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Charge correlations suppress unconventional pairing in the Holstein model

Philip M. Dee ®,"-? Benjamin Cohen-Stead ©,** Steven Johnston®,>* and P. J. Hirschfeld'
' Department of Physics, University of Florida, Gainesville, Florida 32611, USA
2Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA
3Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
*Institute of Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, USA

® (Received 15 December 2022; accepted 16 February 2023; published 2 March 2023)

In a recent work by Schrodi et al. [Phys. Rev. B 104, L140506 (2021)], the authors find an unconventional
superconducting state with a sign-changing order parameter using the Migdal-Eliashberg theory, including the
first vertex correction. This unconventional solution arises despite using an isotropic bare electron-phonon
coupling in the Hamiltonian. We examine this claim using hybrid quantum Monte Carlo for a single-band
Holstein model with a cuprate-like noninteracting band structure and identical parameters to Schrodi et al.
Our Monte Carlo results for these parameters suggest that unconventional pairing correlations do not exceed
their noninteracting values at any carrier concentration we have checked. Instead, strong charge-density-wave
correlations persist at the lowest accessible temperatures for dilute and nearly half-filled bands. Lastly, we present
arguments for how vertex-corrected Migdal-Eliashberg calculation schemes can lead to uncontrolled results in

the presence of Fermi surface nesting.
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I. INTRODUCTION

The possible role of electron-phonon (e-ph) interactions
in high-temperature (high-7;) superconductors is a long-
standing problem. Coupling at small momentum transfer, q,
can lead to attractive interactions in unconventional pairing
channels [1-10]. There are also theoretical studies suggesting
that the e-ph coupling can be enhanced at small q transfers
by the Coulomb interaction through screening [11,12] and
anisotropy in the transport properties [8,12]. In these scenar-
ios, the momentum structure of the e-ph coupling constant
g(k, q) gives rise to attractive contributions X; in multi-
ple angular momentum channels. For any realistic g(k, q),
the coupling in the s-wave channel is dominant, and the
interaction will lead to an s-wave order parameter in the ab-
sence of any repulsive interactions. However, strong repulsive
interactions like a large Hubbard U or p* can suppress s-
wave pairing in favor of an unconventional pairing symmetry
[13,14]. Once this occurs, the next leading order contribution
from the e-ph interaction can provide an additional boost to
the pairing glue, provided it is an attractive interaction in the
appropriate pairing channel (e.g., A,2_,» for cuprates or At
for the Fe-based superconductors).

Recently, Schrodi er al. [15] proposed that a Hol-
stein interaction—i.e., a momentum-independent e-ph
interaction—can mediate an attractive interaction in
unconventional channels without the additional influence
of electron correlations. Those authors examined several
models, including a single-band Holstein model for the
high-7;. cuprates, as well as multiband models for the
Fe-based, and heavy-fermion superconductors with nested
Fermi surfaces. In each case, they considered a Holstein
e-ph coupling within a vertex-corrected Eliashberg-theory
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calculation (see Fig. 1), where the rainbow and first vertex
correction diagrams for the electron self-energy are computed
self-consistently. In doing so, they found that the inclusion of
the vertex corrections leads to instabilities in unconventional
pairing channels. Moreover, the symmetry of the derived
order parameter in each case was consistent with those
derived from weak coupling repulsive spin-fluctuation-based
models and Fermi surface nesting arguments [13,16].

