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Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity
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Motivated by the recent discoveries of superconductivity in bilayer and trilayer graphene, we theoretically
investigate superconductivity and other interaction-driven phases in multilayer graphene stacks. To this end, we
study the density of states of multilayer graphene with up to four layers at the single-particle band structure
level in the presence of a transverse electric field. Among the considered structures, tetralayer graphene with
rhombohedral (ABCA) stacking reaches the highest density of states. We study the phases that can arise in ABCA
graphene by tuning the carrier density and transverse electric field. For a broad region of the tuning parameters,
the presence of strong Coulomb repulsion leads to a spontaneous spin and valley symmetry breaking via Stoner
transitions. Using a model that incorporates the spontaneous spin and valley polarization, we explore the Kohn-
Luttinger mechanism for superconductivity driven by repulsive Coulomb interactions. We find that the strongest
superconducting instability is in the p-wave channel, and occurs in proximity to the onset of Stoner transitions.
Interestingly, we find a range of densities and transverse electric fields where superconductivity develops out
of a strongly corrugated, singly connected Fermi surface in each valley, leading to a topologically nontrivial
chiral p + ip superconducting state with an even number of copropagating chiral Majorana edge modes. Our
work establishes ABCA-stacked tetralayer graphene as a promising platform for observing strongly correlated
physics and topological superconductivity.
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I. INTRODUCTION

Graphene heterostructures in the presence of a superlat-
tice potential induced by twist have opened new avenues to
study interaction-driven physics [1–3]. In addition, supercon-
ductivity was discovered in a variety of twisted materials
[2,4,5], whose mechanism remains debated. In a parallel
development, studies of rhombohedral trilayer graphene with-
out a moiré superlattice recently revealed interaction-driven
ferromagnetic transitions [6] and superconductivity [7]. Su-
perconductivity has also been identified in Bernal-stacked
bilayer graphene [8,9]. The superconducting state is uncon-
ventional, at least in the sense that it far exceeds the Pauli
limit for an in-plane magnetic field. These discoveries call for
a detailed study of multilayer graphenes from the viewpoint
of realizing interaction-driven symmetry broken phases, in-
cluding superconductivity, which is addressed in the present
paper.

Conventional graphite is composed of graphene layers ar-
ranged in the so-called Bernal stacking, ABAB..., where A
and B denote two inequivalent graphene monolayers that are
stacked in transverse directions. The study of interaction-
driven physics in the bilayer AB graphene—one of the
most-studied two-dimensional materials—has a long history
[10–15]. Its immediate relatives, trilayer ABA [16–20] and
tetralayer ABAB [21–24] graphenes, have received consid-
erably less attention to date. Moreover, the observation of
interaction-driven phenomena in trilayer and tetralayer Bernal
stacks remains mostly limited to the regime of strong mag-
netic fields [19] or suspended samples [21,25].

In contrast to Bernal stacking, the so-called rhombohedral
stacking is less stable, and thus less common. The sim-
plest rhombohedral representative is ABC graphene, which
displays much richer interaction physics [6,26] and even su-
perconductivity when subjected to a perpendicular electric
field [7]. Beyond three layers, transport [27] and scanning tun-
neling microscopy [28] studies in ABCA graphene revealed
the development of a large gap at the neutrality point. Finally,
thicker rhombohedral stacks were considered [29,30], also
revealing important interaction effects near charge neutrality.

The dominant role of interaction effects in rhombohedral
graphene, as compared to its Bernal allotrope, is natu-
rally explained by a much higher density of states (DOS)
in the rhombohedral case. In particular, if one ignores
further-neighbor hopping in the tight-binding model, the
rhombohedral stacks of n layers have an energy dispersion
that depends on crystal momentum k away from the corner
of the Brillouin zone as ±|k|n, leading to a diverging DOS
at charge neutrality for n > 2 [31]. A transverse electric field
that breaks inversion symmetry gaps out the band touching,
leading to an even flatter dispersion that scales as k2n near the
bottom of the conduction band and top of the valence band.
A gap may also open by interactions at the neutrality point
[32,33]. However, already for ABC trilayer graphene, the
aforementioned approximation ignores particle-hole asymme-
try, trigonal warping, and other details of the band structure
that are known to be important from experiments and from
density functional theory calculations [33,34].

This highlights the need for a theory of interaction ef-
fects in multilayer graphene which incorporates the realistic

2469-9950/2023/107(10)/104502(16) 104502-1 ©2023 American Physical Society

https://orcid.org/0000-0001-9666-3543
https://orcid.org/0000-0002-2399-5827
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.104502&domain=pdf&date_stamp=2023-03-02
https://doi.org/10.1103/PhysRevB.107.104502


GHAZARYAN, HOLDER, BERG, AND SERBYN PHYSICAL REVIEW B 107, 104502 (2023)

band structure, extending the theory developed for bilayer and
ABC trilayer graphene [35–44]. The rich physics of bilayer
and ABC graphene away from the neutrality point suggests
multilayer graphene stacks as promising candidates for the
realization of symmetry-broken phases and superconductivity.

In this paper, we seek to identify the most promising mul-
tilayer graphene stacks for realizing correlated physics and
exotic superconductivity. To this end, we systematically study
the noninteracting DOS of different multilayer structures. We
identify the ABCA stacks of tetralayer graphene as the most
promising candidate with the highest available DOS, which
is further enhanced by the transverse electric field. For a
larger number of layers, we argue that stronger screening of
the electric field precludes any further enhancement of the
noninteracting DOS. Therefore, in the remainder of our paper,
we focus our attention on ABCA graphene.

ABCA graphene exhibits a rich fermiology as a function of
density and transverse electric field with a variety of distinct
Fermi surface (FS) types. This complex fermiology is due
to the trigonal warping and particle-hole asymmetry which
we include in our band structure model. We then consider
the effect of interactions. Using a Stoner model, we identify
regions of density and transverse electric fields that favor
spin and valley symmetry-broken phases. Finally, we study
the leading superconducting instabilities within the Kohn-
Luttinger scenario of superconductivity [45–50]. Within this
approach, we identify the most promising regions of the phase
diagram where the critical temperature of the superconducting
instability may be accessible experimentally. Importantly, for
a certain range of parameters, a superconducting instability
with p-wave pairing appears for a singly connected FS in each
valley, thereby realizing a topological superconducting phase
in ABCA tetralayer graphene. The topological superconduc-
tivity theoretically predicted in our paper does not require
strong doping [51–53], and could be experimentally verified
using transport and tunneling measurements.

We note that superconductivity in the surface states of
bulk rhombohedral graphite was considered in Refs. [54,55].
These works assumed the presence of attractive interactions
and demonstrated the enhancement of the critical temperature
due to the flat-band character of the surface states in bulk
graphite. In contrast, here we consider quasi-two-dimensional
systems with only few layers, which allows the application
of a transverse electric field so the carrier density can be
changed by gating. Thus, we do not operate near the neutrality
point, instead considering a finite carrier density and strong
inversion-breaking electric fields. Moreover, we rely on the
strong Coulomb repulsion that first gives rise to symmetry-
broken phases via Stoner transitions, and at the same time acts
as a pairing glue within the Kohn-Luttinger mechanism. In a
different direction, superconductivity was analyzed for vari-
ous graphene stackings using renormalization group [52,56].

