’s
function method, we compute the differential conductance σ of the junction and demonstrate its dependence on
the direction of the exchange field relative to the direction of the d-vector of the pair potential. If the p-wave triplet
dominates the pairing, the zero bias conductance depends on the relative direction between the triplet d-vector
and the exchange field. In contrast, if the s-wave singlet dominates the pairing, the zero bias conductance is
isotropic with respect to the field direction. Furthermore, at zero temperature, the zero bias conductance height
can only take two values as a function of r, the parameter quantifying the relative amount of s- and p-wave
pairing, with an abrupt change at r = 1 when the superconductor goes from a singlet to triplet dominated ground
state. Moreover, we show that the relative amount of s- and p-wave pairing can be estimated from the dependence
of the finite bias conductance on the exchange field direction. Our results provide a way to characterize parity-
mixed superconductors performing electrical measurements.
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I. INTRODUCTION

Among the various types of unconventional supercon-
ductors, much attention has been paid to the study of
superconductors with triplet correlations [1–8]. These cor-
relations can be induced either via the proximity effect by
combining superconductors with other materials [6,7] or they
may exist in bulk superconductivity, for example, in uranium-
based ferromagnetic superconductors [9–14].

Most works focus on superconductors which have in-
version symmetry, that is, in which the parity of the pair
potential is either even or odd. However, in the past few
decades, superconductors have been discovered whose un-
derlying crystal structure lacks inversion symmetry [15–27].
In such superconductors, parity-mixed superconductivity may
arise [15]. Noncentrosymmetric superconductors have inter-
esting applications, for example, they are very suitable for
superconducting diodes due to the inversion-symmetry break-
ing [28,29].

An important issue is the determination of the pair po-
tential. There have been many efforts to explore restrictions
on the possible pair potentials and to predict properties
of inversion-symmetry broken superconductors [15,30–40].
Still, in general, it is difficult to determine the type of uncon-
ventional pairing. Examples of efforts include using nuclear
magnetic resonance (NMR) [9,41–44] or measuring the crit-
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ical field for different directions of an applied magnetic field
[12,45,46], to identify spin-triplet pairing. The s+p-wave pair-
ing is predicted to be, under certain conditions, the most
stable pairing, for example, in CePt3Si [36]. There are also
theoretical suggestions to explore the proximity effect of un-
conventional superconductors on normal materials [47–52].
However, for many materials, the results are not conclusive.

In this work, we explore nonequilibrium electronic trans-
port through a superconductor/ferromagnet/normal metal
(SFN) junction to reveal properties of the parity-mixed pair
potential. We focus on the simplest type of a parity-mixed
pair potential, the s+p-wave superconductor, with a helical
p-wave pairing. We calculate the differential conductance σ of
the two-dimensional junction shown in Fig. 1 and investigate
the dependence of σ on both the amplitude and direction of
the intrinsic exchange field of the F metal. We first focus on
the zero bias conductance. It shows a peak when the triplet
component of the pair potential �t is larger than the singlet
component �s. We find that the height of the zero bias con-
ductance peak (ZBCP) remains unchanged for exchange fields
that are perpendicular to the direction of transport. In con-
trast, when the exchange field is parallel to the d-vector, the
differential conductance peak shifts to finite voltages and the
zero bias conductance is suppressed. Thus, for large exchange
fields, only a broad domelike shape remains. The zero bias
conductance varies monotonically as a function of the angle
between the d-vector and exchange field.

We also show that the angular dependence of the dif-
ferential conductance for nonzero voltages can be used to
determine the mixing parameter, the relative strength of
the singlet and triplet components of the pair potential. If
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FIG. 1. A schematic of the SFN junction. The superconductor
is a s+p mixed-parity superconductor. A voltage is applied to the
normal metal electrode (N) to drive currents through the junction.
The differential conductance is calculated as function of the direction
of the exchange field �h in the ferromagnetic bar (F).

�s > �t , a long junction with ETh < �0 can be used for this
purpose. Here, ETh = D/L2 is the Thouless energy, L and
D are the length and diffusion coefficient of the the F link,
respectively, and �0 is the amplitude of the gap. If �t > �s,
a short junction with ETh ∼ �0 is more suitable for the deter-
mination of the mixing parameter. We also find that at T = 0,
the exchange field dependence of the zero bias conductance in
both the long and short junctions is independent of the exact
ratio between �s and �t ; it is fully determined by whether
the singlet component or the triplet component is dominant.
Thus, with the proposed setup, the pair potential of an s+p-
wave superconductor can be fully characterized by electrical
measurements.

The work is organized as follows. In Sec. II, we introduce
the equations used to describe the system and the boundary
conditions at the interfaces between different materials. In
Sec. III, we present our results for the differential conduc-
tance. We also show how the differential conductance can be
used to reveal the mixing parameter between the singlet and
triplet amplitudes. Section IV is devoted to a discussion of the
results and an outlook. Throughout the paper, we work in units
with h̄ = kB = 1.

II. THE MODEL

We consider a ferromagnetic metal of mesoscopic dimen-
sions attached to an s+p-wave superconductor on the left and
a normal electrode on the right; see Fig. 1. The S electrode
induces superconducting correlations into the F layer via the
superconducting proximity effect. We assume that the pair
potential has the form

�̂ = �s + �t �d · �σ , (1)

where �s is the isotropic singlet component, independent of
the momentum direction on the Fermi surface. �t and the unit
vector �d describe the amplitude and direction of the p-wave
triplet component [4,5], respectively. Here, �σ is the vector of
Pauli matrices in spin space.