The results of Schrodi et al. [15] are at odds with many
nonperturbative studies of the single-band Holstein model,
which find that the temperature-doping phase diagram is
dominated by charge-density-wave or s-wave pairing cor-
relations [17-33]. Here, we explicitly explore their claim
using a state-of-the-art hybrid Monte Carlo (HMC) method
[34]. Specifically, we obtain numerically exact solutions to
the same cuprate model examined in Ref. [15]. The model
is dominated by charge-density-wave (CDW) correlations
down to the lowest temperatures we examine, which over-
lap the range studied by Ref. [15]. Performing simulations
at fixed values of the electronic density reveals that the
pairing correlations are largely suppressed below their non-
interacting counterparts, regardless of the leading pairing
symmetry. Alternatively, when simulations are performed for
a fixed chemical potential, we find the bands shift above the
Fermi level as the temperature decreases, indicating that the
self-energy effects from the e-ph coupling are substantial.
At no point do we observe an instability toward a super-
conducting phase with an unconventional order parameter.
With this result in mind, we then examine the momen-
tum structure of the first vertex correction and argue that
truncating the expansion at the first vertex correction is an
uncontrolled approximation when the Fermi surface is well
nested.

©2023 American Physical Society
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FIG. 1. The electron-phonon vertex of a simple electron-phonon
system ['(k, q) = I'(k, iw,; q, iv,) is a sum of Feynman diagrams
where the first term is simply the bare vertex igy . The “first vertex
correction” is given by I'®(k, g). Higher order diagrams are not
considered in this work.

II. MODEL AND METHODS

We study a single-band Holstein model, defined on a two-
dimensional square lattice. The Hamiltonian is given by

ﬁ: Zt1110 ja_l‘LZnt(r+Z[P +_X:|

+a E i o Xi, (H

i,0
where ézq creates a spin-o (=1, | ) electron on site i, 71; , =
cjgcl , is the Fermion number operator for site i, ; ; is the

hopping integral between sites i and j, u is the chemical
potential, X; and P are the position and momentum operators
for the atom at site i, M is the ion mass, 2 is oscillator
frequency, and « is the e-ph coupling strength. The single-
band tight-binding dispersion € for this model is given by
& = ex — U, where

ex = —2t[cos(k,) + cos(ky)] — 4t'[cos(ky) cos(ky)]  (2)

and we have set the lattice spacing a = 1.

Throughout, we set M = /i = 1 such that the energy of
the phonon modes 72 — €2, and restrict the hopping to
nearest (¢) and next nearest neighbors (¢'), only. We then
adopted t = 1, ¢/t = —0.2, 2/t = 0.4, and o = 1.059, fol-
lowing Ref. [15].! These values result in a large dimensionless
e-ph coupling of A = a?/(WQ?) & 0.88, where W ~ 8¢ is the
noninteracting bandwidth. The chemical potential & controls
the filling in our simulations. Later, we will show results for
fixed p/t = —0.56 and as well as for a fixed average filling
n=(n) = ﬁ > io(flio) = 0.8 and 0.2. In the latter cases, u
is determined dynamically within the HMC simulation using
arecently developed p-tuning algorithm [35].

We solve the model using a recently developed method
[34], which leverages HMC [36,37] and Fourier acceleration
to reduce decorrelation time of the phonon fields [38], a
physics-inspired preconditioner, and near-linear scaling mea-
surement techniques. This approach allows us to simulate
large system sizes and consider optical phonons with energies
much smaller than the electron hopping and equal to those
used in Ref. [15]. We performed all of our HMC simulations
on 12 x 12 clusters.

'Reference [15] defines the bare band structure as & =
—t[cos(kca) 4 cos(kya)] — t’ cos(ka) cos(kya) — (1. We have, there-
fore, selected our 7 and ¢’ values to match their bare band dispersion.

The strength of the charge correlations is determined by
measuring the charge structure factor

1 ) A
S@. 1) =5 iZje*'q‘“f*")(z[fu(r)ﬁ,-(om, 3)
where 9, is the time-ordering operator, and charge
susceptibility
B
(= [ s o @
0

The strength of the pairing correlations is determined by the
pair-field susceptibility

B
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for some pairing symmetry o = s, d, p, etc., and the operator
A} is defined [39] as
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Here, the sum over y is restricted up to nearest neighbors
only. For s-wave pairing, f; = 4,0, where §; ; is the usual

Kronecker delta. For d-wave pairing, f¢ = 8, 1z — 8, 4.