II. SURVEY OF MULTILAYER GRAPHENE BAND
STRUCTURES AND DENSITY OF STATES

We begin with a survey of band structures and DOS of
graphene multilayers with different stackings. We consider
systems up to four layers. Adding more layers does not in-
troduce qualitative changes compared to tetralayers and may

prevent control of layer potentials by gating in experiments
due to the enhanced screening (see Appendix A). The consid-
ered multilayers include Bernal stacked bilayer (AB), trilayer
(ABA), tetralayer (ABAB), and corresponding rhombohedral
stacked allotropes (ABC, ABCA), see Fig. 1(a). In addition,
in the Appendix A, we consider the mixed stacking config-
uration ABCB, which was recently realized experimentally
[57]. The corresponding Hamiltonians are written in the basis
(A1, B1, A2, B2 . . . ), and the size of the Bloch Hamiltonian
matrix is thus 2n × 2n, where n is the number of layers;
see Appendix A. Stackings AB, ABC, ABAB, and ABCA
feature an inversion center, while ABA graphene has a mirror
symmetry. We also consider the presence of a layer asym-
metry potential due to the perpendicular electric field, �1

(defined such that the energy difference between the outer
layers is 2�1, and the energy varies linearly with the layer
index). Examples of the low-energy band structures along
the kx direction are shown in Fig. 1(a) for a relatively strong
but experimentally feasible value of �1 = 60 meV. Only the
AB, ABC, and ABCA stackings possess a gap proportional
to the applied electric field at charge neutrality. Including
the trigonal warping and particle-hole asymmetry leads to
a rich low-energy dispersion, with multiple FS topologies
separated by Van Hove singularities (VHSs). As an overall
trend, the DOS increases with increasing layer number. It
should be noted that the wave functions of the low-energy
bands of rhombohedral graphene stacks are mostly localized
on the outer layers, intuitively corresponding to (hybridized)
edge states [58]. In the three-dimensional limit, rhombohedral
graphite is gapless, possessing Dirac nodal lines [59–62].
Thus, we expect stronger screening and the appearance of
multiple low-energy bands for thicker rhombohedral stacks.

Figures 1(b) and 1(c) show the dependence of the DOS
on charge density for different stackings for �1 = 0 meV
and �1 = 60 meV, respectively. The top plots in Figs. 1(b)
and 1(c) show the DOS of Bernal stacks, revealing that AB
bilayer graphene has the highest DOS at large displacement
fields in the Bernal family. The bottom plots in Figs. 1(b)–
1(c) compare the AB stacking with the trilayer and tetralayer
rhombohedral stacks, illustrating the greatly increased DOS
of the latter. Notably, ABCA stacking features the largest
DOS for a broad region in density, making it a promising
candidate for interaction-driven physics. We will now explore
its properties in detail.

III. BAND STRUCTURE OF ABCA GRAPHENE

To reveal the large number of FS topologies and the rich
structure of the DOS of ABCA, we plot DOS as a function of
charge density ne and layer asymmetry �1 in Fig. 2(a). �1 is
proportional to the applied electric field, but the precise form
of the relation is determined by the screening in the system.
In the Appendix A, we consider Hartree-type screening and
show that values of �1 = 120 meV can be realized in experi-
ments through the application of a displacement field strength
of ∼2 V/nm.

On the hole side, ne < 0, we observe in total five different
FS topologies (ignoring for simplicity the region with �1 �
2 meV, where FS topology is complex and not relevant for the
current discussion). In particular, a VHS divides regions with
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FIG. 1. (a) Stacking order and corresponding energy dispersions for multilayers. The displacement field is �1 = 60 meV. The DOS as a
function of the charge density is shown for �1 = 0 meV (b) and �1 = 60 meV (c). Comparing the top plots in panels (b) and (c) reveals that
among Bernal stacks, AB graphene has broad regions with an enhanced DOS for large �1. Bottom plots in (b) and (c) show that the DOS of
ABC and ABCA graphene surpasses AB graphene by almost an order of magnitude.

FIG. 2. (a) Color plot of the DOS ρ for ABCA multilayer as a
function of displacement field �1 and carrier density ne. Different
representative Fermi surface geometries are shown that are separated
by VHSs. Letters next to the Fermi surfaces designate different
topologies, including single Fermi surface (S), three pockets (P3),
four pockets that include a central FS (P4), six pockets (P6), and
annular geometry consisting of two concentric Fermi surfaces (A).
(b) Cut of the density of states for ne > 0 at fixed value of �1 =
60 meV that reveals the existence of a single FS that is severely
corrugated, taking a flower shape (F).

FSs of three pockets denoted as P3, annular (A), and a simple
single FS (S) in each valley. Note that for higher density
range ne > −1 × 1012 cm−2, increasing �1 only changes the
direction of the three pockets, corresponding to π rotation of
the pockets around k = 0 point [see top and bottom P3 panels
on the hole side of Fig. 2(a)]. This transition is accomplished
by having a six-pocket FS (P6) in the vicinity of the VHS.
Overall, the FS topology of ABCA on the hole side is similar
to ABC trilayer graphene [6] with a somewhat enhanced DOS.
This similarity suggests that the Stoner ferromagnetism and
superconductivity mediated by electron-electron interactions
will be qualitatively similar in both systems [6,36].

The electron side (ne > 0) of the phase diagram of ABCA
is richer and qualitatively differs from the case of the ABC
graphene. For small values of �1, there is only a single trig-
onally warped FS (S). Notably, the direction of the trigonal
distortion (warping) is reversed upon increasing the charge
density. This reversal is illustrated by the two insets at the
bottom right corner of Fig. 2(a), that both show a simple FS
that increases in size and changes the distortion orientation.
In the Appendix A, we present the effective 2 × 2 model of
the Hamiltonian of ABCA graphene stacks that explains the
flipping of the trigonal warping. At the density where this
flipping occurs, the FS possesses sixfold symmetry.

For larger values of �1 exceeding 80 meV, the FS tran-
sitions from the three-pocket regime (P3) to an annulus (A).
This transition is similar to the one observed in the ABC
trilayer [6] but is associated with considerably higher values
of the DOS. In the range of �1 = 60−80 meV, the diagram
shows a higher order VHS. In the Appendix B, we zoom into
that region and show that the high DOS there can be attributed
to the existence of several higher order VHSs located nearby
in the parameter space. To highlight the complexity of FS
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topologies, we show the density dependence of the DOS at a
fixed value �1 = 60 meV in Fig. 2(b). For this �1, we observe
a transition between P3 and P4 FSs, see inset of Fig. 2(b).
Moreover, we observe the merging of four pockets into a
severely corrugated flower-shaped singly connected FS (F).
Although such topology of the FS is continuously connected
to the single contour FS (labeled as S) at larger densities, it
will play an important role in the subsequent discussion, as it
allows for the realization of topological superconductivity.

