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Transition in vortex skyrmion structures in superfluid 3He-A driven
by an analog of the zero-charge effect
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In quantum electrodynamics, the zero-charge effect originates from the logarithmic dependence of the
coupling constant in the action of the electromagnetic field on the ratio of the ultraviolet and infrared energy
cutoffs. An analog of this effect in chiral Weyl superfluid 3He-A is the logarithmic divergence of the bending
energy of the orbital anisotropy axis at low temperatures, where temperature plays the role of the infrared cutoff,
and the vector of the orbital anisotropy plays the role of the vector potential of the synthetic electromagnetic
field for Weyl fermions. We calculate numerically the spatial distribution of the order parameter in rotating
3He-A as a function of temperature. At temperatures close to the superfluid transition, we observe formation of
vortex skyrmions known as the double-quantum vortex and the vortex sheet. These structures include alternating
circular and hyperbolic merons as a bound pair or a chain, respectively. As temperature lowers towards absolute
zero, we find a continuous transition in the vortex structures towards a state where the vorticity is distributed in
thin tubes around the circular merons. For the vortex sheet, we present a phase diagram of the transition in the
temperature–angular velocity plane and calculations of the nuclear magnetic resonance response.
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I. INTRODUCTION

Superfluidity of helium-3 is realized in the spin-triplet
p-wave pairing state [1]. The Cooper pairs have orbital mo-
mentum L = 1 and spin S = 1, and several distinct superfluid
phases are found in the experiments [2]. The A phase, which
is the focus of this work, is a chiral superfluid [3], where
the components of a Cooper pair have equal spins, while all
Cooper pairs have orbital momentum in the direction of the
unit vector l̂ . The gap � in the fermionic excitation spec-
trum of 3He-A is anisotropic and vanishes at two points on
the Fermi surface along the orbital anisotropy axis defined
by l̂ . Near these gap nodes the Bogoliubov excitations have
properties of Weyl fermions [4].

Weyl nodes lead to several types of anomalous behavior
in 3He-A, including chiral anomaly [5–8], thermal Nieh-Yan
anomaly [9], Bogoliubov Fermi surface and nonthermal nor-
mal component in moving 3He-A [10,11], mass currents in
the ground state [12,13], and nonanalytic coefficients in the
expansion of free energy in terms of gradients of l̂ [14,15].
For Weyl fermions in 3He-A, the vector l̂ plays the role
of the vector potential (up to a scaling factor) and thus its
spatial variation and time dependence create a synthetic elec-
tromagnetic field. This effective electrodynamics possesses
many features of the electrodynamics of quantum vacuum.
In particular, the nonanalyticity of the free energy is due to
the logarithmic divergence of the coefficient Kb ∝ ln(�/T ),
associated with the term [l̂×(∇×l̂ )]2. This divergence is
analogous to the running coupling constant in quantum elec-
trodynamics [4], with the gap � and the temperature T
playing the roles of the ultraviolet and infrared cutoffs, respec-
tively [16]. The logarithmically divergent running coupling
constant in QED is due to the screening of electric charges
by the polarized vacuum, known as the zero-charge effect.

In liquid 3He-A, the spatial distribution of l̂ is relatively
flexible and can be manipulated by an external magnetic field,
solid boundaries, and rotation. The A phase tends to respond
to rotation by creation of a continuous distribution of l̂ in the
plane perpendicular to the rotation axis, formed from elements
which carry both vortex and skyrmion topological charges, so-
called vortex skyrmions. In this paper we present numerical
calculations on continuous vortex skyrmion structures at low
temperatures, where the divergence of the bending coefficient
Kb becomes relevant. The increased energy contribution from
bending deformations of l̂ alters the vortex structures in a
quantifiable manner. We have found a transition between two
distinct core structures and present a �-T phase diagram for
the transition.

In Sec. II we describe the different contributions to the
free energy, and in Sec. III some possible realizations of
vortex skyrmions in 3He-A: the double-quantum vortex and
the vortex sheet. The numerical methods used to find the
distribution of l̂ are described in Sec. IV. Section V briefly
discusses the methods to calculate the NMR response of the
vortex skyrmion structures. The results of the paper are di-
vided into four sections: In Sec. VI we present calculations
of a model ATC vortex and quantitative predictions on the
low-temperature structures, in Sec. VII results from vortex
sheet calculations, in Sec. VIII from separate double-quantum
vortices, and finally in Sec. IX we compare the results with
the predictions made in Sec. VI. The last section is dedicated
to the conclusion.

II. FREE ENERGY DENSITY OF 3He − A

The order parameter in the A phase of superfluid 3He is
separable in spin and orbital variables and has the form [1]

Aμ j = �Ad̂μ(m̂ j + in̂ j ), (1)

2469-9950/2023/107(10)/104505(13) 104505-1 ©2023 American Physical Society

https://orcid.org/0000-0002-9674-8309
https://orcid.org/0000-0002-6949-5334
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.104505&domain=pdf&date_stamp=2023-03-06
https://doi.org/10.1103/PhysRevB.107.104505


R. RANTANEN AND V. B. ELTSOV PHYSICAL REVIEW B 107, 104505 (2023)

where unit vectors m̂, n̂, and l̂ form an orthonormal triad, with
l̂ being the direction of the orbital angular momentum of the
Cooper pair, d̂ is a unit vector of spin anisotropy perpendicular
to the preferred direction of the Cooper pair spin, and �A is
the temperature- and pressure-dependent maximum gap in the
energy spectrum of Bogoliubov quasiparticles.

The orientation of the order-parameter anisotropy axes is
affected by multiple competing interactions. The dipole inter-
action between magnetic momenta of the atoms forming the
Cooper pair results in spin-orbit coupling, with the free energy
density

fdip = 3
5 gd[1 − (l̂ · d̂ )2]. (2)

The spin-orbit energy is minimized when l̂ is parallel or an-
tiparallel to d̂. The coefficient gd is expressed as [1]

gd(T ) = 4
3λdN (0)�A(T )2, (3)

where λd ≈ 5×10−7 is an approximately constant coupling
parameter, and N (0) is the pressure-dependent density of
states for one spin state.