III. RESULTS
A. Hybrid Monte Carlo

Reference [15] is unclear in how it treats the filling of the
system, specifically whether u or n is held fixed during the
self-consistency loop of their calculations. We will consider
both cases in what follows.

We begin with a fixed chemical potential, which we set to
n/t = —0.56 as indicated by Ref. [15]. Figure 2(a) plots the
evolution of the charge x “°V(q) and pairing correlations as a
function of temperature. We find that x “°V(q) is most promi-
nent at q = (7, ) for nearly all temperatures but displays
nonmonotonic behavior taking on a maximum at 7'/t =~ 0.4
before it turns over and rapidly decays to zero. At these lowest
temperatures, the d-wave pair-field susceptibility is indeed
larger than the s-wave, but neither are significantly larger
than their values at high temperature, indicating no strong
tendency to pairing. The nonmonotonicity in x “®V(q) occurs
because the filling of the system is not fixed and n — 0 as
the temperature is lowered [Fig. 2(b)]. This behavior is likely
due to significant growth in the self-energy, which shifts the
bands above the Fermi level. Regardless of the origin, we find
no evidence for a d-wave instability when we simulate the
system with a fixed chemical potential.

Next, we fix the average filling to n = 0.8, corresponding
to the approximate band filling for p/t = —0.56 obtained at
T/t = 2. Figure 3 plots the corresponding temperature de-
pendence of the charge and pair-field susceptibilities in this
case. Here the q = (7, ) charge susceptibility dominates at
all temperatures and is up to five orders of magnitude larger
than both the s- and d-wave pair-field susceptibilities for
T/t < 0.2. We can conclude that the low-temperature ground
state of the system is dominated by charge correlations and
is not superconducting. Turning to the superconducting cor-
relations, we find that x* > Xd at all temperatures, with the
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FIG. 2. The temperature evolution of the (a) charge and super-
conducting pair-field susceptibilities and (b) electronic filling n =
(1) in the Holstein model for a fixed chemical potential w/t = 0.56.
The largest filling at 7'/t = 2 is n = 0.809 (outside the plot window).
As the temperature is lowered, the band shifts to energies above the
Fermi level, and the band is depleted n — 0. Results were obtained
on N =12 x 12 clusters. The gray shaded region below T/t =
0.036 indicates the first vertex-corrected superconducting phase, as
predicted by Ref. [15].

latter dropping significantly once the CDW correlations begin
to dominate. We find no evidence for enhanced d-wave pair-
ing or a superconducting instability for this filling. It should
also be noted that the vertex-corrected Migdal-Eliashberg cal-
culations of Ref. [15] placed the superconducting transition
at ./t = 0.036 (52 K), which falls within our simulation
temperatures. For easier comparison, we have included a
light-gray shaded region at and below their reported 7; in both
panels of Fig. 2 as well as Figs. 3-5.

Our results demonstrate that charge correlations are dom-
inant in the Holstein model near half-filling, in agreement
with many prior numerical studies [17,18,21,24,26-29,31—
33]. Many of those same studies also find strong super-
conducting correlations for carrier concentrations away from
half-filling. Motivated by this, we also performed calcula-
tions for a dilute filling » = 0.2. Figure 4 plots the resulting
temperature evolution of the charge and pairing suscepti-
bilities in this case. Here, the noninteracting Fermi surface
is free-electron-like (circular) and is far from any nesting
conditions. Nevertheless, we find that q = (;r, 7) charge cor-
relations dominate the system at low temperatures, while the
superconducting correlations remain weak over the tem-
peratures we can access. In this case, the large value of

and localize for this value of A. We find no indications that
they condense into a superconducting state of any symmetry.