Two important examples of p-wave pairing are chiral p-
wave pairing, for example, �d (φ) = eiφ�a, and helical p-wave
pairing, with �d (φ) = cos φ�a + sin φ�b, where �a, �b are orthog-
onal unit vectors. Here, φ is the angle with respect to a
chosen axis. We choose this axis to be along the interface nor-
mal. Both chiral and helical superconductors are topological

superconductors [53]. The former breaks time-reversal sym-
metry and has chiral edge states [2,54]; the latter preserves
time-reversal symmetry and has so-called helical edge states
[55–58].

To describe the spectral and transport properties of the
junction, we use the quasiclassical Green’s function (GF)
formalism extended to spin-dependent fields [7,59,60]. In this
case, the GF Ḡ(r, E ) is an 8 × 8 matrix in Keldysh-Nambu-

spin space, Ḡ = [ǦR ǦK

0 ǦA]. In this notation, we represent
matrices in Keldysh-Nambu-spin space with a bar (·̄), matrices
in Nambu-spin space with a check (·̌) accent, and matrices
in spin space with a hat (·̂). Multiplication between matrices
in different spaces is done via the Kronecker product. In the
dirty limit, the Green’s function Ḡ is determined by a diffusion
equation known as the Usadel equation [61]:

D∇ · (Ḡ∇Ḡ) + i[(E + �h · �σ )τ3, Ḡ] = 0, (2)

where D is the diffusion constant, E is the energy, �h is the ex-
change field, τ3 is the third Pauli matrix in particle-hole space,
and �σ is the vector of Pauli matrices in spin space. The Usadel
equation (2) together with the normalization condition Ḡ2 = 1̄
and the boundary conditions determine the quasiclassical GF.

The current I and the differential conductance of the sys-
tem σ can be calculated from the quasiclassical GF using the
following expressions [59]:

I = σN

16e

∫ ∞

−∞
dETr{τ3(Ḡ∇Ḡ)K}, (3)

σ = ∂I

∂V
, (4)

where σN is the normal state conductance, V is the voltage
applied to the normal metal, and e is the electron charge.

In order to solve the Usadel equation (2) in the F region,
one needs boundary conditions describing both interfaces. We
assume that the S and N electrodes are not affected by the
constriction F, and keep their bulk properties, that is, they are
treated as reservoirs. At the F/N interface, we use the well-
known Kupriyanov-Lukichev boundary condition [62], which
is written as

Ḡ∇Ḡ(x = L) = 1

γBN L
[Ḡ(x = L), ḠN ]. (5)

Here. ḠN is the bulk normal metal GF, that is, ǦR
N = τ3. and its

distribution function is the Fermi-Dirac distribution function.
The transparency of the junction is parameterized by γBN ,
which is proportional to the interface resistance. In the case
of a perfectly transparent interface, γBN → 0 and Eq. (5) is
equivalent to the continuity of Ḡ at this interface, that is,
Ḡ(x = L) = ḠN .

At the S/F interface, we use the Tanaka-Nazarov bound-
ary conditions [63,64]. These boundary conditions are the
extension to unconventional superconductor junctions of the
Nazarov boundary conditions [65], which itself are a gener-
alization of the Kupriyanov-Luckichev boundary conditions.
The odd-parity correlations in the superconductor induce
odd-frequency even-parity correlations in the dirty normal
metal. Here we use a form of the Tanaka-Nazarov boundary
conditions [66] suited towards s+p-wave superconductors.
Defining φ as the injection angle with respect to the interface
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normal vector, the boundary condition reads

Ḡ∇Ḡ(x = 0) = 1

γBSL
〈S̄(φ)〉, (6)

where

S̄(φ) = T̃ [1 + T 2
1 + T1(C̄Ḡ + ḠC̄)]−1(C̄Ḡ − ḠC̄), (7)

C̄ = H̄−1
+ (1̄ − H̄−), (8)

H̄+ = 1

2
[ḠS (φ) + ḠS (π − φ)], (9)

H̄− = 1

2
[ḠS (φ) − ḠS (π − φ)]. (10)

Here we use the notation 〈·〉 to denote angular averaging over
all modes that pass through the interface, γBS = RB/Rd is the
ratio of the boundary resistance to the resistivity of the F
bar in the absence of a proximity effect, T1 = T̃ /(2 − T̃ +
2
√

1 − T̃ ), and T̃ is the interface transparency given by

T̃ (φ) = cos2 φ

cos2 φ + z2
, (11)

where z is the Blonder-Tinkham-Klapwijk parameter [67],
characterizing the strength of the barrier. It is assumed that
the Fermi surface mismatch is negligible, that is, that the
magnitude of the Fermi momentum is of similar magnitude
in the superconductor and ferromagnet. If z = 0, there is no
barrier. In that case, the junction is highly transparent and
there is no reflection for any mode. On the other hand, if
z is large, the barrier is strong and the boundary has a low
transparency.

