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Pure magnon valley currents in a patterned ferromagnetic thin film
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We propose a new method to generate pure magnon valley currents in ferromagnetic thin films with triangular
antidot lattices. We find that inhomogeneous distortions can generate pseudomagnetic fields which can be up
to 60 T for magnons, and give rise to well-defined Landau levels. The pseudomagnetic fields push magnons
at different valleys K and K′ transversely to opposite directions and accumulate at opposite edges, leading to
magnon valley Hall effect and forming pure magnon valley edge currents. We also find that the oppositely
directed pseudomagnetic fields result in magnon snake states at the center of the ribbon, forming pure magnon
valley currents. Our work might pave a new way to manipulate magnon transport by using artificial designed
structures.
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I. INTRODUCTION

Recently, there is rapidly growing interest to use quasipar-
ticles instead of electrons as potential information carriers,
aiming at reducing energy dissipation when the size of quan-
tum devices is shrunk to the nanoscale. One of the most
promising candidates is spin-wave spintronics, the so-called
magnonics, a field that refers to information communicating
and processing through spin waves (collective excitations of
the magnetization) [1–4]. In contrast to the traditional mag-
netic metals or semiconductors, the magnetic insulators, such
as yttrium iron garnet (YIG) [3,5–7], offer us a crucial oppor-
tunity to realize totally Joule-heat-free information transport.
Due to these desirable advantages, YIG has been a prototype
material to investigate the physics of many intriguing spin-
wave phenomena, such as spin-wave logic, coherent elastic
excitation of spin waves, Goos-Hänchen shift of spin-wave
beam, spin-wave fiber, and magnetic tweezer [8–12].

Dirac magnons [13–15], a magnetic counterpart of Dirac
electrons, have been realized in a patterned ferromagnetic
insulator YIG [16]. Artificial antidot lattices can be realized
experimentally by etching periodic arrays of holes in a fer-
romagnetic thin film [17,18]. In artificial lattices, one can
engineer the energy spectrum of carriers, e.g., electrons, pho-
tons, and magnons, by etching various holes and/or antidots
with chiral geometric structures, leading to many interesting
features, such as Dirac electrons, photons, or magnons, ar-
tifical gauge fields, and topological states [16,19–24]. Since
typical magnon energy ranges from gigahertz (GHz) to ter-
ahertz (THz) frequency, i.e., the wavelength of magnons is
about 100 nm [25–28], therefore it is possible to fabricate

*yunmeili@xmu.edu.cn
†wklou@semi.ac.cn
‡kchang@semi.ac.cn

artificial antidot lattices with the state-of-the-art techniques.
The artificial antidot lattices offer us a novel platform to
observe interesting phenomena of magnon spintronics.

In this work, we investigate theoretically the pure magnon
valley currents in a ferromagnetic thin film (FTF) with tri-
angular antidot lattices. Using the Landau-Lifshitz-Gilbert
(LLG) equation and lattice model, we show that magnons in
this system behave as Dirac magnons with a linear dispersion.
We also find that the magnon spectra in FTFs with trian-
gular antidot lattices with inhomogeneous distortions show
the well-defined Landau level fans, which are caused by the
artificial gauge field, i.e., the pseudomagnetic field, generated
by the lattice distortions. The pseudomagnetic fields emerging
at the K and K′ valleys of the Bullioun zone of the antidot
lattices point to opposite directions, and push magnons at the
K and K′ valleys to opposite directions, leading to magnon
valley Hall effect and forming pure magnon valley edge cur-
rents. By designing a specific configuration which generates
opposite pseudomagnetic fields in a FTF, we also find that
magnon snake states localize at the center of the ribbon due
to oppositely directed pseudomagnetic fields ±B on the two
sides of the ribbon, forming pure magnon valley currents,
counterpropagating in snake orbits.