In Figs. 2 and 4, one can see that although the Xd > x°, the
values are small overall. Moreover, the appearance of a larger
x? is somewhat misleading. To demonstrate why, we include
noninteracting results for n = 0.2 down to low temperatures,
shown in Fig. 5. Compared with Fig. 4, the pairing suscep-
tibilities in the noninteracting case are generally larger than
the interacting case, and the d-wave pairing susceptibility has
a higher baseline value than the s-wave case. The expected
signature of a superconducting transition is a rapid increase in
the pairing susceptibility with decreasing temperature with a
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FIG. 4. The temperature evolution of the charge and supercon-
ducting pair-field susceptibilities in the Holstein model at a fixed
filling n = 0.2. The remaining parameters are t'/t = —0.2, Q/t =
0.4, and 1 = 0.8762. Results are obtained on N = 12 x 12 clusters.
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FIG. 5. For reference, we include the temperature evolution of
the charge and superconducting pair-field susceptibilities in the non-
interacting case at a fixed filling n = 0.2. The remaining parameters
are t'/t = —0.2, Q/t = 0.4, and A = 0. Results are obtained on
N = 12 x 12 clusters.

magnitude much larger than the noninteracting result. In such
a case, one could attempt a finite-size scaling analysis [31],
but in the absence of such a low-T divergence in the 12 x 12
case presented here, it does not seem appropriate.

Our results contradict those of Ref. [15], which obtained
a d-wave superconducting solution. There are several con-
tributions to this discrepancy, but one particularly important
factor is that their calculations do not include the renor-
malization of the phonon propagator. This approximation
is, understandably, motivated by a need to reduce the com-
putational complexity stemming from the inclusion of the
vertex correction. However, this approximation is severe, as
it prevents CDW correlations driven by conventional phonon
softening from growing large enough to compete with su-
perconductivity. Schrodi et al. [40] and others [29,41,42]
have included these effects in previous calculations without
the first vertex correction. All have found that including the
phonon self-energy in a self-consistent manner reintroduces
the tendency toward a charge instability, especially for a
nested Fermi surface. Our numerically exact solutions in-
clude these phonon self-energy effects, which may account
for our results’ discrepancies. However, it is noteworthy that
Ref. [15] also obtained unconventional order parameters us-
ing a momentum-independent e-ph interaction in two other
systems with well-nested Fermi surfaces. This observation
motivates us to examine the structure of the first vertex cor-
rection as a function of nesting in order to assess whether
truncating at this order is a controlled approximation.

B. Analysis of the first vertex correction

The Feynman diagram for the first-order correction to the
bare e-ph interaction vertex gk q is shown in the rightmost
diagram of Fig. 1. It is given by

kgT , ,
Ik, q) = NB—h3 > " I8kg 1" Do(q)Golk — g — q')
q’,a’

x Go(k — ¢'). )

Here, we use the shorthand notation k = (K, iw,) and g =
(q, ivy,) with fermionic and bosonic Matsubara frequencies
given by w, = 2n + 1)wkgT /A and v,, = 2nmkgT /i (with
n, m € 7), respectively. Equation (7) follows directly?> from
its Feynman diagram and contains the e-ph coupling matrix
elements gy ¢, the noninteracting phonon propagator

2Qy

Dy(q') =D ,a.m’ = T 5 2
0(q") o(q', {Vr) o+ QF

®)
and two noninteracting electron propagators, where, for
example,

Go(k — q/) = Go(k — q/v iwy — V)

1

= , 9
i(@n = V) = kg ©
and & = ex — 1. We have suppressed spin and band indices
since we are working with a single-band model with parity in
the up and down spin directions (e.g., Gy = G,). Since we are
only interested in comparing the relative strength of the bare
vertex to the vertex correction, we will work exclusively in

units such thatkg = =M = 1.