In Eqs. (9) and (10), ḠS (φ) is the Green’s function of
the superconductor. We assume that this electrode is large so
that it can be treated as a reservoir. In that case, ḠS is the
Green’s function of a bulk BCS-like superconductor with a
pair potential given by Eq. (1),

ḠS (φ) = 1

2
(1 + �d · �σ )

1√
E2 − �2+

[
E �+

−�+ −E

]

+ 1

2
(1 − �d · �σ )

1√
E2 − �2−

[
E �−

−�− −E

]
. (12)

We parameterized the pair potentials as

�̂(φ) = �0

[
1√

r2 + 1
+ r√

r2 + 1
�d (φ) · �σ

]
, (13)

where �0 is the energy scale of the superconducting potential,
r = �t

�s
is the mixing parameter, and �d (φ) is the orientation

of the angular-dependent d-vector. The matrix pair potential,
given by Eq. (13), has two eigenvalues, which are both inde-
pendent of φ, given by

�± = �0
1 ± r√
r2 + 1

. (14)

In the dirty limit, only triplet components with d-vector par-
allel to 〈 �d〉 are induced by the superconductor due to angular
averaging [52]. This can be understood as follows: because of

the high rate of scattering, the contributions of all modes are
mixed and thus only the angular average remains.

Here we focus on a helical p-wave superconductor with
�d (φ) = (cos φ, sin φ, 0). We have also checked that in the
chiral case, similar results hold. For the helical pair potential,
〈 �d〉 points in the x direction, that is, in the same direction
as the direction of the current. Since the Usadel equation is
unaltered by a change of spin basis, our results are equally
valid for any other pair potential with a d-vector of the form
�d (φ) = cos φ�a + sin φ�b, where �a, �b are orthogonal unit vec-
tors. Since there is no orbital effect, the results only depend
on the angle between 〈 �d〉 and �h, and not on the angle between
�h and the direction of current.

The solution of the retarded part of Eq. (2) provides infor-
mation about the spectral properties. For the computation of
σ , one also needs to obtain the Keldysh component of the GF.
From the normalization condition, the Keldysh component
can be written as ǦK = ǦR f̌ − f̌ ǦA, where f̌ is the distri-
bution function and is given by

f̌ = fL + fT τ3 +
3∑

i=1

( fTi + fLiτ3)σi, (15)

and satisfies the following equation:

D∇ · (∇ f̌ − GR∇ǦA) = ǦR[τ3�h · �σ , f̌ ] − [τ3�h · �σ , f̌ ]ǦA.

(16)
Here, fL, fT , fTi, and fLi are the longitudinal, transversal, spin
transversal, and spin longitudinal distribution functions, re-
spectively. In the electrodes, one assumes that the system is in

equilibrium such that fL,T (E ) = 1
2 ( tanh E+eV

2T ± tanh E−eV
2T ),

fL,Ti = 0 for i = 1, 2, 3 [59], where T is the temperature
of the corresponding electrode. Unless specified otherwise,
calculations are done for T = 0.

In the following section, we show the results obtained by
numerically solving the Usadel equation (2), together with the
boundary conditions given by Eqs. (5) and (6) in the SFN
configuration. From the knowledge of the GF, we calculate
the differential conductance given by Eqs. (3) and (4).

III. DIFFERENTIAL CONDUCTANCE OF THE SFN
JUNCTION

In this section, we study the differential conductance for
different magnitudes and directions of the exchange field, and
for two superconducting regimes: the s-wave dominated or
p-wave dominated cases, corresponding to r < 1 and r > 1,
respectively.

We first focus on the spectral properties of the F layer. The
superconducting correlations in F, induced by the proximity
effect, have the general matrix form

F̂ = F01̂ + Fh �m · �σ + Fd �d⊥ · �σ , (17)

where F0 is the singlet component, whereas the other two are
triplet components, either induced by the exchange field in F
or by the proximity effect. In the equation above, �m is a unit
vector pointing in the direction of the exchange field and �d⊥
is a unit vector in the direction of 〈 �d〉 − (〈 �d〉 · �m) �m. If 〈 �d〉 and
�m are parallel, this term is absent.
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FIG. 2. The differential conductance in the SFN junction for (a) singlet dominant (r = 0.5) pair potential and (b) triplet dominant (r = 2)
pair potential and different orientations of the exchange field h = 5�0. For both panels, L/ξ = 10, γBS = 2, and z = 0.75 are used. If the
exchange field is parallel to the average d-vector, the zero bias conductance peak (ZBCP) for triplet dominant pair potentials (r > 1) is highly
suppressed, whereas this is not the case if the exchange field is perpendicular to the d-vector.

It is instructive to linearize the Usadel equation assuming a
weak proximity effect. In this case, the pair amplitudes obey
the following linear differential equations:

D∇2(F0 ± Fh) = 2i(E ± h)(F0 ± Fh), (18)

D∇2Fd = 2iEFd . (19)

The first equation reflects the singlet - (short-range) triplet
conversion via the exchange field known in ferromagnets
[68]. According to Eq. (18), F0 ± Fh decay over the magnetic

length ξF =
√

D
2|E±h| . In contrast, according to Eq. (19), the

triplet component orthogonal to the local exchange field, Fd ,

decays over the thermal length ξE =
√

D
2E . In other words,

if the exchange field and the d-vector are parallel, only F0

and Fh are nonzero, but, if �h and 〈 �d〉 are perpendicular, Fd

is nonzero and there are long-range triplet correlations, as

shown in Appendix A. Thus, for large enough exchange field
or long enough junctions, specifically if h is much larger than
the Thouless energy ETh = D/L2, Fd dominates the proximity
effect and hence the subgap transport of the junction.