In an external magnetic field H , the spins of the Cooper
pairs tend to align along it and thus d̂ favors orientation
orthogonal to H . The magnetic (Zeeman) energy density is

fmag = 1
2�χ (d̂ · H )2. (4)

The coefficient �χ is the difference between the two eigen-
values of the spin susceptibility tensor [1]

�χ = 1

2
γ 2h̄2N (0)

1 − Y0

1 + F a
0 Y0

, (5)

where γ = −20 378 G−1s−1 is the gyromagnetic ratio of 3He,
Y0 is the Yosida function, and F a

0 ≈ −0.756 (at a pressure of
33 bar) [17] is the pressure-dependent spin-asymmetric Lan-
dau parameter.

Comparing Eqs. (4) and (2), one finds that the orientation
effect of the magnetic field overcomes that of the spin-orbit
interaction at the so-called dipolar field,

H∗ =
(

6

5

gd

�χ

)1/2

≈ 30 G. (6)

In an isotropic superfluid such as 4He, the superfluid velocity
vs is defined by the gradient of the phase φ of the order
parameter ψ = |ψ |eiφ :

v(4He)
s = h̄

m4
∇φ. (7)

In superfluid 3He-A, with an anisotropic order parameter, the
situation is more complicated. The order parameter in Eq. (1)

is invariant under relative gauge-orbit transformation, and
multiplying Aμ j with a phase factor eiφ can be compensated
by rotating m̂ and n̂ around l̂ by −φ, i.e., by transforming
m̂ + in̂ → e−iφ (m̂′ + in̂′). The phase of the order parameter
is then intrinsically linked to its orientation through the orbital
angular momentum vector l̂ . The superfluid velocity in the A
phase is given by [18]

vs = h̄

2m3

∑
i

m̂i∇n̂i, (8)

where m3 is the mass of the 3He atom. Superflow is created
by rotation of the orbital triad around a fixed l̂ , as well as
by changes in the orientation of l̂ . The superfluid velocity
in Eq. (8) is linked to the l̂ vector through the Mermin-Ho
relation [19]:

ω = ∇×vs = h̄

4m3

∑
i jk

εi jk l̂i(∇l̂ j×∇l̂k ). (9)

In the free energy we consider the terms with vs to be the
kinetic energy. The kinetic energy density of 3He − A is

fkin = 1
2ρs⊥(l̂×vs)2 + 1

2ρs‖(l̂ · vs)2

+ Cvs · (∇× l̂ ) − C0(vs · l̂ )l̂ · (∇× l̂ ), (10)

where ρs⊥ and ρs‖ are the superfluid density in the direction
perpendicular and parallel to l̂ , respectively, and C and C0 are
coefficients related to the superflow. The first two terms in
Eq. (10) can be written as

1
2ρs⊥v2

s − 1
2 (ρs⊥ − ρs‖)(l̂ · vs)2.

It is seen from here that it is energetically favorable for l̂ to be
oriented along the superfluid velocity vs since ρs⊥ > ρs‖, as
the gap in the quasiparticle energy spectrum is at maximum in
the direction perpendicular to l̂ while it is zero along l̂ .

In a superfluid rotating with constant angular velocity �,
the normal fluid rotates as a solid body with the velocity

vn = �×r. (11)

For a rotating system, two extra terms are included in the free
energy of the whole fluid, 1

2ρnv
2
n and −� · L, where L is the

total angular momentum. Adding these terms is equivalent to
transforming vs → vs − vn in Eq. (10), when a constant term
− 1

2ρv2
n is omitted.

In the absence of an external magnetic field and rotation,
the minimum energy configuration in the bulk corresponds
to the uniform order parameter. This is due to the elastic
energy associated with changes in the orientation of the l̂ and
d̂ vectors:

fel = 1

2
Ks(∇ · l̂ )2 + 1

2
Kt [l̂ · (∇×l̂ )]2 + 1

2
Kb[l̂×(∇×l̂ )]2 + 1

2
K5

∑
a

[(l̂ · ∇ )d̂a]2 + 1

2
K6

∑
a

(l̂×∇d̂a)2, (12)

where the terms with coefficients Ks, Kt , and Kb correspond
to splay-, twist-, and bendlike deformations in the l̂-vector

texture, respectively. The terms with K5 and K6 are related to
changes in the d̂ vector orientation.
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The temperature-dependent coefficients Ki in the elastic
energy are calculated using Cross’s weak-coupling gas model
[15], following Fetter [20] and using the Cross functions cal-
culated by Thuneberg [21]. The coefficients entering in the
free energy density are presented in Appendix B. The bending
coefficient Kb warrants special attention, as it is connected
to the zero-charge effect in 3He-A [4]. It is logarithmically
divergent as Kb(T ) = Kb1 + Kb2 ln(Tc/T ) when T → 0 owing
to nodes in the energy gap in the spectrum of Bogoliubov
quasiparticles [15].

The boundary conditions imposed by the container walls
are also crucial in determining the texture. Most importantly,
the l̂ vectors are forced perpendicular to the boundary surface
[22]. This means that the l̂ texture cannot be uniform in a
system with finite size. In addition, the superflow through the
walls must be zero [23], meaning that in the rotating frame
vs − vn must be aligned parallel to the surface at the bound-
aries. Ignoring magnetic relaxation effects near the surface,
the spin currents and thus the gradients of the spin anisotropy
vector components ∇d̂a are aligned parallel to the boundaries.

III. CONTINUOUS VORTICES

The form of superfluid velocity in 3He-A, Eq. (8), allows
for the formation of vortex structures that do not require the
suppression of the amplitude of the order parameter like in
conventional superfluids and superconductors. As shown by
the Mermin-Ho relation (9), the vorticity ω can be nonzero in
regions where l̂ is nonuniform. This means that nonsingular
vortices with continuous vorticity can exist in the superfluid.

In this paper we focus on continuous vortex structures.
In 3He-A, hard-core defects where the order parameter is
suppressed are also possible. These types of structures are
generally not formed when rotation is started in the superfluid
state due to their high critical velocity of nucleation compared
to continuous vortices [24,25].