IV. STONER AND SUPERCONDUCTING INSTABILITIES
IN ABCA GRAPHENE

After considering the noninteracting DOS of ABCA
graphene, we address interaction effects. Inspired by the ex-
perimental results for ABC trilayer graphene [6], we first
address the emergence of Stoner ferromagnetism. After un-
derstanding the sequence of Stoner transitions, we investigate
the leading superconducting instability.

A. Stoner phase diagram

We consider effects of the electron-electron interaction and
the possibility of symmetry-broken phases by means of a
simple rigid band Stoner model which has been applied to
twisted bilayer and ABC trilayer systems [6,63]. The nonin-
teracting bands are fourfold degenerate due to the spin and
valley (denoted collectively as isospin) symmetry. Interaction
effects can lead to spontaneous symmetry breaking, lowering
the original fourfold flavor degeneracy. Assuming an SU(4)-
symmetric form of the interaction, one naturally obtains
phases with threefold degenerate, twofold degenerate, and
nondegenerate bands. Experiments in ABC trilayer graphene
[6] did not reveal any regions with threefold degenerate bands,
a finding that can be attributed to the existence of lattice-scale
interactions that break the SU(4) symmetry of the Coulomb
interaction. We account for such terms phenomenologically
by adding a Hund’s-type contribution to the interactions that
couple the spins of electrons from the two valleys.

The rigid Stoner model is defined via the grand potential
per area,

�

A
=

∑
α

E0(nα ) + Vint − μ
∑

α

nα, (1)

where E0(nα ) is the kinetic energy calculated from the non-
interacting band structure for flavor α with the charge density
nα and μ is the chemical potential. The interaction potential
Vint is taken as

Vint = UAu.c.

2

∑
α �=β

nαnβ + JAu.c.(n1 − n3)(n2 − n4). (2)

Here 1 = {K,↑}, 2 = {K ′,↑}, 3 = {K,↓}, 4 = {K ′,↓}, and
Au.c. = √

3a2/2 is the area of unit cell, U is the valley
and spin-isotropic interaction constant, and J is the inter-
valley spin-exchange Hund’s rule coupling constant, which
explicitly breaks SU(4) symmetry. J < 0 (J > 0) favors a
valley-unpolarized ferromagnetic (antiferromagnetic) phase
when only two flavors are occupied. To determine the realized
phase for each chemical potential„ we minimize the grand po-
tential for interaction strengths U = 15 eV and J = −4.5 eV.

FIG. 3. Stoner phase diagram for interaction strengths U =
15 eV and J = −4.5 eV. Numbers denote the degeneracy of the
phase and letters denote the topology of Fermi surfaces according
to Fig. 2. For example, 2A is a region where a twofold degenerate
annular Fermi surface is realized. For the case of multiple pockets,
we use the label P without differentiating between different numbers
of pockets (P3, P4, etc.). PIP denotes regions with partial isospin
polarization. In the PIP regions, we do not distinguish FS topologies.
Different phases are separated by cyan dashed lines.

The model thus includes two parameters for the interac-
tions: U , which controls the strength of the SU(4) symmetric
part of the Coulomb repulsion, and the Hund’s coupling J ,
which sets the magnitude of terms breaking SU(4) symmetry.
Using this parametrization, it is possible to qualitatively cap-
ture the phase diagram of ABC trilayer graphene [6], using
values of U = 30 eV and J = −9 eV. Expecting that interac-
tion strength is weaker in ABCA tetralayer graphene, since
adding more layers brings additional energy bands closer to
the neutrality point and enhances screening, we use U =
15 eV and J = −4.5 eV. Our choice of J < 0 implies that
the system prefers ferromagnetic ordering. This means that
a doubly degenerate phase will be spin polarized and valley
unpolarized as was observed in the ABC trilayer [6].

Figure 3 reveals the complex phase diagram obtained from
the rigid Stoner model. Due to the considerable magnitude
of the Hund’s ferromagnetic term, we do not observe phases
with threefold degeneracy. At low values of �1, we do not
observe any symmetry-broken phases in the electron-doped
side, whereas on the hole-doped side (ne < 0) we see the
sequence 4P, 2PIP, 2A, 2P, 1P of symmetry-broken phases,
where the numbers denote the degeneracy of the phase, while
letters denote the FS topology (the notation follows Fig. 2,
except for the case of multiple pockets, in which case we
do not differentiate between different numbers of pockets
and use the general label P). PIP corresponds to the partially
isospin polarized phase, where, for example, for 2PIP all four
flavors are filled, but two have smaller filling compared to
the remaining two. For PIP phases, we do not differentiate
between phases with distinct FS topologies. Upon increasing
the perpendicular electric field, extended regions of twofold
degenerate phases develop on the electron side with multiple
pockets, simple or an annular FS. Moreover, in the parts of
the 2S region for positive densities (ne ≈ 1.5 × 1012 cm−2),
the flower-type geometry of the FS is realized. This will have
important consequences on superconducting instabilities for
the charge densities and asymmetry potential values where
these phases are realized. At even higher values of �1, the
2A region prevails, while at lower densities one also observes
a region of single-degenerate FS (1P/A).
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Finally, let us comment on the choice of the interaction
parameters U and J and their effect on the phase diagram.
In the Appendix C, we present results for the phase diagram
with parameters identical to the ABC interaction strength used
in Ref. [6]. In that latter scenario, the significantly larger
interaction strength suppresses the PIP phases in the phase
diagram. In addition, since the spontaneous symmetry break-
ing is most prominent close to band edges and lower densities,
the increased interaction strength results in stronger symmetry
breaking in the regime of small densities. Generically, the
increased prevalence of symmetry-broken phases suppresses
superconductivity, since the growth of the DOS in the nor-
mal state (conducive to superconductivity) is preempted by a
Stoner instability.

B. Leading superconducting instabilities

We consider the potential superconducting instabilities of
ABCA graphene using the band structure as obtained from
the Stoner instability analysis. To this end, it is henceforth
assumed that pairing emerges due to electron-electron inter-
actions by the Kohn-Luttinger mechanism [45–47,49]. In this
mechanism, attractive interaction between electrons is me-
diated through electron-hole fluctuations of electronic fluid.
We account for these fluctuations through the random phase
approximation (RPA), as in Ref. [36].

To obtain the pairing interaction, we consider screened
Coulomb interaction between the electrons V0,q =
2πe2

εq tanh(qd ), where ε is the dielectric constant of ABCA
graphene and d is the distance to the metallic gates located on
both sides of the sample. We use ε = 4 and d = 36.9 nm. To
incorporate electron-hole fluctuations, we use RPA,

Vq = V0,q

1 + 	0,qV0,q
. (3)

This polarization function is proportional to N , 	0,q ∝ N ,
where N is the number of occupied flavors and this controls
both the screening and strength of superconducting instability
(see Appendix D). Coupling constant λ is obtained from diag-
onalizing the eigenvalue equation M(Vq)�k = λ�k, where
M(Vq) is a linear operator, which is proportional to vertex of
scattering of a pair of electrons from one momentum to the
other on a FS. The largest eigenvalue λ corresponds to the
leading superconducting instability, and the shape of the wave
function may be used to infer the corresponding symmetry of
the order parameter. For the case of p-wave symmetry, the na-
ture of the order parameter below Tc can be inferred from the
Ginzburg-Landau energy functional. Quite generally, when
system possesses C3 symmetry, a chiral superconducting state
is preferred [36].