We now go beyond the linearized case and numerically
compute the differential conductance of the SFN junction. We
choose the following interface parameters [see Eqs. (6)–(11)]:
γBS = 2, z = 0.75, and we assume a perfect contact at the
FN interface at x = L, that is, γBN = 0 in Eq. (5). First we
assume a long junction with ( L

ξ
)2 = 100, where ξ = D

2�0
. The

direction and amplitude of the exchange field are varied. It
is convenient to use the so-called Riccati parameterization
[69]. The Riccati parametrization and resulting equations are
discussed in Appendix B 1. The solution method for the dis-
tribution functions is discussed in Appendix B 2.

The results for �h ‖ 〈 �d〉 and �h ⊥ 〈 �d〉 are shown in Fig. 2 for
different values of the mixing parameter r.

FIG. 3. σ (V ) curves for different values of the exchange field, for the triplet dominant case r = 2 for (a) perpendicular and (b) parallel
exchange fields. In both panels, we choose L/ξ = 10, γBS = 2, and z = 0.75.
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FIG. 4. σ (V ) curves for different orientations of the exchange field, and (a) h = 0.1�0 and (b) h = 2.5�0. For both panels, r = 2,
L/ξ = 10, γBS = 2, and z = 0.75 are used.

There is a clear difference between the s-wave dominated
and p-wave dominated pair potential junction. In the s-wave
dominated case, shown in Fig. 2(a), there is no ZBCP and the
dependence of the differential conductance on the direction
of the exchange field is weak. In the p-wave dominated case,
shown in Fig. 2(b), there is a ZBCP, with both a domelike
peak and a sharp peak. The domelike peak has a width of the
order of �0 and it arises due to surface Andreev bound states
(SABS) [70,71]. On the other hand, the sharp peak has a width
of the order of the Thouless energy. While sharp peaks can
also appear in systems with conventional superconductivity
[72], domelike peaks indicate the presence of unconventional
superconductivity. The sharp zero bias conductance peak is
significantly suppressed when �h is parallel to the d-vector,
but not suppressed when �h is perpendicular to the d-vector.
The anisotropy in the response to an exchange field implies
that the setup can be used to detect the presence of triplet
pairing, and also to find the direction of the d-vector of the
triplet pairing. To investigate the effect of the exchange field
in more detail, the dependence of σ on the strength of the
exchange field for a triplet dominated pair potential (r = 2) is
shown in Fig. 3. If the exchange field is perpendicular to the
d-vector, shown in Fig. 3(a), the differential conductance has
only a very small dependence on the strength of the exchange
field. If, however, the exchange field is parallel to the d-vector,
shown in Fig. 3(b), for low exchange fields the sharp peak in σ

is shifted towards eV ≈ h and lowered, whereas the domelike
ZBCP is unaffected. As the exchange field is increased, only
a domelike peak remains, without the sharp contribution. The
differential conductance for eV ∈ (|�−|,�+) is also slightly
affected by the strength of the exchange field, but this effect is
orders of magnitude smaller than the angular dependence of
the zero bias conductance.

As the exchange field is rotated, the differential conduc-
tance varies between these two extremes in a continuous
fashion. In Fig. 4, we show the σ (eV ) curves for different
values of the angle α between the exchange field direction and
the d-vector. We focus on the triplet dominant case, r = 2, for
weak [Fig. 4(a)] and strong [Fig. 4(b)] exchange field. For
small exchange fields, shown in Fig. 4(a), a sharp peak at

a nonzero voltage eV ∼ h develops as the angle α between
�h and 〈 �d〉 is decreased. If α ≈ π

4 , there is a double peak
structure. As α decreases towards zero, the ZBCP disappears.
For large exchange fields, shown in Fig. 4(b), no second peak
appears, and a decrease of α only leads to a suppression
of the zero bias conductance. The angular dependence of
the zero bias conductance for r = 2 is shown in Fig. 5. As
the exchange field is rotated from a perpendicular orientation
towards a parallel orientation, the zero bias conductance de-
creases monotonically. The effect is stronger if the exchange
field is increased.

For the singlet dominated case, the exchange field
dependence of the differential conductance is significantly
weaker, but present. To highlight the angular dependence of
σ , we show the change in σ when rotating the direction of the
exchange field for r = 0.5 (Fig. 6). Specifically, we show σ −
σ (α = 0) as a function of voltage for several different values
of α. Results for h/�0 = 0.2 are shown in Fig. 6(a), and

FIG. 5. The magnitude of the zero bias conductance relative to
the normal state conductance as a function of the direction of the
exchange field for a weak (h = 0.1�0) and a strong (h = 5�0)
exchange field for r = 2. Other parameters were set to L/ξ = 10,
γBS = 2, and z = 0.75.
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FIG. 6. The voltage dependence of σ − σ (α = 0) for different values of the angle α for a singlet dominant junction (r = 0.5) and for
(a) h = 0.1�0 and (b) h = 5�0. The anisotropy is largest for |�−| < eV < �+, as indicated with dashed lines. In both panels, L/ξ = 10,
γBS = 2, and z = 0.75.

results for h/�0 = 10 are shown in Fig. 6(b). Notably, we find
a sizable angular dependence of the differential conductance
in the range |�−| < eV < �+. The presence of this regime
is indicative of the presence of a mixed potential since it is
absent for r = 0 and r = ∞. Moreover, the anisotropy is very
small for eV < |�−| and decays sharply if eV is increased
above �+. This means that the results can be used to infer
�±, as illustrated by the dashed lines at eV = |�±| in Fig. 6.
Since the sign of �− is determined by whether the s-wave
or p-wave component is dominant, it can be used to calculate
the mixing parameter r. Thus, measuring the differential
conductance provides a way to estimate both the direction of
the d-vector and the value of the mixing parameter r.