On a closed path around a vortex, the circulation is given
by [26]

νκ0 =
∮

vs · dr = h̄

2m3
S (l̂ ), (13)

where κ0 = h/2m3 is the quantum of circulation for 3He, ν is
the number of circulation quanta, and S (l̂ ) is defined as the
area on the unit sphere covered by the orientations of l̂ inside
the domain bounded by the closed path. In Eq. (13), the first
integral along the path is the usual expression of the topolog-
ical invariant defining quantized vortices. The second integral
over the area enclosed by the path is the topological invariant
usually used for defining skyrmions. The equivalence of the
two expressions follows from the Mermin-Ho relation (9).
The continuous vortex structures in 3He-A, surrounded by the
volume where l̂ lies in a plane, possess both invariants, that
is, they are simultaneously quantized vortices and skyrmions.
The in-plane orientation of l̂ in the external regions, needed to
ensure integer values of integrals in Eq. (13), is usually pro-
vided by the boundary conditions at the sample walls or by the
combination of the spin-orbit (2) and Zeeman (4) interactions
in the applied magnetic field.

The simplest continuous vortex structure contains one
quantum of circulation and is known as the Mermin-Ho

100 µm
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(b)

40 µm 40 µm

(c)
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FIG. 1. Three different continuous vortex structures with four
quanta of circulation in 3He-A. The blue arrows represent the l̂ vector
texture, and the background color is vorticity in units of κ/µm2.
(a) Two double-quantum vortices at � = 0.30 rad/s. (b) A circular
vortex sheet at � = 5.70 rad/s. (c) Two separate vortex sheets, each
with two quanta of circulation at � = 5.70 rad/s. The sheets are
connected to the container walls outside the shown area.

vortex. In the core of a Mermin-Ho vortex, the l̂ vectors rotate
out of the plane, covering exactly half of a unit sphere. Single
Mermin-Ho vortices are observed in narrow cylinders [27]
where they are stabilized by the effect of the container walls
on the orientation of l̂ .

A skyrmion in 3He-A is a topological object where the
l̂ vectors cover the whole unit sphere, with ν = 2 quanta
of circulation. An axisymmetric skyrmion known as the
Anderson-Toulouse-Chechetkin (ATC) vortex [28,29] is the
simplest model for a double-quantum vortex in 3He-A. The
ATC vortex with the axis along ẑ consists of a topological soli-
ton separating a core region with l̂ = ẑ from an outer region
with l̂ = −ẑ. In a finite system, however, the axisymmetry of
the structure is broken by the bulk l̂ texture, which is confined
to the xy plane by the boundary conditions at the walls parallel
to ẑ. The nonaxisymmetric double-quantum vortex, shown in
Fig. 1(a), consists of two merons: one circular and one hyper-
bolic. The circular meron covers the top half of the unit sphere
and the hyperbolic meron the lower half. The vorticity ω in a
double-quantum vortex (DQV) is concentrated in a cylindrical
tube around the axis of the vortex, with a vorticity-free region
between the two merons [30]. These structures typically ap-
pear in systems with magnetic fields above the dipolar field
[25], where the order parameter is “dipole-unlocked” inside
the core so that d̂ is forced to stay in-plane by the magnetic
field while l̂ covers all possible directions. In lower magnetic
fields, the merons arrange into a square lattice where a cell
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consists of two hyperbolic and two circular vortices, totaling
four circulation quanta.

At high rotation velocities, the vortex sheet is the preferred
texture over separate vortex lines [25]. A vortex sheet is a
chain of alternating circular and hyperbolic merons confined
inside a topological soliton that separates two regions mini-
mizing spin-orbit interaction energy with one having l̂ ↑↑ d̂
and the other l̂ ↑↓ d̂. A circular vortex sheet texture is shown
in Fig. 1(b). The sheet can be connected to the container walls
[Fig. 1(c)], and as the rotation speed is increased, vortices
enter the system through these connection points and the
vortex sheet begins to spiral, meandering around the volume
while keeping the soliton walls equidistant [31]. After a wall-
connected soliton has appeared in the system, it becomes
difficult to nucleate separate vortices, as the critical velocity
of formation of new merons at the connection of the vortex
sheet to the wall is lower than that of separate DQVs [32,33].

IV. NUMERICAL METHODS

We find the lowest-energy state of 3He − A in the London
limit through numerical minimization. The calculation is done
in two dimensions, and we assume that the system is uniform
in the z direction. The function to be minimized is the total
energy per unit height F , defined as

F =
∫

S
( fdip + fmag + fkin + fel )dS. (14)

The minimization is performed with respect to the spin
anisotropy vector d̂ and the orbital triad consisting of the
three orthonormal vectors l̂ , m̂, and n̂. The parametrization
of the triad is done using unit quaternions. Quaternions have
the benefit of reducing the number of variables from nine to
only four, while also avoiding the problems associated with
Euler angles like singularities and gimbal lock. The d̂ vector
is parameterized with azimuthal and polar angles α and β,
where these problems are avoided by choosing the polar axis
along the magnetic field direction. The magnetic energy (4)
ensures that the polar angle should always be nonzero during
the minimization process in the dipole-unlocked regime we
are interested in. The parametrization is presented in more
detail in the Appendix.

The calculations are done on two-dimensional circular do-
mains with varying radii, which are meshed into triangular
elements. The resolution used is limited by the available com-
putational time and memory and varies between 3.5 µm and
10 µm, depending on the size of the system in question. The
integration in Eq. (14) is done using Gaussian quadrature
rules on the triangles. MATLAB is used to find the texture
that minimizes the total energy using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method. The boundary conditions
are implemented with the barrier method by adding an addi-
tional energy term that penalizes parameter values that would
violate the boundary conditions.

The coefficients for the free energy terms are calculated at
a pressure of 33 bar and varying temperatures. The magnetic
field in the simulations is set to 0.55 T, as that is a high enough
value for 3He-A to be stable down to zero temperature.

V. NUCLEAR MAGNETIC RESONANCE

NMR is a useful experimental tool for studies of superfluid
helium-3. Different order-parameter structures can usually be
distinguished from the NMR absorption spectrum. In 3He-A,
the long-range order of l̂ and d̂ together with the spin-orbit in-
teraction leads to spontaneously broken spin-orbit symmetry
[34,35]. The coupling between the spin and orbital degrees of
freedom leads to an extra torque applied to the precessing spin
in NMR experiments, which allows us to probe the l̂ texture.
Different vortex structures result in satellites in the NMR
spectrum with characteristic frequency shifts [36]. We con-
sider longitudinal NMR here because at the low temperatures
we are interested in, 3He-A in bulk is stable at relatively high
magnetic fields, and the longitudinal resonance frequencies
are independent of the magnetic field strength.