For a Holstein model, the phonon dispersion is Einstein-
like, and the bare e-ph coupling is isotropic; hence, Qy — €
and gxq —> g =0/ V292 With these simplifications, the ver-
tex correction reduces to

2
T
Ik, q) = % > Do(ivw)Golk — g — ¢)Go(k — q).

i
(10)

We evaluate the sums directly on finite momentum and
frequency grids, thereby approximating the vertex in the ther-
modynamic limit. For our calculations, we take N = 24 x 24
and 128 frequencies for a model temperature of 7/t = 0.1.
The number of Matsubara frequencies was chosen such that
the high-energy cutoff iw. ~ 5W, where W is the noninter-
acting bandwidth.

Figure 6 plots vertex correction as a function of momentum
transfer. Here, we have simplified the multidimensional vertex
function by focusing on the lowest Matsubara frequency (i.e.,
iwy—o = T and iv,—¢ = 0), and performing a Fermi surface
average over the fermion wave vectors k. Denoting the sim-
plified vertex correction as I'®)(q), the averaging procedure is
given by

r@(q) = (r'?(k, «T, q, 0))kers

Z Ak, =T, q,0)3u (&)
_ keBZ . (11)

> Bu&o)

keBZ

2Qur specific choice of momenta arguments is readily seen by
examining the vertex in the context of the first self-energy crossing
diagram, the latter of which is the second-order correction @, The
incoming and outgoing fermionic lines are labeled by k, the first
phonon line is labeled by ¢, and the second is labeled by ¢'.
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FIG. 6. Contour plots of the (a) electronic dispersion (e(k) —
)/t and the (b) real and (c) imaginary parts of the first vertex correc-
tion I'¥(q) for pu/t = 0.56 and T/t = 0.1. In plot (a), the solid line
indicates the Fermi surface contour corresponding to e(k) — pu = 0.
In plots (b) and (c), the reported I"®(q) follows from taking the
vertex I'P(K, iw,; q, iv,) that has been evaluated at iw, and iv,
and then reduced to q dependence by carrying out a Fermi surface
average over k € FS.

The wave vectors k are restricted to the Fermi surface by use
of a “smeared” delta function §¢4 (&) given by

~ d 1 1
Sra(r) = —— - .2
ra(®) dx (ex/" + 1) 40 cosh? (%) (12)

where the broadening parameter o = kg7 .

Figure 6(a) shows a contour plot of the underlying band
structure & in the upper quadrant of the first Brillouin zone for
u/t = —0.56. The thick black line follows the Fermi surface
contour & = 0 and thin dashed (solid) contour lines are used
to plot & < 0 (& > 0). The values of 7, ¢/, and i chosen
here (to match Ref. [15]) are somewhat typical for modeling
a 2D “cuprate”-like Fermi surface. The noninteracting Fermi
surface is well nested for transfer vectors near q = (7, 7),
which coincides with the peak in x YV (q) seen in our HMC
results. The corresponding q dependence of the real and imag-
inary parts of I'?(q) are displayed in Figs. 6(b) and 6(c),
respectively. (Here, we restrict the plot axes gy, g, € [0, 7]
because the remaining quadrants are symmetrically identical.)
A Gaussian interpolation was used to smooth the 24 x 24 q-
grid, and contours were added to help identify the features
and overall magnitude of the Fermi surface averaged vertex
correction.

It is clear from Fig. 6(b) that the real part of the Fermi-
surface averaged vertex correction is of order O(1) near q =
(7, 7). For this case, the imaginary part of I'®(q) [Fig. 6(c)]
is relatively small and at most ~0.1-0.2. This result implies
that an expansion for the vertex I'(q) ~ ig[1 + T'®(q) + - - -]
involves corrections that are on the order of the bare vertex,
and thus higher order terms would likely be needed to obtain
a converged result. Consequently, a self-consistent treatment
of the first vertex correction in this context is likely uncon-
trolled, and one should assess the strength of the second-order
diagrams before proceeding.