The zero bias conductance in SNN s+helical p-wave junc-
tions has another interesting feature [52]. For superconductors
of this type, the zero bias conductance is independent of the
particular value of r; it only depends on whether r > 1 or
r < 1. We show in Fig. 7 that this property still holds in the
presence of an exchange field, that is, the exchange field de-
pendence is also independent of the particular value of r. This
can be understood as follows. The mixing parameter r only
enters through the Tanaka-Nazarov boundary condition, given
by Eq. (6). At E = 0, this boundary condition is the same for
all r < 1 (r > 1), and therefore the equations to be solved are
the same for all r < 1 (r > 1). Since the exchange field does
not enter this boundary condition, this holds in the presence
of an exchange field as well. As the zero bias conductance at
T = 0 is fully determined by the solution at E = 0, it only
depends on whether r is larger or smaller than 1. The sharp
distinction between the two regimes suggests the presence of a
quantum phase transition at r = 1 between singlet dominated
and triplet dominated superconductivity. This transition in the
conductance can be related to the topological phase transition
in the superconductor. Because there is only a gap closing
at r = 1, those superconductors with r < 1 are topologically
equivalent to an s-wave superconductor, whereas all supercon-
ductors with r > 1 are topologically equivalent to a helical
p-wave superconductor, which is nontrivial [55]. For T �= 0,
the dependence of σ (eV = 0) on r becomes smooth, as shown

in Fig. 7. For r < 1, σ increases with temperature; whereas for
r > 1, it decreases with temperature. This is an extra feature
that can be used to establish the dominance of s-wave or
p-wave superconductivity.

The results for junctions with an s-wave dominated pair
potential (Fig. 6) show that the anisotropy in the differential
conductance for nonzero voltages can be used to determine
the mixing parameter. For the long junction with p-wave dom-
inated superconductors (Fig. 3), however, the anisotropy of
the zero bias conductance is much larger than the anisotropy
in the range |�−| < eV < �+ and thus the mixing param-
eter is hard to determine. Therefore, a shorter SF junction
(L = ξ ) with a low transparent barrier (γBN = 10) is inves-
tigated. In that case, the Thouless energy is large and there

FIG. 7. The zero bias conductance peak as a function of the ratio
r of the magnitude of the singlet and triplet components of the pair
potential for zero (red curve) and finite (blue curve) temperature for
a perpendicular field with h/�0 = 0.2. At zero temperature, there
is a discontinuity, hinting towards a phase transition. Insets: The
dependence of the zero-temperature zero bias conductance on the
angle between the exchange field and d-vector is independent of
the particular value ratio �t/�s. Other parameters are L/ξ = 10,
γBS = 2, and z = 0.75.
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FIG. 8. Differential conductance of a short SFN junction for the triplet dominant case, r = 2 and h = 5�0. (a) σ (V ) curves for �h ⊥ 〈 �d〉
and �h ‖ 〈 �d〉. (b) Differential conductance as a function of the angle α for different voltages in the three regimes defined by |�−| ≈ 0.5�0

and �+ ≈ 1.5�0. The regimes are indicated by dashed lines at eV = |�±|. For both panels, L/ξ = 1, γBS = 2, z = 0.75, and λ/ξ = 10
are used.

is no sharp peak. For r < 1, the results are similar to the
results for the long junction. For r > 1, the domelike peak,
indicative of unconventional superconductivity, remains, but
it has a weak dependence on the exchange field, as shown in
Fig. 8 for r = 2. The angular dependence of the conductance
is largest for |�−| < eV < �+. The results for h/�0 = 0.2
are shown in Fig. 8(a). In Fig. 8(b), it is shown that this
angular dependence is monotonic and σ is maximized if the
d-vector and exchange field are parallel. This is in contrast
to the zero bias conductance, which is maximized if the d-
vector and exchange field are perpendicular. This difference
in sign compared to the anisotropy of the zero bias conduc-
tance peak can be used as a verification. Therefore, |�−|
and �+, and thus the mixing parameter r can be determined
accurately [see Eq. (14)], as indicated by the dashed lines
in Fig. 8(a).

IV. DISCUSSION AND CONCLUSIONS

We have shown that for an SFN junction, an electrical
measurement, namely, the differential conductance, can be
used to identify s+p-wave pairing and to distinguish differ-
ent types of s+p-wave superconductors. The Keldysh-Usadel
equation together with the Tanaka-Nazarov boundary condi-
tions have been used to calculate the differential conductance,
σ , for a junction between an s+p-wave superconductor and
a ferromagnetic metal. We have found that the σ (eV ) curves
depend on both the relative strength of the singlet and triplet
components and the direction of the exchange field. If the
exchange field is parallel to the d-vector of the s+p-wave
superconductor, the zero bias conductance peak is suppressed
and a finite bias peak appears. On the other hand, if the
exchange field is perpendicular to the injected spins, the zero
bias conductance peak is independent of the exchange field
strength.

Thus, the experiment that we propose based on our cal-
culation provides a tool to characterize the pair potential of
superconductors, using only electrical measurements. This

implies that the dependence of the zero bias conductance peak
can be easily extracted from the results.

Our results can be used to determine not only the direction
of the d-vector, but also the mixing parameter r. Therefore, by
doing the experiment modeled in our paper, the pair potential
of the mixed potential superconductors can be fully character-
ized.