Assuming a static equilibrium texture for d̂ = d̂0, we
parametrize the deviation of d̂ from the equilibrium due to the
oscillating field with two parameters dH and dθ for the devia-
tion along the field and perpendicular to the field, respectively.
The d̂ vector in the presence of the oscillating field is

d̂ = d̂0 + (Ĥ×d̂0)dθ + ĤdH , (15)

where Ĥ is a unit vector in the direction of the static magnetic
field. The longitudinal NMR resonance frequencies are given
by the Schrödinger-type equation [37]

(D + U‖)dθ = α‖dθ , (16)

where the operator D is defined as

D f = −5

6

K6

gd
∇2 f − 5

6

K5 − K6

gd
∇ · [l̂ (l̂ · ∇) f ] (17)

and the potential is

U‖ = 1 − (Ĥ · l̂ )2 − 2[Ĥ · (l̂×d̂ )]2. (18)

The resonance frequencies are related to the eigenvalues α‖ in
(16) by

ω2
‖ = �2

Aα‖, (19)

where �A is the Leggett frequency of the A phase.
The NMR resonance frequencies are calculated by solving

the eigenvalue problem (16) using the finite-element method
(FEM). The same mesh from the energy minimization is used
and the equation is discretized using linear shape functions.
The calculated eigenfunctions ψk are normalized so that

∫
S
|ψk|2dS = 1 (20)

for each eigenfunction. The convenience of FEM is that the
method automatically enforces the Neumann boundary condi-
tions for the spin waves. Dissipation effects are not taken into
account in the NMR calculation, which may affect the results
quantitatively.
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FIG. 2. (a) Spatial distribution (texture) of the orbital anisotropy axis l̂ (blue arrows) in the ATC vortex, where l̂ is parallel to the ẑ axis in
the center of the computational domain and antiparallel to it at the boundary. The color indicates the distribution of vorticity in units of κ/µm2.
The predicted vorticity tube is clearly visible. (Inset) An example of a fit (line) of the angle χ determined from the simulation results along
y = 0 (points) to Eq. (22). The radius a and thickness b are determined from the fit and illustrated in the figure. The calculations are performed
at T = 0.01Tc and � = 2.3 rad/s. (b) The relative vorticity ωrel of the ATC vortex as a function of temperature. The values are calculated from
the temperature sweep. (c)–(e) ATC vortex texture and vorticity distribution at temperatures 0.001Tc, 0.15Tc, and 0.80Tc, respectively. The
corresponding points are marked with filled black circles in (b). The color scale is the same as in (a).

VI. ATC VORTEX

At low temperatures, the logarithmic divergence of the Kb

coefficient implies that the manifested structure should be one
that minimizes bending deformations. Since the l̂ vectors in
a double-quantum vortex cover the whole unit sphere, this
type of deformation cannot be avoided completely. In a cir-
cular ATC vortex, the l̂ vectors pointing along ẑ in the center
are separated from an external region with l̂ along −ẑ by a
topological twist soliton. There are two defining lengths for
the soliton: the radius a and the thickness b, illustrated in
the inset in Fig. 2(a). Along the radial direction there is only
twist deformation, but on a loop around the vortex center l̂
bends (and splays) a full rotation, so that the elastic energy
can be estimated as Fel ∼ Kb(b/a) + Kt (a/b). Therefore we
expect that as the temperature decreases, the radius of the
vortex increases, while the thickness of the soliton decreases.
According to the Mermin-Ho relation (9), the vorticity ω is
concentrated in the soliton, with no vorticity in the relatively
uniform center.

An analytic approach to finding possible vortex structures
in the limit of large Kb was suggested by Volovik [38]. He
considered a variant of the ATC vortex, where the l̂ texture in
the soliton is

l̂ = cos χ (r)ẑ + sin χ (r)ϕ̂, (21)

χ (r) = arccot

(
− r − a

b

)
, (22)

where r, ϕ, and z are the cylindrical coordinates. Follow-
ing the derivation by Volovik but including the effect of the

rotation of the system in the kinetic energy gives us the fol-
lowing formulas for the soliton radius and thickness:

a =
⎡
⎣ ρ

(
h̄

m3

)2

2ρ� h̄
m3

+ 12
5 πgd

( Kt
Kb

)1/2

⎤
⎦

1/2

≈
(

h̄

2m3�

)1/2

(23)

b = a

(
Kt

Kb

)1/2

. (24)

The magnetic field H is transverse to the cylinder axis. To
simplify the derivation, d̂ is assumed to be uniform along ẑ,
and the terms with C and C0 in Eq. (10) have been ignored. At
higher rotation speeds, however, these terms turn out to have
a considerable effect.

At finite rotation speeds, the temperature dependence of a
is negligible, which gives the Kb-independent expression in
Eq. (23). Therefore the effects of the logarithmic divergence
of Kb should only be seen in the narrowing of the domain wall.

We numerically calculate the structure of the ATC vortex
in a circular domain with a radius R = 115 µm. As the initial
configuration for the energy minimization, we set l̂ parallel
to ẑ at the center and antiparallel to ẑ at the boundary, with
a linear rotation around the radial direction in between. The
boundary condition is applied such that l̂ stays antiparallel to
the z axis at the edge of the calculation domain. The magnetic
field direction is along the y axis, and accordingly, the d̂ vec-
tors are uniformly pointing in the z direction. The temperature
is set to T = 0.005Tc. The angular velocity is initially set to
the value � = 2.7 rad/s, as minimization with zero rotation
results in the vortex drifting to the walls of the simulation box.
The result of this minimization is then used as an initial state
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FIG. 3. Size of the vorticity tube in the ATC vortex. (Left) The width and radius of the vorticity tube in the ATC vortex, Fig. 2, as a function
of temperature at � = 2.3 rad/s. The solid blue line and dashed red line correspond to the values of a and b calculated from Eqs. (23) and
(24), respectively, and the filled blue circles (•) and red squares (�) are the corresponding values determined from the simulation results. The
results from a simulation run where the kinetic energy terms with C and C0 coefficients have been set to zero are shown as empty blue circles
(◦) and red squares (�) for a and b, respectively. The temperature dependence is similar in the numerical calculations and the model, although
the radius is predicted to be significantly larger than numerically calculated. (Right) a−2 and b−2 as functions of rotation speed. From Eqs. (23)
and (24), the behavior is expected to be linear in these coordinates. The symbols are the same as in the left panel. The omission of the C terms
provides a much better match for � dependence. At low angular velocities, the discrepancy grows as the size of the computation domain limits
the size of the vortex.

for the angular velocity sweep. An example of the ATC vortex
texture is presented in Fig. 2(a).