This paper is organized as follows. In Sec. II, the magnon
spectra of triangular antidot lattices are calculated based on
the LLG equation and tight-binding model, respectively. In
Sec. III, we present numerical results and discussions about
the pure magnon valley currents in armchair- and zigzag-
edged ribbons. Finally, the results of this paper are briefly
summarized in Sec. IV.

II. THEORY

As shown in Fig. 1(a), we first consider a two-dimensional
(2D) artificial lattice consisting of periodic arrays of holes
etched in a FTF, such as YIG. Recently, the experimental
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FIG. 1. (a) Schematic of a triangular antidot lattice consisting of circular-shaped holes in a YIG thin film and the pure magnon valley
edge currents JK and JK′ arising from K and K′ valleys, respectively. The black dashed hexagon denotes the unit cell of the antidot lattices.
The two inequivalent sites in a unit cell are denoted as A and B and the two primitive vectors are denoted as a1 and a2. The nearest-neighbor
distance is a, the distance between two nearest antidots is d and the radius of antidots is r. (b) The lowest two bands of the magnon spectrum
of YIG thin film in a triangular antidot lattice. The green, red, and orange solid lines show the magnon band structures obtained from the
LLG equation with the DDI, without considering the dynamical components of the DDI and without the DDI, respectively. The gray and blue
dashed lines denote the fitting results using the TB model with the nearest- and next-nearest-neighbor interactions, respectively. The inset
above shows the first Brillouin zone of the magnonic crystal. Here, a = 50 nm, r = 25 nm, and the thickness of the YIG film is assumed as 4
nm. The spatial distributions of the (c) |hx|, (d) |hy|, (e) |mx|, (f) |my|, and (g) |Hz

dd| at the K (K′) point with the DDI.

group reported a successful fabrication of YIG thin film
with the thickness 4 nm and the out-of-plane magnetization
[29–31]. The embedded antidots are circular-shaped holes
which are arranged in a triangular lattice, i.e., a graphene-like
honeycomb configuration for magnons. In antidot lattices,
there are two inequivalent sites in a unit cell with basis vectors
a1 =

√
3a
2 (1,

√
3) and a2 =

√
3a
2 (−1,

√
3), where a = d/

√
3 is

the nearest-neighbor distance and d is the distance between
two nearest antidots. The corresponding reciprocal-lattice ba-
sis vectors are b1 = 2π

3a (
√

3, 1) and b2 = 2π
3a (−√

3, 1).
The spatiotemporal evolution of the magnetization M(r, t ),

the so-called magnetic dynamics, is governed by the LLG
equation

∂M(r, t )

∂t
=−γ M(r, t )× Heff (r, t ) + α

Ms
M(r, t ) × ∂M(r, t )

∂t
,

(1)

where γ is the gyromagnetic ratio, Ms the saturation mag-
netization, α the Gilbert damping constant, and Heff the
effective magnetic field consisting of three parts Heff = H0 +
Hex + Hdd. The first term is the external magnetic field H0 =
H0ez applied perpendicularly to the FTF, the second term
is the exchange field Hex = (∇ · λ2

ex∇ )M, with λex being

the exchange length, and the third term is the demagne-
tization field due to the nonlocal dipole-dipole interaction
(DDI) between the magnetic moments [32]. In the YIG thin
film, the damping effect [the second term of Eq. (1)] is
quite weak and could be safely neglected in the following
calculations in this paper without loss of generality [33].
Moreover, the magnetization M(r, t ) processes around the di-
rection of the saturation magnetization, which can be divided
into the out-of-plane (static) and the in-plane (dynamical)
components M(r, t ) = Msez + m(r, t ), with |m(r, t )| � Ms.
Meanwhile, the demagnetization field Hdd(r, t ) can also be
correspondingly divided into two components Hdd(r, t ) =
Hz

ddez + h(r, t ), with |h(r, t )| � Hz
dd. Defining two complex

fields m̃(r, t ) = mx(r, t ) − imy(r, t ) and h̃(r, t ) = hx(r, t ) −
ihy(r, t ), we can write the dissipationless LLG equation as

i
∂m̃(r, t )