Let us comment on the treatment of spin and valley de-
grees of freedom that affect the pairing symmetry [64]. Due
to SU(2) × SU(2) symmetry of the Hamiltonian spin-singlet
(valley-triplet) and spin-triplet (valley-singlet) pairings are de-
generate in our treatment. To lift that degeneracy, we need to
consider short-range intervalley Hund’s coupling. Following
the general treatment from our previous work [36], which
relies on an experimental finding that ferromagnetism is
the dominant instability in the system in s-wave (p-wave)
channels, spin-triplet (spin-singlet) pairing will be preferred.

Obviously, this argument applies in the regime when the
degeneracy is not lifted due to the Stoner mechanism. In the
regime where Stoner mechanism has lifted spin degeneracy
and the normal phase is spin polarized, only spin-triplet pair-
ing is possible.

We use the FSs and structure of noninteracting wave func-
tions obtained earlier for the FSs with broken degeneracy due
to Stoner mechanism. The parameter N = 4 (no broken sym-
metry) or 2 (twofold degenerate bands) controls the number of
occupied flavors, thereby affecting the screening. We assume
that phases with N = 1 are valley polarized, and thus have no
superconducting instability. As noted in Sec. III, on the hole
side the noninteracting phase diagram is qualitatively similar
to the hole side in ABC trilayer graphene. Therefore, here we
concentrate on the electron side of the phase diagram and on
the new superconducting phases that were not present in ABC
trilayers.

After obtaining the effective electron-electron interaction
within RPA, Vq, we compute the superconducting coupling
constant λ from the linearized BCS gap equation. In the weak
coupling approximation, λ determines the superconducting
critical temperature according to Tc = We−1/λ with W being
an energy cutoff, typically of the order of the Fermi energy.
Alongside λ, we also study the gap function to infer the sym-
metry of the order parameter of the superconducting phase.

First, we investigate the behavior of the coupling constant
at a relatively high value of �1. In that case, the FS geometry
changes from P3 to annular. The presence of two FS contours
results in considerable enhancement of superconductivity due
to the Kohn-Luttinger mechanism [48,50,65]. Similar to the
ABC trilayer case, we find the dominant instability to have
p-wave symmetry, both for N = 4 and N = 2 (see Fig. 4). For
a C3 symmetric system, the quartic term in the free energy
then favors a chiral p + ip state below Tc [36]. In addition,
we also find a small region with extended s-wave pairing (not
shown).

Next, we combine the superconducting ordering tendencies
with the Stoner phase diagram to identify regions where flavor
degeneracy due to symmetry breaking is compatible with the
normal phase of superconductor. As is clear from Fig. 4, for
twofold degeneracy (N = 2) there are indeed regions of large
λ which are not affected by the Stoner instability. Notably,
assuming that the N = 2 state is spin polarized, we predict the
realization of spin-triplet superconductivity with p + ip sym-
metry of the order parameter. However, despite the presence of
p-wave pairing, the superconducting phase is not topological.
The reason for this is the two contours of the annular FS,
which have opposite Chern numbers and overall add up to a
vanishing Chern number. When comparing the results of the
ABCA tetralayer with the ABC trilayer, the coupling constant
λ for ABCA graphene is considerably larger. As mentioned
earlier, this is related to the enhanced DOS of ABCA. There-
fore, we expect the superconducting instability to be more
robust than for the ABC trilayer.

C. Regime of topological superconductivity

For somewhat lower values of �1, when a single, simply
connected FS is present (see S and F contours in Fig. 2),
topological superconductivity can be realized. To this end,

104502-5



GHAZARYAN, HOLDER, BERG, AND SERBYN PHYSICAL REVIEW B 107, 104502 (2023)

FIG. 4. Dimensionless superconducting coupling constant λ in
ABCA tetralayer graphene as a function of density for �1 = 69 meV,
assuming a degeneracy N = 4 for (a) and N = 2 for (b). In both
cases, there is a very weak instability toward pairing in a high angular
momentum channel at high densities (cyan color), followed by a
much stronger p-wave pairing instability at lower densities (violet
color). Shaded regions correspond to the range of densities that are
inaccessible at the given degeneracy due to occurrence of the Stoner
phase transition which decreases the degeneracy and changes the
Fermi surface. Insets show Fermi surfaces and color denotes the
phase of the order parameter, visually representing the chiral nature
of the state.

we focus on the case when the Stoner transition reduces the
FS degeneracy to N = 2 and study the density dependence
of λ for two different values of �1. Figure 5(a) corresponds
to the value of �1 < 45 meV, when the FS contour is trig-
onally distorted and switches the direction of the trigonal
distortion as a function of electron density. At the position
where the direction of trigonal distortion is changed, the FS
enjoys an approximate sixfold rotation symmetry, resembling
a distorted hexagon. This shape of FS shows features of nest-
ing, leading to enhancement of static polarization at nonzero
momenta and also enhancing superconducting instability. The
peak of DOS appears at smaller densities than the position
where trigonal warping direction is flipped (not shown). Since
the DOS also affects superconducting instability, the coupling
constant and, correspondingly, the critical temperature shows
a maximum at the density which is in between the densities of
peak of DOS and hexagonal FS. The maximal values of λ in
this regime are lower than those obtained for the annular FS
(cf. Fig. 4). Nevertheless, the enhancement of λ suggests that
enhancement of the symmetry of the FS due to a change in the
trigonal warping direction gives rise to sizable critical temper-
atures within the framework of the Kohn-Luttinger approach,
even in the absence of a multipocket FS.

The superconducting state illustrated in Fig. 5(a) is topo-
logically nontrivial. For intermediate values of the charge
density, the pairing is p wave, and we expect the resulting
order parameter to have p + ip character. For N = 2, there is a

FIG. 5. Focusing on the superconducting instability in the regime
of twofold degenerate Fermi surfaces (N = 2) reveals a range of
densities with intermediate values of λ � 0.05 and a single, simply
connected Fermi surface. This situation is realized for �1 = 42 meV
(a) and �1 = 60 meV (b) and leads to topological superconductivity.

single FS in each valley. Each FS has a Chern number of one,
so in total the system has a Chern number of two. Notably,
for this value of �1, the Stoner instability that further reduces
the valley degeneracy occurs at lower electron densities. Thus,
we predict a dome-shaped superconducting region as a func-
tion of carrier density, terminated by Stoner transition at low
densities around ne ≈ 0.15 × 1012 cm−2.