The value of the angular velocity � is gradually decreased
in steps of 0.1 rad/s, starting from the initial value � = 2.7
rad/s. At each step of �, the previous minimization result
is used as the new initial state in order to mimic a realistic
continuous deceleration. An increasing � sweep is also per-
formed, similarly starting at the initial � = 2.7 rad/s.

The lowest energy during the � sweep is achieved at
� = 2.3 rad/s. This value for � is used in the temperature
sweep. The temperature sweep is started from T/Tc = 0.001
and the temperature is increased gradually in steps, ending
at a temperature of T/Tc = 0.8. More points are calculated at
lower temperatures T/Tc < 0.1, as that is the region where the
logarithmic divergence of the Kb coefficient is relevant.

From the simulation results we find the radius and width
of the topological soliton by fitting values of cos−1(l̂z ) to the
model χ (r) dependence in Eq. (22), with a and b as the fitting
parameters. An example fit is shown in the inset in Fig. 2(a).
The fits are done along multiple radial lines going around the
whole simulation disk, and the radius and width values a and
b are taken as the mean of the fitting parameters over each
line. There is slight axial asymmetry in the texture due to the
dipole interaction in the transverse field.

The numerically calculated and predicted values of a and b
for the ATC vortex are shown in Fig. 3. The predicted depen-
dence a−2 ∝ � and b−2 ∝ � is not so clear in the simulation
results. A possible reason is the omission of the C and C0

terms in the kinetic energy in the model derivation. To test
this possibility, a simulation with the same setup but without
these terms has been performed, the results of which are also
shown in Fig. 3.

The analytic model is indeed in closer agreement with
the simulation without C terms, especially at higher angular
velocities. At low rotation speeds, the agreement becomes
worse, as the numerically calculated structure becomes lim-
ited by the simulation domain.

During the increasing temperature sweep, the vorticity dis-
tribution in the vortex becomes more uniform. After becoming
completely uniform at around T = 0.15Tc, the tube distri-
bution reappears, as shown in Figs. 2(c) and 2(d). A good
quantitative indicator for the presence of these vorticity tubes
is found to be the relative vorticity ωrel, defined as the ratio of
the vorticity at the center of the vortex (where l̂z = 1) to the
maximum vorticity in the system:

ωrel = |ω|
max(|ω|) . (25)

The relative vorticity for the ATC vortex is plotted in Fig. 2(b).
At both low and high temperatures ωrel approaches zero, but
the effect is caused by different interactions. At temperatures
below T = 0.15Tc, the l̂ texture at the center of the vortex
becomes more uniform and therefore vorticity-free due to
the increasing energy cost of bending deformations. At high
temperatures, the vortex center similarly becomes uniform,
but this time as a result of the dipole interaction preferring
the orientation l̂ ‖ d̂ = ẑ due to the transverse magnetic field.

As mentioned earlier, the axisymmetric ATC vortex is not
the structure typically observed in realistic systems. However,
the simple model calculations indicate that the logarithmic
divergence of Kb could cause textural changes in more compli-
cated vortex systems as well. The specific changes will depend
on the structure in question, but the formation of topological
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FIG. 4. The zero-charge transition in the vortex sheet. The texture in (a)–(c) is calculated at 0.8Tc, the one in (d)–(f) at 0.2Tc, and the one in
(g)–(i) at 0.006Tc. (a) The l̂-vector texture, shown using blue arrows, with the vorticity distribution given by the color map in units of κ/µm2.
The two vortex sheets are clearly visible, with vorticity distributed uniformly along the sheet. The centers of the circular and hyperbolic merons
are marked with circles and crosses, respectively. (b) A closeup of the circular meron area marked by the dashed line in (a). The point where
l̂z = 1 is marked with a circle. (c) A density plot for the value of |l̂×d̂|. The regions where l̂ and d̂ are not aligned are darker. (d) The texture at
0.2Tc. The vorticity in the sheets has concentrated near the merons. (e) Closeup of the circular meron marked with a dashed line in (d). (f) The
|l̂×d̂| density plot at 0.2Tc. The background soliton of the sheets is still there, despite the change in vorticity distribution. (g) The texture at
0.006Tc, after the transition. The vorticity near the circular merons has formed the distinct tube shapes associated with the zero-charge effect.
(h) A closeup of the circular meron marked with a dashed line in (g). (i) The |l̂×d̂| density plot at 0.006Tc. The two sheets persist after the
transition.

twist solitons seems like a good candidate for reducing bend-
ing energy, if possible.

VII. VORTEX SHEET

The first realistic structure we consider is the vortex sheet.
The different merons inside a sheet are easily distinguishable,
and aside from the asymptotic behavior, the circular merons
bear some similarities with the ATC vortex, which indicates
that the bending energy could be reduced by a transformation
like the one observed in the model vortex.

The vortex sheet structure is constructed using vortex for-
mation at a flow instability. The initial state at zero velocity
is the so-called PanAm texture, an in-plane distribution of l̂
where on one half of the sample the circumference l̂ is di-
rected inwards and on the other half outwards. In simulations,
reorientation of l̂ happens within a discretization triangle and
the full texture includes two such defects. In real 3He-A,
these defects have a hard core and thus cannot be adequately
represented in our London-limit calculations. Nevertheless, on
increase of the rotation velocity in simulations we observe that
the defects act as a source of vorticity, as in the experiments
[24], and this is sufficient for our purposes. The radius of
the calculation domain is R = 115 μm, the magnetic field is
applied along the y axis, and the temperature is 0.80Tc. The

angular velocity � is increased gradually in steps of 0.1 rad/s,
using the minimization result of the previous step as the initial
state of the next one. After two DQVs enter the system, they
merge into a circular sheet with four quanta of circulation like
the one in Fig. 1(b). Then � is decreased to find the rotation
velocity where the total energy is lowest, which occurs at
� = 5.7 rad/s. A detailed report on vortex formation and
merging to sheets in our calculations will be published
separately.