∂t
= γ

(
H0 + Hz

dd

)
m̃(r, t ) − γ Msλ

2
ex∇2m̃(r, t )

− γ Msh̃(r, t ). (2)

In our calculations, we adopt the exchange boundary condi-
tion n · ∇m̃(r, t ) = 0 [34], where n is the normal direction
of the boundary. Similar to solving for the Schrödinger
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equation in periodic structures, we adopt m̃(r, t ) =
m̃k(r)ei(k·r−ωt ) and h̃(r, t ) = h̃k(r)ei(k·r−ωt ), where k is
the in-plane wavevector in the first Brillouin zone and ω is
the frequency of spin waves. Then Eq. (2) can be reduced to
an eigenvalue equation

ωm̃k(r) = γ
[
H0 + Hz

dd − Msλ
2
ex(−k2 + 2ik · ∇ + ∇2)

]
m̃k(r)

− γ Msh̃(r), (3)

and the exchange boundary reads n·∇m̃k(r)+in · km̃k(r)=0.
The demagnetization field in the FTF fulfills the Maxwell’s

equations [35]

∇×Hdd(r) = 0,∇ · [Hdd(r) + M(r)] = 0. (4)

According to Eq. (4), we introduce the magnetostatic potential
�(r), which is satisfied

Hdd(r) = −∇�(r) = Hz
ddez + h(r) = −∇z�

z − ∇x,yϕ(r).
(5)

Here, ϕ(r) is the x − y plane potential and we also employ the
Bloch theorem for it ϕ(r) = ϕk(r)eik·r. Then

∇2ϕk + 2ik · ∇ϕk − k2ϕk = ∇ · mk + ik · mk (6)

and hk = −(∇ϕk + ikϕk ) is the in-plane (dynamical) compo-
nent while

∇2�z = ∇ · Ms (7)

and Hz
dd = −∇�z is the out-of-plane (static) component. Con-

sequently, the magnon spectra of the antidot lattices can
be obtained by solving Eq. (3), Eq. (6), and Eq. (7) self-
consistently using the finite element method.

In order to understand the effect of inhomogeneous strain
for magnons, we can also map the Eq. (3) into a tight-binding
(TB) model with the nearest- and next-nearest-neighbor hop-
ping

H =
∑

i

t0(a†
i ai + b†

i bi ) −
∑
〈i j〉

t1(a†
i b j + H.c.)

−
∑
〈〈i j〉〉

t2(a†
i a j + b†

i b j + H.c.), (8)

where a†
i (b†

i ) creates and ai (bi ) annihilates a magnon
on the A (B) sublattice, t0 is the on-site energy, t1
is the nearest-neighbor hopping, and t2 is the next-
nearest-neighbor hopping. The energy spectrum is E±(k) =
t0 ± t1

√
3 + f (k) − t2 f (k), where f (k) = 2 cos(

√
3kxa) +

4 cos(
√

3
2 kxa) cos( 3

2 kya).
In general, inhomogeneous strain effect can strongly mod-

ify spectrum in a honeycomb lattice, which is well described
by introducing a pseudogauge field A(r) to the Dirac equa-
tion [36–39] (hereafter we take h̄ = e = 1)

H = vD

(
σ · (q + A) 0

0 −σ∗ · (q − A)

)
. (9)

Here, vD is the Dirac velocity, σ = (σx, σy) are Pauli matrices,
and q = (qx, qy) is the momentum measured from the Dirac
points in the first Brillouin zone. Therefore, an appropriate
spatially varying pseudogauge field A(r), usually acquired by
imposing a specific distortion in an artificial lattice system,

can induce a nonzero homogeneous pseudomagnetic field
B = ∇×A(r). Notice that the pseudomagnetic fields felt by
magnons at the K and K′ valleys point along opposite direc-
tions. Next we will see the pseudomagnetic fields induced by
inhomogeneous strain for magnons.