The λ obtained for the topological superconductivity
from a single, convex FS turned out to be relatively small
[Fig. 5(a)]. This changes closer to the VHS, where the single
contour FS takes on a flower shape (F contour in Fig. 2).
As shown in Fig. 5(b), for the flower-shaped FS, λ grows
rapidly with decreasing density. Thus, we observe that within
the Kohn-Luttinger mechanism, the corrugated nature of the
single-contour FS substantially enhances the superconducting
coupling constant. Here the leading superconducting instabil-
ity again has p-wave symmetry with a nonzero Chern number
(cf. Appendix E). While λ rapidly increases with decreas-
ing density, the appearance of the Stoner transition at higher
densities [shaded region in Fig. 5(b)] in this case precludes
the development of the dome-shaped superconducting region.
Therefore, for large values of �1, superconductivity is only
limited to a narrow region adjacent to Stoner instability, simi-
lar to the ABC trilayer.

Overall, we find that the ABCA tetralayer is qualitatively
different from the ABC trilayer since it gives rise to re-
gions with robust topological superconductivity. In particular,
the Kohn-Luttinger mechanism suggests a p + ip topologi-
cal superconducting phase immediately preceding the Stoner
transition at large perpendicular electric fields, 58 meV �
�1 � 68 meV. At even larger fields, the superconducting tran-
sition of the ABCA tetralayer for the conduction band should
be similar to the ABC trilayer, with an annular-shaped FS and
a topologically trivial superconducting state.
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V. DISCUSSION

We investigated multilayer graphenes as potential candi-
dates for realization of symmetry-broken phases and super-
conductivity, identifying tetralayer ABCA stacks of graphene
as the most promising candidate for realizing interaction-
driven physics. The dominant superconducting instability has
a p-wave order parameter and typically occurs for the annu-
lar or pocket geometry of the FS. This is in line with the
established intuition that the Kohn-Luttinger mechanism is
enhanced in the presence of multipocket FSs [45,48]. Accord-
ing to our findings, the superconducting regions are expected
to trail the Stoner transitions—a qualitative prediction that
is testable in future experiments. Somewhat surprisingly, we
also found significant superconducting instabilities for certain
simply connected FSs that either have an approximate sixfold
rotation symmetry or are severely corrugated (i.e., the FS has
a flower shape). We predict that the superconducting phase
resulting from such simply connected FSs is topological.

The topological superconducting phase will manifest itself
with two topologically protected copropagating chiral edge
modes originating from the two valleys. These edge states can
be detected in tunneling experiments into the edges or through
their quantized contribution to the thermal Hall conductivity
of κXY = π2k2

BC/(6h) [66], where C is the Chern number of
the superconducting state.

We note that a scenario for (nontopological) superconduc-
tivity due to phonons has recently been proposed for displaced
bilayer systems [67] and ABCA graphene [68]. In contrast to
our results, the phonon mechanism for ABCA graphene pre-
dicts dome-shaped superconducting regions with s- or f -wave
symmetry for a broad range of densities and for large values of
the electric field. While we do find some regions with a dome-
shaped superconducting instability, in our analysis the most
robust superconducting states occur in narrow density ranges
near the border between two phases with different patterns of
valley and spin symmetry breaking. We note also that a setup
for realizing topological superconductivity by combining two
nontopological f -wave superconductors with a relative twist
angle has been proposed recently [69].

Topological superconductivity from a singly connected
FS is a distinct possibility that emerges only for tetralayer
graphene. Conceptually, it suggests that the Kohn-Luttinger
mechanism can give rise to a sizable instability also for the
simply connected FSs, provided these are sufficiently far from
a circular FS with parabolic dispersion. It would be interest-
ing to study the Kohn-Luttinger scenario for other systems
characterized by a strongly warped or distorted FS at strong
Coulomb interactions, thus uncovering optimal conditions for
superconductivity enhancement [49]. Independent of that, the
approximate sixfold symmetry of the FS which we find in
ABCA graphene is expected to occur in other multilayer two-
dimensional materials with a hexagonal lattice. An accurate
treatment of potential competing instabilities of such approx-
imately nested FS remains an interesting open question.

To conclude, we reveal that despite its relative complex-
ity, tetralayer graphene holds the promise of realizing new
physics, including topological superconductivity, that was
hitherto not observed in a graphene stacks with a smaller
number of layers. Although we identified ABCA graphene as

the most promising material, a large number of other potential
systems remain beyond the scope of our paper. This applies,
in particular, to uncoventional ABCB stacks, which have a
relatively high DOS as well (cf. Appendix A) and which were
recently realized experimentally [57]. In addition, our Stoner
model did not include possible nematic phases that would
break the threefold rotation symmetry of underlying graphene
lattice. These phases are likely to occur in the regime of low
density, when the FS typically contains several small pockets
[70]. We hope that joint future theoretical and experimental
studies will advance our understanding of interaction effects
of multilayer graphenes, thereby facilitating the realization of
new phases of matter.
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APPENDIX A: TIGHT-BINDING MODEL FOR BAND
STRUCTURE AND SCREENING

1. Bilayer and trilayer graphenes

To consider band structures of multilayer graphene, we
adopt the standard Slonczewski-Weiss-McClure parametriza-
tion of the tight-binding model [60]. We retain hopping
amplitudes effective up to three layers. Hopping structures and
values used throughout this paper are shown in Fig. 6. The
parameter values are adopted from Refs. [6,71]. In particular,
since we are interested in ABCA stacking, we use the param-
eters proposed for ABC graphene [71]. For certain stackings,
an additional hopping γ5 is present (see Fig. 6), which is
absent for ABC graphene. In this case, we adopt the value es-
timated for ABA graphene [71]. The band structure of bilayer
and trilayer graphene has been considered before [6,10,72–
75]. For completeness, we reproduce here the tight-binding
Hamiltonian of the bilayer and trilayer. Denoting Ai and Bi

for the different sublattice sites on layer i, for the bilayer the
basis is (A1, B1, A2, B2) and we write

HBG =

⎛
⎜⎜⎝

�1 v0π
† v4π

† v3π

v0π �1 + δ γ1 v4π
†

v4π γ1 −�1 + δ v0π
†

v3π
† v4π v0π −�1

⎞
⎟⎟⎠, (A1)

where π = τkx + iky (τ is the valley index) and vi =√
3aγi/2, a = 2.46 Å is the lattice constant of graphene. 2�1

is the potential difference between the layers and is propor-
tional to the perpendicular electric field and δ is the on-site
potential for the sublattice sites which have a direct neighbor
on the adjacent layer (see Fig. 6 for schematics and values
of parameters). For the trilayer case, we have two stackings
st = ABA and ABC, so we use the following parametrization:

Hst = Hst,0 + H�1 + H�2 , (A2)
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FIG. 6. Schematic representation of hopping and on-site parameters γi and δ (left) and corresponding values used in the current calculations
(right).

with

HABA,0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 v0π
† v4π

† v3π
1
2γ2 0

v0π δ γ1 v4π
† 0 1

2γ5

v4π γ1 δ v0π
† v4π γ1

v3π
† v4π v0π 0 v3π

† v4π
1
2γ2 0 v4π

† v3π 0 v0π
†

0 1
2γ5 γ1 v4π

† v0π δ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A3)

HABC,0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 v0π
† v4π

† v3π 0 1
2γ2

v0π δ γ1 v4π
† 0 0

v4π γ1 δ v0π
† v4π

† v3π

v3π
† v4π v0π δ γ1 v4π

†

0 0 v4π γ1 δ v0π
†

1
2γ2 0 v3π

† v4π v0π 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A4)

H�1 = diag(�1,�1, 0, 0,−�1,−�1), (A5)

H�2 = diag(�2,�2,−2�2,−2�2,�2,�2), (A6)

where we have used (A1, B1, A2, B2, A3, B3) as the basis. For
this case, 2�1 is the potential difference between outer layers
and 3�2 corresponds to the difference between the mean
potential of the outer layers and the middle layer. For trilayer
systems, we adopt the value �2 = −0.0023 eV.