With a stable four-quanta sheet, the temperature is de-
creased down to 0.006Tc. During the temperature sweep, the
sheet reconnects with the container walls, splitting into two
separate sheets [see Fig. 1(c)], each with two quanta of circu-
lation embedded in a splay soliton. In order to test the stability
of the newly formed two-sheet texture, further temperature
sweeps were performed starting from the lowest temperature
of 0.006Tc back up to 0.80Tc and then down again. The two-
sheet state persists.

A transition similar to the one discussed in Sec. VI occurs
at temperatures below 0.05Tc. The textural transition is shown
in Fig. 4. At high temperatures [Fig. 4(a)], the vortex sheet has
the familiar structure with uniform vorticity along the sheet.
As the temperature decreases, the vorticity becomes more
concentrated at the merons [Fig. 4(d)]. The vorticity forms
“bridges” between the circular and hyperbolic merons of the
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FIG. 5. (Left) An �-T phase diagram of the transition in the vortex sheet. The blue circles mark the transition temperatures at different
values of �. The solid red line shows a fit of the expression A exp[−B/(� − �0)2/3] to the data points, with the A = 0.056, B = 0.657 (rad/s)2/3,
and �0 = 1.15 rad/s. The red cross is the transition point calculated for a vortex sheet with 12 quanta of circulation, and the filled circles indicate
the points from the example fits on the right. (Right) Three example plots of relative vorticity ωrel as a function of temperature, taken from
sweeps with � = 1.27, 3.67, and 24.9 rad/s. The calculated points are marked with triangles, diamonds, and crosses, respectively, and the
solid lines on each sweep show the two straight lines that best fit the data. The transition point is taken as the intersection of these fits and is
marked with a circle in each sweep. The corresponding transition temperatures are approximately 0.0014Tc, 0.039Tc, and 0.050Tc. The data
from sweeps with lower � is more noisy due to the reduced mesh resolution in the correspondingly larger cylinders.

neighboring sheet, although the sheets still remain distinctly
separate, as indicated by the |l̂×d̂| density plots in Figs. 4(c),
4(f) and 4(i).

Upon further decreasing the temperature to below 0.05Tc,
the l̂ texture of the circular merons, marked with the dashed
lines in Fig. 4, becomes more similar to the topological twist
soliton. The meron center with vertical l̂ orientation increases
in size, concentrating the bending deformation (and vorticity)
into a tube. Comparing Figs. 2(d) and 2(c) to Figs. 4(e) and
4(h) shows the similarities between the two transitions. The
transition is smooth and shows no hysteresis on repeated tem-
perature sweeps.

A change can be observed in the vorticity near the hy-
perbolic merons as well. The vorticity at low temperatures
resembles a cross, with one line along the vortex sheet and
one perpendicular to it. No quantitative analysis has been
performed on the hyperbolic meron structure, but we believe
that the change can be explained using the same reasoning
as for the circular merons. The bending deformation in the
hyperbolic meron is limited to the directions along these vor-
ticity lines, while diagonal to the “arms” of the vorticity cross
the l̂ vectors twist. In the hyperbolic merons the vorticity can
be thought of as “thin-sheet” vorticity instead of tube vorticity.

The phase diagram in Fig. 5 is constructed by performing
a temperature sweep for each rotation velocity. Initial states
at different rotation velocities are found at T = 0.01Tc by
changing � while simultaneously adjusting the radius of the
cylinder accordingly to avoid vortices entering or escaping.
� is then a measure of the vortex density of the system. The
radius is changed by interpolating the texture to a cylinder
with different size.

Like for the model vortex, the relative vorticity ωrel is found
to be a good quantitative indicator for the transition. Above the
transition temperature the maximum vorticity in the system is
found at the centers of the merons and ωrel ≈ 1. Below the
transition temperature, ωrel decreases linearly as the l̂ texture

becomes more uniform and the vorticity ω at the center of the
circular meron decreases according to the Mermin-Ho relation
(9). The linear decrease can be seen in the right side plot in
Fig. 5.

The transition temperature was found to be dependent on
the vortex density of the system. A fit of the expression
A exp[−B/(� − �0)2/3] to the data gives the asymptotic tran-
sition temperature at high rotation velocities T = 0.056Tc.
(The origin of the exponents 2/3 is discussed below.) At low
velocities the transition temperature decreases and the zero-
temperature � cutoff is �0 = 1.15 rad/s.

The calculation of the NMR response of the sheet at � =
5.7 rad/s as a function of temperature is shown in Fig. 6(a).
The eigenvalue α‖ of the most intense satellite peak in the
NMR spectrum decreases linearly with temperature down to
around T = 0.3Tc, after which the decrease becomes loga-
rithmic α‖ ∝ ln(T/Tc). This indicates that the effects of the
logarithmic divergence of the Kb coefficient could be ob-
servable through NMR experiments, although the required
temperatures are very low.

In the course of the transition the NMR potential distribu-
tion (18) changes. At temperatures above the transition, the
potential wells formed by the circular and hyperbolic merons
in the sheet look very similar, shown in Fig. 6(b), while below
the transition temperature there is a clear visual difference
between the two [Fig. 6(c)], with a larger potential well at the
hyperbolic meron. Correspondingly, during the transition the
eigenfunction becomes more concentrated at the hyperbolic
meron. The ratio between the magnitudes of the eigenfunc-
tion at the circular center |ψo| and at the hyperbolic center
|ψx| is plotted in Fig. 6(a). At higher temperatures the ratio
is |ψo|/|ψx| > 1, while it is |ψo|/|ψx| < 1 at low tempera-
tures. Notably, the transition temperature seems to correspond
roughly to the point where the ratio is close to 1. This could
be used as another indicator for the transition, although it is
more indirect than the one used above.
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FIG. 6. (a) The eigenvalue α‖ of the largest satellite peak in the calculated NMR spectrum as a function of temperature plotted as blue
circles and crosses. The circles correspond to the upward temperature sweep started from 0.006Tc, while the crosses correspond to the return
sweep back down from 0.80Tc. The near perfect match of the values of both sweeps indicates that there is no hysteresis in the transition. The
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circular and hyperbolic meron centers. (b) The potential (18) for spin waves produced by the vortex sheet on the left side of the cylinder in
Fig. 4(d) at 0.20Tc. The circular and hyperbolic merons are difficult to distinguish visually. (c) The potential for the vortex sheet in Fig. 4(g)
at 0.006Tc. There is clear asymmetry between the shapes of spin-wave traps at the two merons. In panels (c) and (d) the centers of the circular
and hyperbolic merons are marked with circles and crosses, respectively, while the lines trace the contour where U‖ = −0.1 to visualize the
trap shape.