III. RESULTS AND DISCUSSIONS

The magnon band structures of the lowest two bands of
triangular antidot lattices obtained from the LLG equation are
plotted in Fig. 1(b), using proper parameters for YIG: μ0H0 =
0.5 T, Ms = 1.94×105 A/m, and λex = 13 nm [40]. As shown
in Fig. 1(b), compared with the case without the DDI (the
orange solid lines), we can see that the DDI induces an overall
energy shift (the green solid lines) and a minigap at the K
(K′) point, about 0.0145 GHz (see the left enlarged inset). As
shown in Figs. 1(c) and 1(d), the spatial distributions of |hx,y|
at the K (K′) point do not show C3v symmetry; it means that
the dynamical components of the DDI break C3v symmetry
and open a gap at the K (K′) point. Notice that |hx,y| are
quite small compared with |mx,y| and |Hz

dd|, and the spatial
distributions of |mx,y| show C3v symmetry at the K (K′) point
[see Figs. 1(c)–1(g)], therefore the dynamical components of
the DDI only induce a minigap at the K (K′) point. In a
thick film, the magnon spectrum shows a linear behavior near
the � point where the dipolar field dominates (the so-called
magnetostatic waves) [41]. However, in a thin film (4 nm in
this work), the exchange field is very important and cannot be
neglected. The magnon spectrum for the lowest-order mode
without antidots can be approximately given by [42]

ω=
√(

ω0 + ωMλ2
exk2

)[
ω0+ωMλ2

exk2 +ωM

(
1−1−e−kt

kt

)]
,

(10)

where ω0 = γ (H0 − Ms), ωM = γ Ms, and t is the thickness of
the thin film. When k is near the � point, we obtain ω ≈ ω0 +
ωMλ2

exk2 + ωMkt/4 by performing the Taylor expansion. The
magnon spectrum shows a linear behavior only when k is
much smaller, due to t being quite small in our work. The
magnon spectrum will be dominated by the parabolic behavior
quite quickly as k increases due to the strong exchange field.
In the presence of the antidot lattices, the effect of the dipolar
and exchange field cannot be simply described by Eq. (10)
as the solution of ϕk depends on the in-plane coordinates, and
the magnon dispersion near the � point is also no longer linear
[as shown in Fig. 1(b)].

Moreover, as shown in Fig. 1(b) by the red solid lines, if
we ignore the small dynamical components of the DDI, the
energy gap vanishes and the system becomes gapless (see the
right enlarged inset). We find that the static component of
the DDI is what mainly causes an overall energy shift
[Clearly, this feature can also be seen from the Schrödinger
equation Eq. (3)]. We find this constant shift is about
γ Hz

dd/2π = −6.3581 GHz. Therefore, we will safely neglect
the dynamical components and only consider the static com-
ponent of the DDI in the following discussion for simplicity.
As shown in Fig. 1(b) by the red solid lines, one can see that
the magnon spectrum displays a Dirac cone at the K (K′)
valley of the first Brillouin zone, showing the same behavior
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FIG. 2. (a) The illustration of undistorted ribbons of triangular antidot lattices with both the armchair and the zigzag directions. The
white dots represent embedded antidots. (b) The illustration of a shear lattice distortion for an armchair-edged ribbon. The magnon band
structures of armchair-edged ribbons with a width L = 8.66 µm (c) without a shear lattice distortion (c = 0) and (d) with a shear lattice
distortion (c = 0.001a−1) obtained from the LLG equation. The inset of (d) shows the relationship (red solid squares) and the linear fitting
(blue solid line) between the magnon Landau levels and Landau indexes at k = 0 obtained from the LLG equation. (e) The distributions of the
in-plane magnetization |m| for the three eigenstates labeled in (d), i.e., two bulk (U1 and U2 ) and two edge (U3 and U4) states. This distortion
corresponds to about 65.4 T for graphene systems.

as electrons in graphene. It means that the magnon inside the
patterned YIG thin film can be engineered to the gapless chiral
modes.