Short or long junctions may be more suitable for deter-
mination of the pair potential, depending on the purpose. If
the triplet component is dominant, a long junction is more
suitable for the determination of the direction of 〈 �d〉, but a
short junction is more suitable for the determination of the
mixing parameter r. If the singlet component is dominant,
both are equally suitable.

We found that both the regimes h � �0 and h < �0 are of
interest. Ferromagnets such as Fe, Co, or Ni have exchange
fields typically much larger than the critical temperatures of
superconductors, and thus they can be used for the regime
h � �0. To access the regime h < �0 as well, one can use
a thin normal metal layer, proximized by a ferromagnetic
insulator [73,74].

Our method can be generalized to study more general types
of mixed-parity superconductors, including the possibility of
d-wave or f-wave pair potentials.
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APPENDIX A: WEAK PROXIMITY EFFECT

In this Appendix, we present analytic results obtained in
the limit of a weak proximity effect. We show that in the case
of a field perpendicular to the d-vector, there are long-range
triplet correlations [7], whereas in the case of a parallel field,
all triplet correlations are short range. These results indicate
why the properties of the junction are different for different
orientations of the exchange field with respect to the direction
of the d-vector. The applied formalism can only be used for
the retarded part since the effect of the superconductor on
the differential conductance is of second order in the pairing
amplitudes and is thus ignored in this limit.

If the proximity effect in the junction is small, that is, the
pair amplitudes are small compared to the density of states,
the following approximation can be made:

ǦR ≈
[

1̂ F̂
ˆ̃F −1̂

]
, (A1)

where F̂ , ˆ̃F are the pair amplitudes. They satisfy ˆ̃F (−E ) =
σyF̂ ∗(E )σy. This parametrization satisfies the normalization
condition up to first order. Introducing �d⊥ as a unit vector
in the direction of 〈 �d〉 − ( �m · 〈 �d〉) �m, where the notation �m is
used to denote a unit vector in the direction of �h, F̂ can be
decomposed into

F̂ = F01̂ + Fh �m · �σ + Fd �d⊥ · �σ + Fdh( �d⊥ × �m) · �σ , (A2)

F± = F0 ± Fh, (A3)

and we decompose the components of ˆ̃F analogously.
Note that this decomposition does not use any additional
assumption; it is general for matrices in C2x2. The following
equations are satisfied:

D∇2F± = 2i(E ± h)F±, (A4)

D∇2Fh,dh = 2iEFh,dh. (A5)

Taking into account that F (x = L) = 0 due to the good con-
tact with the normal metal reservoir at x = L, the solutions to
Eqs. (A4) and (A5) read

F± = C± sinh

√
2i(E ± h)

D
(L − x), (A6)

Fd,dh = Cd,dh sinh

√
2iE

D
(L − x). (A7)

Now, at x = 0, the relation ǦR∇ǦR = 1
γBSL [ČR, ǦR] should be

satisfied, where ČR is the retarded part of C̄, the boundary term
presented in the main text.

The pair amplitudes F± have a decay length ξF =
√

D
|E±h| ,

whereas the pair amplitudes Fd,dh decay over a length ξE =√
D
E , and are thus unaffected by the exchange field. These

are the so-called long-range triplet correlations. Using the
Tanaka-Nazarov boundary conditions, explicit expressions for
the coefficients can be found. For clarity of notation, we only
show the case in which a single mode, the one at normal
incidence, contributes. If other modes are taken into account,
the notation becomes more cumbersome, but the results are
very similar.

First, consider the case in which �m = 〈 �d〉. In that case, all
spin-dependent terms in the problem are proportional to �m · �σ .
This implies that ( �m · �σ )Ǧ( �m · �σ ) = Ǧ. Therefore, F±, F̃± are
the only nonzero components.

The boundary conditions imply

C± =
[√

2i(E ± h)

D
cosh

(√
2i

E ± h

D
L

)
+ 1

γBS
sinh

(√
2i

E ± h

D
L

)
2(g+ + g−)

1 + g+g− − f+ f−

]−1

1

1 + g+g− − f+ f−
[ f+ + f− ± (g+ f− − g− f+)], (A8)

C̃± =
[√

2i(E ± h)

D
cosh

(√
2i

E ± h

D
L

)
+ 1

γBS
sinh

(√
2i

E ± h

D
L

)
2(g+ + g−)

1 + g+g− − f+ f−

]−1

1

1 + g+g− − f+ f−
[ f+ + f− ∓ (g+ f− − g− f+)]. (A9)

For h = 0, the contributions proportional to f+ + f− have the same sign in C+ and C−. Therefore, they only contribute to
F+ + F− = F0 and are singlets induced by the singlet component of the pair potential. For h �= 0, the contributions induced by
the singlet pair potential are partially singlets and partially triplets. On the other hand, the terms proportional to (g+ f− − g− f+)
are induced by the triplet component of the pair potential. For h = 0, they only contribute to F+ − F− = Fh and thus they are
triplets, but for h �= 0, they are partially singlets and partially triplets.