The transition to the tube vorticity state for the vortex
sheet can be explained qualitatively using similar reasoning
as used for the ATC vortex: the bending energy is reduced
by confining the deformations to a narrow tube around the
center of the circular meron with uniformly oriented l̂ . In
the vortex sheet the largest relevant length scale for the l̂
vector gradients is the intermeron distance p along the sheet.
The �−2/3 dependence of the transition temperature in the
phase diagram of Fig. 5 could be explained by the fact that
p ∝ �−1/3, and above the transition the elastic energy density
is proportional to p−2 ∝ �2/3. As the vortex density increases,
the bending energy contribution from intermeron gradients
becomes larger and can be reduced by the formation of vortic-
ity tubes even at higher temperatures and smaller values of Kb.
According to the fit in the phase diagram in Fig. 5, at T = 0
the transition occurs at a finite vortex density corresponding
to � = 1.15 rad/s.

VIII. DOUBLE-QUANTUM VORTICES

The nonaxisymmetric double-quantum vortex [see
Fig. 1(a)] is the most common topological object formed
in 3He-A [39]. The vorticity in a DQV is distributed in
a tube around the vortex axis at all temperatures, so a
priori it is difficult to determine what qualitative effect the
logarithmic divergence of the Kb coefficient would have
on its structure. However, in the region between the two

merons, the texture is similar to the ATC vortex. On the
line between the hyperbolic and circular meron centers, l̂
rotates with a twist-type deformation over a distance d , while
across the vortex (perpendicular to the line between merons)
the deformation is splay/bend type over a distance w. The
elastic energy is then Fel ∼ Kb(d/w) + Kt (w/d ), and at low
temperatures where Kb � Kt , the energy is minimized by
decreasing the width d of the region between l̂ = ẑ and
l̂ = −ẑ. In the whole DQV texture this is seen as a shift
in the location of the vorticity tube, so that it is centered
around the circular meron instead of the vortex axis. Then the
size of the region around the meron center where l̂ is oriented
along the vertical axis is again expected to increase, while the
twist rotation occurs in a thin region between the two merons.

A low-temperature state with two separated double-
quantum vortices has been created as follows: A clean
two-vortex state is found from an � sweep done in the axial
field, starting with a PanAm texture in a larger cylinder with
radius R = 500 µm at 0.80Tc. The larger cylinder is chosen to
keep applied rotation velocity below the threshold for merging
vortices to sheets, and to accommodate the lower � values, the
� sweep is done in smaller increments of 0.01 rad/s. When
the first vortices have entered and found stable locations near
the center of the cylinder at � = 1.27 rad/s, the temperature is
reduced to 0.001Tc, the magnetic field rotated to the transverse
direction, and � reduced to 0.30 rad/s, where the energy is at
a minimum.
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FIG. 7. The transition in separate double-quantum vortices at
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l̂-vector texture of the double-quantum vortex below the transition
temperature at 0.001Tc. The color indicates vorticity ω in units of
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with a circle and a cross, respectively. (c) The texture at 0.20Tc.

A temperature sweep is performed in increasing direction
on this state with two double-quantum vortices. At the start
of the sweep at 0.001Tc, the vorticity ω in the vortices is
concentrated into a tube shape around the circular meron, with
barely any vorticity near the hyperbolic meron, as shown in
Fig. 7(b). The value of ωrel calculated at the center of the
circular meron at these temperatures is close to zero.

On increase of temperature, the value of ωrel increases
linearly at low temperatures and stays constant above 0.15Tc,
as shown in Fig. 7(a). Thus we find the transition of the same
type as for the ATC vortex and the vortex sheet. However,
the transition temperature for vortices is different from that
for vortex sheets in the phase diagram in Fig. 5 at the same
velocity. At such low velocities, the vortex sheet does not
appear to have a transition at all.

Above the transition temperature the vortices look like
well-known w vortices with a hyperbolic and circular meron
[Fig. 7(c)]. The vorticity is spread in a tube shape even at
high temperatures, but the tubes are centered around the axis
of the whole two-quanta structure. Below the transition point
the tube shifts and becomes centered around only the circular
meron [Fig. 7(b)].

Qualitatively the low-temperature texture resembles the
ATC vortex; the core region of the circular meron is highly
uniform, in order to minimize the region where l̂ bends. In
a finite-radius cylinder, however, the l̂ vectors far from the

vortex are horizontal instead of vertical due to the orienting
effect of the container walls.

IX. COMPARISON WITH THE ATC VORTEX

The appearance of the tube vorticity distribution in the
circular merons in vortex sheets and double-quantum vortices
agrees qualitatively with the model ATC vortex in Sec. VI.
However, the quantitative prediction for the size of the tubes
does not match well, as shown in Fig. 8 for the vortex sheet
and in Fig. 9 for separated vortices. For sheets, the value of
a is almost six times lower than predicted, while b is almost
three times lower. In vortices the numerically calculated val-
ues differ by approximately a factor of 2 from the predicted
values.

The lower measured values can be at least partially ex-
plained qualitatively. The full simulations include the C terms
omitted in the model derivation, which were found to be
highly impactful in Sec. VI. Additionally, the ATC vortex
structure in the model assumed an axisymmetric structure
with the bulk l̂ texture being uniformly vertical. In realistic
situations, the finite size of the domain restricts the bulk
texture to be in-plane due to the effects of the boundary
conditions. In this case the bending energy density cannot
be strictly concentrated into a narrow tube, because outside
the meron core there will be some splay/bend distortion in
the bulk texture. Finally, the repulsive effect of neighboring
quanta of circulation is expected to reduce the size of the tube
by a factor that is dependent on the distance between quanta.

In the vortex sheet, the tubes form around the circular
merons, which are single circulation quantum structures in-
stead of the ν = 2 ATC vortex considered in the model. The
adjustment in the model Eqs. (23) for a and (24) for b is done
naively by assuming a superfluid velocity outside the vortex
is twice smaller than in the original derivation. As mentioned
previously, the change in number of quanta has an additional
indirect effect on the calculated values through the change
in the asymptotic behavior of l̂ vectors outside the vortex
(horizontal vs vertical).