2. Tetralayer graphenes

There are three possible energetically stable stackings of
tetralayer graphene, st = ABCA, ABAB, and ABAC (or,
equivalently, ABCB). Generally, we can write the Hamilto-
nian in the form

Hst = H0,st + H�1 + H�2 + H�3 , (A7)

where H�1 , H�2 , and H�3 describe the electrostatic potentials
on different layers and are independent of the stacking. In the
basis (A1, B1, A2, B2, A3, B3, A4, B4), they have the form

H�1 = diag

(
�1,�1,

�1

3
,
�1

3
,−�1

3
,−�1

3
,−�1,−�1

)
,

(A8)

H�2 = diag(�2,�2,−�2,−�2,−�2,−�2,�2,�2),
(A9)

H�3 = diag(0, 0,−�3,−�3,�3,�3, 0, 0). (A10)

Hst,0 is the 8 × 8 Hamiltonian for each stacking case. They are
written explicitly as

HABCA,0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 v0π
† v4π

† v3π 0 1
2γ2 0 0

v0π δ γ1 v4π
† 0 0 0 0

v4π γ1 δ v0π
† v4π

† v3π 0 1
2γ2

v3π
† v4π v0π δ γ1 v4π

† 0 0
0 0 v4π γ1 δ v0π

† v4π
† v3π

1
2γ2 0 v3π

† v4π v0π δ γ1 v4π
†

0 0 0 0 v4π γ1 δ v0π
†

0 0 1
2γ2 0 v3π

† v4π v0π 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A11)

HABAB,0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 v0π
† v4π

† v3π
1
2γ2 0 0 0

v0π δ γ1 v4π
† 0 1

2γ5 0 0
v4π γ1 δ v0π

† v4π γ1
1
2γ5 0

v3π
† v4π v0π 0 v3π

† v4π 0 1
2γ2

1
2γ2 0 v4π

† v3π 0 v0π
† v4π

† v3π

0 1
2γ5 γ1 v4π

† v0π δ γ1 v4π
†

0 0 1
2γ5 0 v4π γ1 δ v0π

†

0 0 0 1
2γ2 v3π

† v4π v0π 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A12)
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HABAC,0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 v0π
† v4π

† v3π
1
2γ2 0 0 0

v0π δ γ1 v4π
† 0 1

2γ5 0 0
v4π γ1 δ v0π

† v4π γ1 0 0

v3π
† v4π v0π 0 v3π

† v4π
1
2γ2 0

1
2γ2 0 v4π

† v3π δ v0π
† v4π γ1

0 1
2γ5 γ1 v4π

† v0π δ v3π
† v4π

0 0 0 1
2γ2 v4π

† v3π 0 v0π
†

0 0 0 0 γ1 v4π
† v0π δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A13)

In all calculations, we choose �2 = �3 = 0, since those are
supposed to be in a range of few meV (see the discussion of
the screening below) and will not have an important effect on
the conclusions of the paper.

3. Band structure of ABCAB graphene

In Fig. 7, we compare the DOS for ABCA tetralayer with
ABCAB pentalayer. While for �1 = 0 (generally for �1 <

10 meV), the additional layer gives some enhancement of the
DOS, for larger values of �1, the tetralayer has a comparable
or even larger DOS compared to the pentalayer. Due to the
low-lying additional bands in the latter, screening is expected
to be stronger for the pentalayer than for the tetralayer, nar-
rowing the experimentally accessible window in which the
asymmetry potential can be tuned. Therefore, adding more
layers ceases to be helpful beyond four layers, which is why
we concentrate on systems with up to four layers in the main
text.

4. Band structure of ABAC/ABCB graphene

In the family of multilayer graphene stackings up to four
layers, ABCB plays a special role since it both lacks an
inversion center and mirror symmetry [cf. Fig. 8(a)]. There-
fore, its band structure depends on the sign of the potential
�1. This is shown in Figs. 8(b) and 8(c). For �1 = 0, the
band structure is gapless and remains such also for negative
�1 < 0, at least up to �1 = −60 meV [cf. Fig. 8(c)]. It should
be mentioned that there is no symmetry protecting the band
crossing for �1 < 0. Figures 8(d) and 8(e) compares the DOS
for ABCB and ABCA stackings. For the chosen tight-binding
parameters, ABCA has a higher DOS for all values of the
asymmetry potential. Therefore, we expect interaction effects
and superconducting instabilities to be less pronounced in
ABCB graphene compared to ABCA.

5. Low-energy band structure of ABCA graphene

Since in the remainder of our paper we focus on ABCA
stacking, we derive the low-energy Hamiltonian correspond-
ing to A1 and B4 sublattices. Following the standard procedure

FIG. 7. Comparison of the DOS for tetralayer ABCA and pentalayer ABCAB for different values of the layer asymmetry potential. While
for �1 = 0 ABCAB graphene has a higher DOS, at other values of the displacement field the DOS of ABCA is comparable or larger.
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FIG. 8. Stacking order (a) and energy dispersion (b), (c) for ABCB graphene with zero and nonzero displacement field �1. (d), (e)
Comparison of the corresponding DOS of ABCB and ABCA stackings. Note the dependence of the band structure and DOS of ABCB
graphene on the sign of �1.

[73], we get

heff (k) = −δ
v2

0k2

γ 2
1

σ0 + �2σ0 + �1

(
1 + 4v2

0k2

3γ 2
1

)
σz − �3

v2
0k2

γ 2
1

σz

− v4
0k4

γ 3
1

(cos (4ϕk )σx + τ sin (4ϕk )σy)

︸ ︷︷ ︸
BP4

−2v0v4k2

γ1
σ0 − v2

3k2

γ1
(cos (2ϕk )σx − τ sin (2ϕk )σy)︸ ︷︷ ︸

BP2

+
(

2v0v3v4τ

γ 2
1

− v2
0v4γ2τ

γ 3
1

)(
k3

x − 3kxk2
y

)
σ0︸ ︷︷ ︸

BP0

+
(

3v2
0v3k3

γ 2
1

− v3
0γ2k3

γ 3
1

− v0γ2k

γ1

)
(τ cos ϕkσx + sin ϕkσy)

︸ ︷︷ ︸
BP1

, (A14)

where τ = ±1 is the valley index and we assumed γ2 
 γ1

and kept only v3/γ1 and v4/γ1 terms up to first order.
Figure 9 shows the progression of the energy levels with

the change of asymmetry potential �1 and comparing the
results from 8 × 8 Hamiltonian Eq. (A7) and from effective
Hamiltonian Eq. (A14). As shown in the main text, a nonzero
asymmetry potential opens a gap. For small values of �1, the
electron band has a single FS and for those cases the effective
Hamiltonian Eq. (A14) captures the main features quite well.
For higher values of �1 and at ne > −3 × 1012 cm−2 charge
densities of the hole band, the FS consists of three pockets or
an annulus. For those cases, the effective 2 × 2 model is less
useful since it is an expansion of an 8 × 8 Hamiltonian that
relies on k being a small parameter.