On the other hand, if �h and 〈 �d〉 are perpendicular, the terms induced by the triplet part of the s+p-wave pair potential drop
out of Eq. (A5) for F±, F̃±, and the expressions for C±, C̃± reduce to

C± = C̃± =
[√

2i(E ± h)

D
cosh

(√
2i

E ± h

D
L

)
+ 1

γBS
sinh

(√
2i

E ± h

D
L

)
2(g+ + g−)

1 + g+g− − f+ f−

]−1

1

1 + g+g− − f+ f−
( f+ + f−). (A10)
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Again, these terms are singlets for h = 0 and become partially singlets, partially triplets for h �= 0. The component Fd is also
nonzero in this case,

Cd = −C̃d =
[√

2iE

D
cosh

(√
2i

E

D
L

)
+ 1

γBS
sinh

(√
2i

E

D
L

)
2(g+ + g−)

1 + g+g− − f+ f−

]−1

1

1 + g+g− − f+ f−
(g+ f− − g− f+). (A11)

Since the equation for Fd is not mixed with the equation for
F0, these triplet correlations cannot be converted to singlet cor-
relations. The boundary condition still has no terms entering
Eq. (A5) for Fdh, and the equation for Fdh is uncoupled from
the other equations. Therefore, Fdh = 0 for a perpendicular
orientation as well.

In conclusion, in the case of a parallel field, the only
nonzero components of the anomalous GF are F±, which

decay on a length scale ξF =
√

D
2|E±h| , whereas in the case of a

perpendicular field, there are long-range correlations decaying

on a scale ξE =
√

D
2|E | . Thus, in the case of a perpendicular

field, the correlations extend over the full junction as E −→ 0.
This explains the strong anisotropy of the junction with re-
spect to the exchange field.

APPENDIX B: SOLUTION PROCEDURE

In this Appendix, we discuss the implementation of the
Usadel equation using the parametrization introduced in the
main text.

1. Retarded equations

The equation for the retarded part ǦR reads

D∇ · (ǦR∇ǦR) + i[(E + �h · �σ )τ3, ǦR] = 0. (B1)

The Riccati parameterization [69] is as follows:

ǦR =
[

(1 + γ̂ ˆ̃γ )−1(1 − γ̂ ˆ̃γ ) 2(1 + γ̂ ˆ̃γ )−1γ̂

2(1 + ˆ̃γ γ̂ )−1 ˆ̃γ −(1 + ˆ̃γ γ̂ )−1(1 − ˆ̃γ γ̂ )

]
.

(B2)

Inserting the parametrization in Eq. (B2) into the Usadel equa-
tion, given by Eq. (2), we find, using a derivation similar to the
one presented in [75], that the matrices satisfy the following
equations:

∇2γ̂ − 2∇γ̂ · ˆ̃N ˆ̃γ∇γ̂ = 2ω

D
γ̂ + i

D
{�h · �σ , γ̂ }, (B3)

∇2 ˆ̃γ − 2∇ ˆ̃γ · N̂ γ̂∇ ˆ̃γ = 2ω

D
ˆ̃γ + i

D
{�h · �σ , ˆ̃γ }. (B4)

The boundary condition at the SF interface is

∇γ̂ = 1

γBSL

1

2
(1̂ + γ̂ ˆ̃γ )

(
ÎR
S12 − ÎR

S11γ̂
)
, (B5)

∇ ˆ̃γ = −1

γBSL

1

2
(1̂ + ˆ̃γ γ̂ )

(
ÎR
S21 + ÎR

S22
ˆ̃γ
)
, (B6)

where ÎR
S11 = Trτ 1

2 (1 + τ3)ǏR
S , ÎR

S12 = Trτ 1
2 (τ1 + iτ2)ǏR

S , ÎR
S22 =

Trτ 1
2 (1 − τ3)ǏR

S , ÎR
S21 = Trτ 1

2 (τ1 − iτ2)ǏR
S , where the notation

Trτ has been introduced to indicate partial trace over Nambu
space, and

ǏR
S = 〈

T̃
{
1 + T 2

1 + T1[ČRǦR(x = 0) + ǦR(x = 0)ČR
]}−1

× [ČRǦR(x = 0) − ǦR(x = 0)ČR]〉, (B7)

where Ǧ(x = 0) is found by substitution of γ̂ (x = 0) and
ˆ̃γ (x = 0), and T1 and ČR are as defined in the main text.
Similarly, the boundary conditions at the boundary with the
normal metal reservoir read

∇γ̂ = −1

γBN L

1

2
(1̂ + γ̂ ˆ̃γ )

(
ÎR
N12 − ÎR

N11γ̂
)
, (B8)

∇ ˆ̃γ = 1

γBN L

1

2
(1̂ + ˆ̃γ γ̂ )

(
ÎR
N21 + ÎR

N22
ˆ̃γ
)
, (B9)

where ÎR
N11 = Trτ 1

2 (1 + τ3)ǏR
N , ÎR

N12 = Trτ 1
2 (τ1 + iτ2)ǏR

N ,
ÎR
N22 = Trτ 1

2 (1 − τ3)ǏR
N , ÎR

N21 = Trτ 1
2 (τ1 − iτ2)ǏR

N , and

ǏR
N = 1

γBL

[
Ǧ(x = L), ǦR

N

]
, (B10)

where Ǧ(x = L) can be calculated using γ̂ (x = L) and ˆ̃γ (x =
L), and ǦN is the bulk Green’s function of a normal metal as
given in the main body of the article. Equations (B3) to (B9)
were solved numerically using the MATLAB built-in bvp5c.