In addition, a magnonic analog of the TB model can be
established and all the hopping constants can be obtained
by fitting the magnon band structures at the M and K point
obtained by the LLG equation. The fitting hopping parameters
are t0 = 9.4959 GHz, t1 = 0.681 GHz, and t2 = −0.041 GHz.
As illustrated in Fig. 1(b), when the nearest- and next-nearest
neighbor are both taken into consideration, the magnon band
structures obtained from the TB model are in good agreement
with the numerical results obtained from the LLG equation in
a wide frequency range near the Dirac points. In order to
study strain effects in triangular antidot lattices, we consider
different strain configurations in armchair- and zigzag-edged
ribbons with specific inhomogeneous lattice distortions.

For armchair-edged ribbons, a shear lattice distortion with
a parabolic distortion vector uy = cx2, where c denotes the
distortion strength, is taken into account, as depicted in
Fig. 2(b). Obviously, this type of distortion is symmetric with

respect to x = 0 and possesses the translation symmetry along
the y direction. As shown in Fig. 2(a), the x axis is chosen
along a zigzag direction, and the strain-induced pseudovector
potential A(r) is written as A = β

2a (uxx − uyy,−2uxy), for a
small and smooth distortion [36]. Here β is a dimensionless
parameter and ui j = 1

2 ( ∂ui
∂x j

+ ∂u j

∂xi
) (i, j = x, y) is the distortion

tensor. As a consequence, the linearly varying pseudovector
potential is A = βc(0,−x)/a and the homogeneous pseudo-
magnetic field is Bz = −βc/a, which is perpendicular to the
plane.

The magnon band structures of armchair-edged ribbons
obtained from the LLG equation without and with distortions
are shown in Figs. 2(c) and 2(d). For undistorted ribbons
with c = 0 [see Fig. 2(c)], the band structures reveal that the
top of the valence band and the bottom of the conduction
band is located in k = 0 with a direct band gap. This is in
analogy with undistorted armchair-edged ribbons of graphene
when N 
= 3M − 1, where N is the number of dimer lines
for armchair-edged ribbons and M is an integer. For distorted
ribbons with a smooth distortion c = 0.001a−1 [see Fig. 2(d)],
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FIG. 3. (a) The illustration of a gradient antidot distortion for a zigzag-edged ribbon. The magnon band structures of zigzag-edged ribbons
with a width L = 7.575 µm (b) without a gradient antidot distortion (Bz = 0) and (c) with a gradient antidot distortion (Bz = −0.002a−2)
obtained from the LLG equation. The inset of (c) shows that Dirac points shift (red hollow circles) in the momentum space (δqx), well fitted
by a linear dependence (blue solid line) on the shape factor ξ from the LLG eaquation. The blue solid bars represent the analytically predicted
magnon Landau levels. (d) The distributions of the in-plane magnetization |m| for the three eigenstates labeled in (c), i.e., one bulk (W1) and
two edge (W2 and W3) states. This distortion corresponds to about 65.4 T for graphene systems.

the magnon bands quantize into a series of the Landau levels
of Dirac magnons. The magnon Landau spectrum takes the
form

ωn/2π = ω0/2π + sgn(n)ωc

√
|n|, (11)

where ωc = vD
√

2|Bz| with vD � 3×102 m/s is a magnonic
analog of the cyclotron frequency and n is the Landau index.
In Fig. 2(d), the n = 0 magnon Landau level separates into
two branches owing to the magnonic analog of particle-hole
symmetry breaking. Besides, the linear dependence between
the Landau level energies and Landau indexes

√
n at k = 0

[see the inset of Fig. 2(d)] indicates the emergence of the
magnon Landau levels, from which ωc = 0.0656 GHz and
β � 2 can be derived in accordance with the slope of the linear
relationship.