We now investigate the changes in I'®(q) as pu is tuned
away from p/t = —0.56 to determine the role of the Fermi
surface nesting in the setting the magnitude of the correc-
tion. Figure 7 plots & along with ReI"®(q) and ImI"?(q)
by row, but now each of the five columns corresponds to
a different choice of w/t € [—1.5,0.5] in steps of 0.5. The
results for pu/t = —0.5 (middle column) are similar to those
shown in Fig. 6; the FS is strongly nested for q =~ (v, =) and
Rel'@(m, m) ~ O(1). The nesting condition survives when
w/t is adjusted by 0.5 but shifts to different momentum
transfers in both cases. This fact is evidenced by the strong
incommensurate peaks in ReF(z)(q) for these values of the
chemical potential. The peak heights also decrease in these
cases but remain large enough to invalidate a low-order per-
turbation expansion in the vertex function.

The nesting conditions are strongly suppressed for u/t =
—1.5 and 0.5, as shown in the first and fifth columns, respec-
tively. In these cases, the band structure begins to resemble a
free electron (hole) dispersion with a circular Fermi surface.
(For p/t = —1.5, the electron-like Fermi surface is more
diamond-like.) As one might expect, the real and imaginary
parts of I'®(q) are correspondingly smaller than 1. For ex-
ample, Rel'®(q) has a weak peak near q ~ (3, #)r for
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FIG. 7. A survey of effects of the Fermi surface features on the first Fermi-surface averaged vertex correction [see Eq. (11)]. Results in
each column correspond to i/t = —1.5, —1, —0.5, 0, and 0.5 reading left to right. The top row shows contour plots of the bare band dispersion
&x. The thick black line denotes the Fermi surface contour. The thin dashed (solid) lines show contours for & < 0 (& > 0). The second and
third rows show the real and imaginary parts of the Fermi surface averaged vertex I'®(q) for momentum transfer in the positive quadrant of
the first Brillouin zone (FBZ). The values of I'®(q) at other points in the FBZ can be inferred from C, symmetry.

the free-electron-like case (u/t = —1.5), while it has a very
weak peak near q ~ (0.9, 0.9)r for the free-hole-like case
(u/t = 0.5). We expect that a self-consistent treatment of the
first-order vertex corrections may be more controlled in these
cases.

C. Discussion

In the previous section, we showed that the first vertex
correction acquires a momentum anisotropy that follows di-
rectly from the geometry of the electronic dispersion near the
Fermi level. This result occurs, even with a bare Holstein
coupling and a dispersionless Einstein phonon mode, both
of which are isotropic in momentum space. Improving upon
this simplified picture by reintroducing dispersive phonons
or using the dressed propagators in the vertex diagram could
significantly alter our conclusion. Using dressed propagators
G(k) and D(q) instead of Gy (k) and Dy(q) in Eq. (10) and gen-
erating second-order corrections to the electron and phonon
self-energies [i.e., X (k) and T1®(g)] constitute a fully
self-consistent evaluation within the vertex-corrected Migdal-
Eliashberg theory. Such a procedure introduces additional
e-ph-induced renormalization effects on both the phonons and
electrons beyond the usual self-consistent Eliashberg formal-
ism. Even without the vertex correction, treating the electron

and phonon self-energies on equal footing allows for phonon
softening, manifesting as a Kohn anomaly in the phonon dis-
persion at the nesting vector [42]. If such softening were also
present in the vertex-corrected theory, the peaks in I'®(q)
could be quite strongly affected. Our results would reflect the
first iteration of such a self-consistent procedure.

Using HMC simulations as a stand-in for summing all
the Feynman diagrams, we observed that reintroducing the
neglected diagrams greatly favors CDW correlations at the
expense of superconductivity for the parameters studied. This
result is relatively unsurprising given the sizable dimension-
less coupling A ~ 0.88, which, alongside the frequency of
Q/t = 0.4, fits into a regime associated with large lattice
fluctuations [30]. In the large coupling limit A > 0.5, these
correlations reflect bipolaron formation [29] not captured
within the framework of Migdal’s theory. How many addi-
tional vertex corrections are needed to describe bipolarons
and the CDW transition remains unclear. It is also unclear if a
finite number of corrections would be sufficient.