In the Hamiltonian Eq. (A14), we observe the presence of
the terms with Berry phase equal to 4, 2, and 1 denoted as
BP4, BP2, and BP1, respectively. The last line of Eq. (A14)
also contains a term (denoted as BP0) which causes additional
trigonal warping of the FS and is proportional to the identity
matrix in sublattice space, σ0. For the current values of tight-
binding parameters, this term gives a small contribution and
we do not consider it further. Figure 10 shows the change of
the FS of the electronic band as different terms in Eq. (A14)

are set to zero. For the case of BP1 = 0 and BP2 = 0, the
FS becomes circular. A nonzero BP2 term results in a six-
fold warping of the surface, so it becomes reminiscent of a
hexagon shape. Finally, the term with the Berry phase equal
to one (BP1) leads to trigonal warping. Since BP1 contains
contributions of order k and k3 with opposite signs, at a certain
value of the density these two contributions cancel each other.
Therefore, upon changing the carrier density it is possible to
flip the orientation of the trigonal warping. To the best of our
knowledge, this is the unique feature of the tetralayer that does
not appear in mono-, bi-, or trilayer graphenes.

6. Screening in tetralayer ABCA graphene

To determine the experimentally accessible range of �1

and the values of �2 and �3, we consider the self-consistent
Hartree screening due to the presence of gates [76]. Denoting
the layer potentials as ui, we define the �i parameters for
tetralayer graphene stacks as

�1 = u1 − u4

2
, (A15)

�2 = u1 − u2 − u3 + u4

4
, (A16)
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FIG. 9. (a)–(f) Progression of the energy bands of ABCA graphene as a function of kxa with the change of the asymmetry potential �1.
Blue (red) lines are from Hamiltonian Eq. (A7) [effective Hamiltonian Eq. (A14)]. (g) 3D plot of the energy bands for �1 = 30 meV from
Hamiltonian Eq. (A7).

�3 = u1 − 3u2 + 3u3 − u4

6
. (A17)

Assuming that average potential in the graphene multilayer is
zero yields the constraint u1 + u2 + u3 + u4 = 0. Then, using
standard electrostatics we can relate �i to the potential on the
gates and the charge densities ni at each layer:

�1 = 3

4

ed

εr

(
εtVt

Lt
− εbVb

Lb

)
+ e2d

4εr
[3(n1 − n4) + (n2 − n3)],

(A18)

�2 = −e2d

4εr
(n2 + n3), (A19)

�3 = −e2d

6εr
(n2 − n3). (A20)

Here d = 3.34 Å is the distance between the layers, while Vt

(Vb) is the potential on the top (bottom) gate, Lt (Lb) are the
distances between the top (bottom) gate, and the graphene
sample, while likewise εt (εb) are the dielectric constants be-
tween top (bottom) gate and the graphene sample. Identifying
�1,ext = 3

4
ed
εr

( εtVt
Lt

− εbVb
Lb

) as the external potential, we arrive
at a system of equations that can be solved self-consistently,

yielding an estimate of the external potentials accessible in
experiment. For concreteness, we fix the dielectric constant
that does not take into account self-consistent screening as
εr = 2. The value of this constant is smaller compared to the
value of ε = 4 in the main text, but the effective screening is
enhanced due to screening from itinerant charge degrees of
freedom. The displacement field is defined as D = εtVt

Lt
− εbVb

Lb

[71]. In experiment, the upper limit of D is typically in the
order of Dmax = 2.0 V/nm, which yields �max

1,ext ≈ 250 meV.
Figure 11 shows the dependence of the �1, �2, and

�3 potentials on external potential �1,ext as calculated from
self-consistent Hartree screening. Note that this calculation
requires knowledge of the charge-density distribution be-
tween layers. This has a contribution from all momenta in
the Brillouin zone and, therefore, a full zone sampling is
necessary. As can be seen from the figure, �2 and �3 are
in the range of a few meV and can be safely set to zero,
since that range does not have a noticeable effect on the
band structure. Taking into account the effect of the screening
and using the maximum value of the external potential, �1

can take values up to 100−120 meV, which exceeds any of
the displacement field parameters discussed in the main text
by a fair margin. Therefore, we expect that all the effects

FIG. 10. Fermi surfaces of ABCA graphene for �1 = 9 meV and n = 1.1 × 1012 cm−2 obtained from the effective Hamiltonian Eq. (A14)
is shown in (a). All subsequent panels illustrate the change of the FS when specific terms in effective Hamiltonian are set to zero. In (b),
BP2 = 3 title means the BP2 term was magnified three times to make the effect of the term more pronounced. When BP1 = 0, BP2 causes
sixfold warping of the Fermi surface. In contrast, BP1 causes trigonal warping (c). When both BP1 = 0 and BP2 = 0, the Fermi surface is
circular (d). In (b)–(d), red dashed lines show the FS from (a) for comparison.

104502-11



GHAZARYAN, HOLDER, BERG, AND SERBYN PHYSICAL REVIEW B 107, 104502 (2023)

FIG. 11. Dependence of �1 (a), �2 (b), and �3 (c) parameters for ABCA graphene on external layer asymmetry potential �1,ext determined
from self-consistent Hartree screening. The calculation employs 1000 × 1000 grid points from full Brillouin zone. Densities are given in units
of 1012 cm−2.

described in this paper can be observed with presently avail-
able methods.

APPENDIX B: FERMIOLOGY OF ABCA GRAPHENE

In this Appendix, we discuss the high DOS region on
the electron side where several VHSs meet. This leads to a
higher order VHS, similar to the one discussed in the context
of twisted bilayer graphene [77]. The resulting DOS as a
function of �1 and n is shown in Fig. 12, alongside with
a few representative FSs which emerge. The fermiology is
very rich in a narrow region of densities and displacement
fields in the vicinity of the higher order VHS. At the higher
order VHS, where five conventional VHSs nearly collide, we
observe three FSs originating from the same band. There are
also regions with four pockets with different topologies. The
divergence of the DOS is higher than at the individual VHS

FIG. 12. Color plot of the DOS ρ for the ABCA tetralayer, sim-
ilar to Fig. 2 in the main text but zoomed in for large displacement
field on the electron side. In this region of the phase diagram, several
VHSs occur in close proximity. Representative Fermi surfaces are
shown for selected locations, some of which appear only close to
these Lifshitz points and not anywhere else in the phase diagram.

and interaction effects are expected to be dominant. In the
Stoner interaction model considered in the main text (cf. next
section), the system gets strongly polarized and such FSs are
only observed in the region of the phase diagram with full spin
and valley polarization (1x degenerate).