X. CONCLUSION

We have numerically calculated equilibrium order-
parameter textures in rotating 3He-A at low temperatures
where the effect of the logarithmic divergence of the bending
coefficient Kb in the free energy is relevant. The connec-
tion of this divergence to the zero-charge effect of quantum
electrodynamics and the appearance of vorticity tubes at low
temperatures was predicted by Volovik [38]. A transition to
the predicted state has been found both in the vortex sheet
and in separate vortices. The transition temperature is found to
depend on the vortex density of the system, and a temperature-
vortex density phase diagram has been presented for the
vortex sheet.

In our calculations in the absence of pinning, vortices are
stable only with applied rotation. The original prediction of
Ref. [38] has been adjusted to include the effect of rotation.
The analytic model, nevertheless, does not capture all the
details of the realistic textures, and the size of the vorticity
tubes in the simulated textures is considerably smaller than
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FIG. 8. The radius a and width b of the circular meron vorticity tubes in the vortex sheet. The solid line and the dashed line are the predicted
values of a and b, respectively, while the circles and squares correspond to their numerically calculated values. (Left) a and b as a function
of temperature, taken from the sweep done at � = 11.55 rad/s. The value of � was chosen such that a wide enough temperature range was
available below the transition temperature. The predicted values are much higher than calculated, almost six times higher for a and three times
for b. The temperature dependence of b agrees with the prediction, while a decreases slightly with increasing temperature. (Right) a−2 and b−2

as functions of � at T = 0.01Tc. The calculated values are approximately linear in these coordinates, as predicted.

that in the model. In particular, the so-called C term in the
superfluid velocity, ignored in the model, turned out to play an
important role in shaping vortex structures. Another important
difference between the model and the realistic textures is
the asymptotic behavior of l̂ at large radii, where the model
ignores solid-wall boundary conditions. The calculations also
have their limitations: They are done with the assumption of a
uniform texture in the z direction, which means that possible
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FIG. 9. The radius a and width b of the vorticity tubes in sep-
arated double-quantum vortices as a function of temperature. The
predicted a and b are marked by a solid and dashed line, respectively.
The measured values are marked with circles and squares for a and
b, respectively. The predicted values are higher by approximately a
factor of 2.

three-dimensional structures, related to the axial superflow in
broken-symmetry vortex cores, could not be found.

In search of observable signatures of the transition, we have
calculated the NMR response of the vortex sheet as a function
of temperature. As expected, restructuring of the distribution
of vorticity has a profound effect on the frequency shift of
the characteristic satellite in the NMR spectrum; the satellite
moves further from the bulk peak towards the Larmor value.
The logarithmic dependence of the frequency shift, reflecting
that of Kb, becomes prominent only at temperatures below
0.2 Tc, which may make observation of this effect challeng-
ing. The lowest reported temperatures reached in experiments
with the A phase are about 0.15 Tc [40]. The same work also
demonstrated the transient cooling of the A phase when it is
grown from the B phase by moving a magnetically controlled
AB interface. The cooling originates from the exponential
suppression of entropy with decreasing temperature in the
gapped B phase, compared to only power-law decrease of the
entropy in the A phase with its Weyl nodes in the energy
spectrum. Possibly, this cooling effect can be engineered to
reach much lower temperatures in the A phase, if the heating
from the reorientation of the orbital texture in the B phase
near the moving AB phase boundary [41] can be put under
control. Note that when applying such a cooling method in
the presence of vortices, formation of a vortex layer at the AB
interface should be taken into account [42–44].
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APPENDIX A: PARAMETERIZATION
OF THE ORDER PARAMETER

Quaternions are an extension of the complex number sys-
tem into four dimensions and are of the form

q = q0 + q1i + q2 j + q3k, (A1)

with imaginary units i, j, and k defined by the relation

i2 = j2 = k2 = i jk = −1. (A2)

Sometimes it is useful to use the notation

q = q0 + q, (A3)

where q0 is called the real part and q the vector part.
Three-dimensional rotations and orientations can be de-

scribed by quaternions, analogously to how complex numbers
can be used to represent two-dimensional rotations. A rotation
in three dimensions defined by a unit vector axis u and an
angle θ can be expressed as a unit quaternion,

q = cos
θ

2
+ sin

θ

2
u. (A4)

The orientation of the orthonormal orbital triad (m̂, n̂, l̂ )
can be represented with a single quaternion using the
conversion formula for rotation matrices:

⎡
⎣mx nx lx

my ny ly
mz nz lz

⎤
⎦

=

⎡
⎢⎣

1 − 2q2
2 − 2q2

3 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) 1 − 2q2

1 − 2q2
3 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q1q0 + q2q3) 1 − 2q2
1 − 2q2

2

⎤
⎥⎦.

(A5)

The benefit of quaternions over other rotation formalisms
is that they reduce the number of required parameters from
nine to four, and they can describe any orientation without
singularities or gimbal lock.

The spin anisotropy vector d̂ is parameterized with az-
imuthal and polar angles α and β. To avoid issues when
β = 0, the polar axis is chosen as the magnetic field direction
H . In our system the H vector is confined to the yz plane, and
its direction is described by an angle μ between H and the
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FIG. 10. The coefficient values used in the energy calculation as
a function of temperature. The coefficients are normalized to ρ‖ to
better visualize their relationships.

z axis. The d̂ vector can then be parameterized as

dx = cos α sin β

dy = cos β sin μ − cos μ sin α sin β

dz = cos β cos μ + sin α sin β sin μ. (A6)

The magnetic field direction is kept static during minimiza-
tion, so μ is a constant.

The quaternion and d̂ angle values are defined at each node
in the mesh. To calculate the energy for a single triangle,
the parameters are linearly interpolated to quadrature points
using barycentric coordinates, where the energy densities are
computed. The integration is then performed using Gaussian
quadrature rules. After the quaternions are interpolated, they
must be renormalized to keep them unit length.

APPENDIX B: COEFFICIENTS

The coefficients for the energy densities in Eqs. (2), (4),
(10), and (12) are presented in Fig. 10. The values are nor-
malized to ρ‖ in order to demonstrate their relative behavior.
Note the logarithmic divergence of the bending coefficient
Kb as T → 0. The coefficient values are calculated using
the formulas given by Fetter [20] for Cross’s weak-coupling
model [15]. The Cross functions used in these expressions are
calculated as suggested by Thuneberg [21].
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