In order to demonstrate the magnon Landau levels more
clearly, we plot the spatial distributions of the lowest magnon
Landau level at different momenta and the frequencies of
the magnon Landau levels as a function of the indexes n
in Fig. 2(e) and the inset of Fig. 2(d), respectively. From
Fig. 2(e), one can see that the magnons are localized at
the center and edges for zero and finite in-plane momenta,

respectively. The linear dependence of the frequencies of the
magnon Landau levels on the Landau indexes

√
n indicates the

existence of the magnon Landau levels. The pseudomagnetic
fields point along the opposite directions at the K and K′
point, and push magnons towards the opposite edges of the
ribbons, leading to magnon valley Hall effect and forming
pure magnon valley edge currents JK and JK′ , as shown in
Fig. 1(a).

Next we turn to study the magnon spectra in zigzag-edged
ribbons. The pseudomagnetic fields in zigzag-edged ribbons
become very different from that in armchair-edged ribbons;
if we take an inhomogeneous distortion of the antidot lat-
tices, e.g., uy = cy2, the distortion would change the shapes
of the antidots irregularly as the antidot position varies, es-
pecially for large width of ribbon. Recently, a homogeneous
pseudomagnetic field was realized in a 2D artificial sonic
crystal with a gradient antidot distortion [43]. A similar idea is
feasible for magnon zigzag-edged ribbons to create a homoge-
neous pseudomagnetic field without misshaping honeycomb
configuration and changing the size of the unit cell. As dis-
played in Fig. 3(a), the linearly varying pseudogauge field
A(r) originates from a gradient antidot distortion along the
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FIG. 4. The illustration of (a) a shear lattice distortion for an armchair-edged ribbon and (d) a gradient antidot distortion for a zigzag-edged
ribbon with ±B configuration. The pure magnon valley snake orbit currents SK and SK′ are serpentine and counterpropagating. The magnon
band structures of (b) armchair-edged ribbons with a width L = 8.66 µm with an antisymmetric shear lattice distortion (c = 0.001a−1) and
(e) zigzag-edged ribbons with a width L = 7.575 µm with a symmetric gradient antidot distortion (Bz = −0.01a−2) obtained from the LLG
equation. The distributions of the in-plane magnetization |m| for the (c) two eigenstates (M1 and M2) labeled in (b), and (f) one eigenstate (N)
labeled in (e), indicating magnon snake states around the pseudomagnetic field interface.

y direction, while maintaining periodicity in the x direction.
When circular-shaped holes are deformed into elliptical-
shaped holes, the position shifted δq at the Dirac points occurs
along the mirror line in the first Brillouin zone, giving rise to
a pseudogauge field A = δq = (δqx, 0). The shape deviation
of an ellipse from a perfect circle will contribute a linearly de-
pendent momentum shift, which is characterized by a simple
formula δqx = cγ ξ . Here ξ = (q − p)/p is a dimensionless
shape factor with p and q being semimajor and semimi-
nor axis of elliptical-shaped holes and cγ is a coefficient
associated with an area ratio γ = 2π pq/3

√
3a2 of ellipses

to hexagons. As a result, a homogeneous pseudomagnetic
field Bz = −Ax(y)/y can be achieved by adopting a linearly
varying shape factor ξ (y) = −Bzy/cγ of antidots along the y
direction.

The inset of Fig. 3(c) shows the momentum shift of the
Dirac points linearly varying with the shape factor obtained
from the LLG equation with cγ = 0.1993π/a at γ � 0.3.
The magnon band structures of zigzag-edged ribbons with-
out and with distortions from the LLG equation are shown
in Figs. 3(b) and 3(c). For undistorted ribbons with the

pseudomagnetic field Bz = 0 [see Fig. 3(b)], similar to undis-
torted zigzag-edged ribbons of graphene, the top of the
valence band and the bottom of the conduction are degenerate
at |k|a = 2π/3

√
3. For distorted ribbons with the pseudo-

magnetic field Bz = −0.002a−2 [see Fig. 3(c)], the flat and
discrete magnon Landau levels clearly appear in the vicinity
of the Dirac frequency and its energies obtained numerically
agree very well with the analytical results [see the blue solid
bars in Fig. 3(c)]. For instance, the first Landau level gap �1

is 0.066 GHz in numerical results, which virtually agrees with
�1 = 0.065 GHz in analytical results obtained from Eq. (11).