2. Keldysh equations

In the case without an exchange field, a relatively compact
analytic expression for the resistance can be found because the
equations for the different spin components can be separated
[52]. If an exchange field is present, this is no longer possible
and the Keldysh equations for the distribution functions need
to be solved. The Usadel equation for the distribution function
f̌ reads

D∇ · (∇ f̌ − ǦR∇ f̌ ǦA)

= −iE (ǦR[ f̌ , τ3] − [ f̌ , τ3]ǦA) − i(ǦR[ f̌ , τ3�h · �σ ]

− [ f̌ , τ3�h · �σ ]ǦA). (B11)

Since f̌ only has τ0 and τ3 components, the first term on the
right cancels out. The second term, however, does contribute,
as the spin dependence of the distribution functions is non-
trivial. Using that the retarded and advanced Green’s function
must satisfy the retarded and advanced components of the
Usadel equation, the equation can be written as

D∇ · (∇ f̌ − ǦR∇ f̌ ǦA)=i(GR[τ3�h · �σ , f̌ ] − [τ3�h · �σ , f̌ ]GA).

(B12)
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Taking the trace of Eq. (B11) results in

D∇ ·
{

∇ fL0[4 − Tr(ǦRǦA)] −
3∑

i=1

∇ fTiTr(ǦRσiǦ
A)

}
+ D∇ ·

{
∇ fT 0[−Tr(ǦRτ3ǦA)] −

3∑
i=1

∇ fLiTr(ǦRτ3σiǦ
A)

}

+ ( fL2h3 − fL3h2)Tr(ǦRτ3σx − τ3σxǦA) + ( fT 2h3 − fT 3h2)Tr(ǦRσx − σxǦA) + ( fL3h1 − fL1h3)Tr(ǦRτ3σy − τ3σyǦA)

+ ( fT 3h1 − fT 1h3)Tr(ǦRσy − σyǦA) + ( fL1h2 − fL2h1)Tr(ǦRτ3σz − τ3σzǦ
A) + ( fT 1h2 − fT 2h1)Tr(ǦRσz − σzǦ

A)

= 0. (B13)

In a similar way, equations are obtained by taking the trace
after multiplication by τ3, σ j , and τ3σ j for j = 1, . . . , 3.

The boundary conditions can be found in a similar way, by
taking the corresponding traces over the equation

(∇ f̌ − ǦR∇ f̌ ǦA) + ǦR∇ǦR f̌ − f̌ ǦA∇ǦA = ǏK
S/N . (B14)

In this expression, ǦR,A can be calculated directly from the re-
tarded equation, using ǦA = −τ3(ǦR)†τ3, and ǏK,S/N depends
on both the retarded Green’s function ǦR and the distribution

function f̌ , evaluated at x = 0 (for ǏK,S) or x = L (for ǏK,N )
and the Green’s function in the electrode. A set of eight
nonconstant coefficient second-order linear differential equa-
tions is found. In the most general case, all coefficients can
be nonzero and analytical formulas are expansive and do not
give many insights. Therefore, it was decided to solve the
equations numerically using MATLAB bvp5c. The correspond-
ing expressions for current can then be computed directly. By
doing this, as a function of the value of fT 0 attained at the nor-
mal metal reservoir, the current and differential conductance
can be computed.

[1] A. P. Mackenzie, T. Scaffidi, C. W. Hicks, and Y. Maeno, npj
Quantum Mater. 2, 40 (2017).

[2] C. Kallin and J. Berlinsky, Rep. Prog. Phys. 79, 054502 (2016).
[3] J. Linder and A. V. Balatsky, Rev. Mod. Phys. 91, 045005

(2019).
[4] R. Balian and N. Werthamer, Phys. Rev. 131, 1553 (1963).
[5] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[6] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[7] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys.

77, 1321 (2005).
[8] S.-P. Chiu, C. Tsuei, S.-S. Yeh, F.-C. Zhang, S. Kirchner, and

J.-J. Lin, Sci. Adv. 7, eabg6569 (2021).
[9] D. Aoki, K. Ishida, and J. Flouquet, J. Phys. Soc. Jpn. 88,

022001 (2019).
[10] S. Saxena, P. Agarwal, K. Ahilan, F. Grosche, R. Haselwimmer,

M. Steiner, E. Pugh, I. Walker, S. Julian, P. Monthoux et al.,
Nature (London) 406, 587 (2000).

[11] D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet,
J.-P. Brison, E. L’hotel, and C. Paulsen, Nature (London) 413,
613 (2001).

[12] F. Hardy and A. D. Huxley, Phys. Rev. Lett. 94, 247006 (2005).
[13] N. T. Huy, A. Gasparini, D. E. de Nijs, Y. Huang, J. C. P.

Klaasse, T. Gortenmulder, A. de Visser, A. Hamann, T. Görlach,
and H. v. Löhneysen, Phys. Rev. Lett. 99, 067006 (2007).

[14] S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz, S. R.
Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione et al., Science 365,
684 (2019).

[15] E. Bauer and M. Sigrist, Noncentrosymmetric Superconductors:
Introduction and Overview (Springer Science & Business Me-
dia, New York, 2012), Vol. 847.

[16] E. Bauer, G. Hilscher, H. Michor, C. Paul, E.-W. Scheidt, A.
Gribanov, Y. Seropegin, H. Noël, M. Sigrist, and P. Rogl, Phys.
Rev. Lett. 92, 027003 (2004).

[17] G. Amano, S. Akutagawa, T. Muranaka, Y. Zenitani, and J.
Akimitsu, J. Phys. Soc. Jpn. 73, 530 (2004).

[18] T. Akazawa, H. Hidaka, H. Kotegawa, T. C. Kobayashi, T.
Fujiwara, E. Yamamoto, Y. Haga, R. Settai, and Y. Ōnuki, J.
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