APPENDIX C: STONER TRANSITIONS

As for the case of trilayer graphene [6], Stoner transitions
are obtained through the minimization of the grand potential
density

�

A
=

∑
α

E0(nα ) + Vint − μ
∑

α

nα, (C1)

where E0 is the kinetic energy and nα is density of each
flavor corresponding to spin and valley. Vint is the interaction
potential, which besides a SU(4) symmetric term also includes
the scattering between valleys, namely,

Vint = UAu.c.

2

∑
α �=β

nαnβ + JAu.c.(n1 − n3)(n2 − n4), (C2)

where we used the indexing 1 = {K,↑}, 2 = {K ′,↑}, 3 =
{K,↓}, 4 = {K ′,↓} and Au.c. = √

3a2/2 is the area of unit
cell. Here U and J are the interaction constants at the unit
cell level. For ABC trilayer parameter values U = 30 eV and
J = −9 eV has been used [6]. We show the Stoner phase
diagram for ABCA tetralayer in Fig. 13. Due to the larger
number of layers, we expect the strength of U and J to be

FIG. 13. Stoner phase diagram for interaction strengths U =
30 eV and J = −9 eV. The labels are the same as in the Stoner
diagram (Fig. 3) of the main text.
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FIG. 14. (a)-(b) Berry curvature obtained from BdG equations
for ABCA stacking assuming px + ipy pairing in the electronic band
for �1 = 42 meV, μ = 43.4 meV, and �p = 0.1 meV. Red dashed
lines show the Fermi surface of the parent Hamiltonian. The Chern
number due to the superconducting pairing is 1 for both valleys.
(c)-(d) The same as in top panel but for �1 = 60 meV and μ =
60.08 meV. The Chern number due to the superconducting pairing
is 1 for both valleys. (e)-(f) The same as in top panels but for
�1 = 69 meV and μ = 68.77 meV. The Chern number due to the
superconducting pairing is 0 for both valleys.

weaker for tetralayer compared to trilayer graphene. There-
fore, in the main text we show a Stoner phase diagram for
U = 15 eV and J = −4.5 eV. Comparing the two diagrams,
we see qualitatively similar phases. The triple degenerate
phase is absent in both cases. For weaker interaction strength,
the so-called PIP phases that are characterized by unequal
population of different flavors are more prevalent. More im-
portantly, for weaker values of the interaction, the fourfold
degenerate phase on the electron side spans a broader range
of densities and asymmetry potential, thereby also pushing the
double degenerate phase to higher �1 and lower n. Since the
electronic mechanism for superconductivity which we con-
sider in this paper only yields topological superconductivity
from a double degenerate parent phase, weaker values of
the interaction are therefore more favorable toward realizing
topological superconductivity.

Finally, let us comment on the magnitude of the values U
and J chosen above in comparison to the scale of Coulomb
interaction used to determine the superconducting instability.
The interaction parameter Ua2 in the Stoner model, where a
is the graphene lattice spacing, is expected to be comparable
to the screened Coulomb interaction at wave vector q of the

order of kF , which represents the typical momentum transfer
entering the exchange interaction. Since, typically a FS is
multipocket, it is not clear which of the different kF present
in the problem to choose. Nevertheless, for an order of magni-
tude estimate, we use the average kF of the different Fermi
pockets at a representative density and displacement field.
Taking the density n = 2 × 1012 cm−2 and estimating kF =
0.035 Å−1, we obtain for U , U ∝ 1

Au.c.

2πe2

ε(2kF ) , where we use the

area of the unit cell Au.c. = √
3a2/2 ≈ 5 Å2 with a = 0.24 nm.

Substituting the value of kF , we obtain U ∝ 18
ε

× 13.6 eV,
which for ε = 4 gives U ∝ 60 eV, which is of the same order
of magnitude of the values of U used in this paper.

APPENDIX D: LEADING SUPERCONDUCTING
INSTABILITIES

We investigate the superconducting instabilities driven by
the long-range Coulomb interaction. To this end, the effec-
tive interaction between electrons is calculated incorporating
particle-hole fluctuations through the RPA [36]. The interac-
tion potential is then given by

Vq = V0,q

1 + 	0,qV0,q
, (D1)

and the effective interaction is treated as instantaneous. Here
V0,q = 2πe2

εq tanh(qd ) is the screened Coulomb interaction and

	0,q = N
∑

k

|�k,q,τ |2 f (εk,τ ) − f (εk+q,τ )

εk+q,τ − εk,τ

is the static polarization function, where N defines flavor de-
generacy, εk,τ is the energy of the electron in valley τ , f (x) is
the Fermi-Dirac distribution, and �k,q,τ = 〈uk,τ |uk+q,τ 〉 is the
overlap matrix element between states of the electron band at
momenta k and k + q. Given the interaction potential Vq, the
superconducting instability can be determined by solving the
linearized BCS gap equation with a linear operator

[M�]k = −
∫ dk′

‖
(2π )2vk′

Vk−k′ |�k,k′−k,+1|2�k′ , (D2)

where the integral is projected onto FS, vk is the Fermi
velocity, and �k is the order parameter to be determined.
The calculation proceeds by discretizing (D2) and solving the
eigenvalue matrix equation Mk,k′φk′ = λφk [36].

APPENDIX E: TOPOLOGICAL SUPERCONDUCTIVITY

As is noted in the main text, for some range of parameters
we obtain a superconducting instability with p-wave symme-
try from the solution of the linearized gap equation. Based
on general thermodynamic arguments [36], one can conclude
that a system with C3 symmetry favors chiral px + ipy-type
pairing below Tc. This reasoning applies directly to the case
of the ABCA tetralayer, which has C3 symmetry. This raises
the interesting possibility that the resulting phase may be a
topological superconductor. We address this question by cal-
culating the Chern number due to the superconducting pairing
for three representative cases of the FS topology.

To this end, we construct the Bogoliubov–de Gennes
(BdG) Hamiltonian for the order parameter �k = �p(kx +
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iky)/k. Once the energies and wave functions of the BdG
equation are determined, the Berry curvature is calculated
in a discretized Brillouin zone through the method of link
variables [78]. Figure 14 shows the Berry curvature for three
different FSs for which the stability analysis yielded p-wave
pairing. Integrating the Berry curvature near K and K ′ valleys
shows that the Chern number due to the superconducting
pairing is 1 for each valley when the FS consists of a single

pocket. Therefore, both the top and middle panels in Fig. 14
correspond to topological superconductors with a total Chern
number equal 2. In contrast, for an annular FS the Berry
curvature near two Fermi surface contours has an opposite
sign and the overall Chern number is zero (cf. bottom panel in
Fig. 14). Therefore, for an annular Fermi surface, the resulting
superconducting state is topologically trivial despite having a
chiral px + ipy order parameter.
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