In order to depict the mangon Landau levels, which are
caused by inhomogeneous distortions, more clearly in zigzag
case, we draw the spatial distributions of the in-plane magne-
tization |m| in Fig. 3(d). The spatial distributions of the lowest
magnon Landau level at ka = 2π/3

√
3 is localized at the cen-

ter of the zigzag-edged ribbon. While for the finite momenta
near the K and K′ valleys, magnons accumulate at the opposite
edges of the zigzag-edged ribbon [see Fig. 3(d)], leading to
magnon valley Hall effect and forming pure magnon valley
edge currents JK and JK′ , as shown in Fig. 1(a).
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Compared with the real magnetic lattices, artificial an-
tidot lattices can be used to design various and arbitrary
distortions and pseudomagnetic fields by manipulating antidot
arrays. In the previous discussions, we only study one case
where inhomogeneous distortions can induce homogeneous
pseudomagnetic fields. It is interesting to consider another
simple case where the inhomogeneous distortions induce
inhomogeneous pseudomagnetic fields, e.g., ±B configura-
tion. In this case, the pseudomagnetic field is reversed on
both sides of the ribbon, constructing a pseudomagnetic field
interface or domain wall at the center of the ribbon. For
armchair-edged ribbons, schematically shown in Fig. 4(a), the
shear lattice distortion is antisymmetric with the distortion
vector given by uy = sgn(x)cx2 and the corresponding pseu-
domagnetic field is Bz = −sgn(x)βc/a. For zigzag-edged
ribbons, schematically shown in Fig. 4(d), the gradient an-
tidot distortion and the linearly varying pseudogauge field
A(r) are both symmetric with respect to y = 0, generat-
ing two equal but oppositely directed pseudomagnetic fields,
Bz = −sgn(y)Ax(y)/y.

We show the magnon band structures for studied armchair-
and zigzag-edged ribbons under this inhomogeneous pseudo-
magnetic field in Figs. 4(b) and 4(e), respectively. The ±B
configuration of the pseudomagnetic fields lifts degeneracies
of the band and induces the band splitting. In contrast to the
homogeneous pseudomagnetic fields, the oppositely directed
pseudomagnetic fields on the two sides of the ribbon result in
the extraordinary states, known as magnon snake states. These
states are described by Figs. 4(c) and 4(f), which display the
spatial distributions of the in-plane magnetization |m| of the
splitting states. Apparently, these magnon snake states are
spatially located at the center of the ribbon. Therefore, if a

microwave driving field is applied to the antidot lattices to
excite spin waves, one shall be able to observe a serpentine
manner of snake states due to the cyclotron motion originating
from the pseudomagnetic field ±B, schematically shown in
Figs. 4(a) and 4(d), respectively. Thus, the counterpropagat-
ing pure magnon valley snake orbit currents SK and SK′ are
formed.

IV. CONCLUSIONS

In summary, we propose the pure magnon valley currents
in a patterned FTF. By engineering the artificial antidot lat-
tices, we can generate a homogeneous pseudomagnetic field
up to 60 T for magnons, which pushes magnons at the K
and K′ valleys towards the opposite edges of FTFs, leading
to magnon valley Hall effect and forming pure magnon valley
edge currents. We also propose that an inhomogeneous pseu-
domagnetic field induces magnon snake states at the center
of the ribbon and form pure magnon valley snake orbit cur-
rents. These robust edge states and snake states offer us new
dissipationless channels for spin transport, and a new way to
construct new spintronic devices.
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