The study of corrections to the electron-phonon vertex has
a long history [29,30,43-59]. Many of these works studied
the ramifications of vertex corrections on superconductivity
and consider, for instance, how vertex corrections affect the
critical temperature and or pairing [46-53,55,60], the iso-
tope coefficient [49], predictions for non- and antiadiabatic
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materials like fullerenes [49,54], and unconventional super-
conductivity, often by including them alongside electronic
correlations and spin fluctuations [46,48,61-68]. This body
of literature is extensive, so we have not attempted to re-
view these works comprehensively. Instead, we highlight a
potential blind spot concerning lurking charge instabilities
in vertex-corrected Eliashberg approaches. Some findings of
the current work have been discussed in the works above
to varying degrees of rigor. In particular, when considering
problems in 2D, it has been pointed out that Fermi surface
nesting conditions can invalidate Migdal’s approximation, pri-
marily due to geometric singularities appearing in the skeleton
diagrams [69]. Schrodi et al. mention the issue of nesting
and several other potential caveats in Ref. [60], which debuts
the same state-of-the-art full-bandwidth implementation of
a vertex-corrected Eliashberg formalism used in Ref. [15].
However, as was shown here and by Esterlis er al. [29],
comparing Eliashberg-type calculations with nonperturbative
methods (e.g., quantum Monte Carlo) can be a vital means of
addressing the validity of approximate methods.

IV. SUMMARY AND CONCLUSION

Analytic attempts at describing the nature of vertex correc-
tions often entail simplifications to the electronic dispersion,
typically reducing e to the single parabolic band of free
electrons. With modern computing resources, self-consistent
solutions of the Migdal-Eliashberg equations, including the
first vertex correction, are now technically feasible for lattice
models with some tight-binding dispersion (e.g., Ref. [15]).
However, we have shown that while it may be easier to carry
out these calculations, the results could be misleading in some
instances. In particular, we performed HMC simulations us-
ing the same parameters associated with an unconventional
superconducting state in Ref. [15] and instead found a leading
charge-density wave instability. We did not attempt to explore
the entire parameter space to rule out a possible unconven-
tional ground state somewhere in the phase diagram. However,
to our knowledge, the extensive literature on nonperturbative

studies of the Holstein model does not contain any robust
evidence for a leading unconventional order parameter thus
far.

To better understand the origin of the d-wave order pa-
rameter in the first-vertex-corrected Eliashberg theory, we
evaluated a finite-size approximation of the vertex correction.
Due to the relative simplicity of the Holstein model, much
of the momentum-space structure of ''®(q) follows directly
from the Fermi surface. For a cuprate-like Fermi surface,
we observe peaks in I'®(q) of O(1) near a nesting vector
q = (w, ), indicating that higher order diagrams may be
crucial for these parameters, matching the conclusions from
our HMC results.

It remains an open question as to when and how vertex
corrections should be included within Migdal-Eliashberg for-
malism for specific applications. What is clear is that there
are scenarios where the perturbative expansion is somewhat
ill defined and blind to competing phenomena such as bipo-
laron formation. The standard Eliashberg formalism below
T. comes equipped with the usual anomalous propagators,
which admit a superconducting order parameter but not a
competing CDW. A possible way forward would be to study
the effect of vertex corrections in the normal state and tracking
both pairing and the CDW correlations in the self-consistent
Migdal approximation [41,42]. However, to truly understand
the physics contained in the corrections, it may be necessary
to study the diagrams beyond the first correction. Finding the
middle ground where the first correction I'®(q) [and possibly
I'®(q)] could be used to safely fine-tune predictions is a
direction of future study.
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