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Crystal field excitation in the chiral helimagnet YbNi3Al9
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A crystal field level scheme of a uniaxial chiral helimagnet YbNi3Al9, exhibiting a chiral magnetic soliton
lattice state by Cu substitution for Ni, has been determined by inelastic neutron scattering. The ground and the
first excited doublets are separated by 44 K and are simply expressed as α|±7/2〉 + β|∓5/2〉, with α and β nearly
equal to ±1/

√
2. The easy axis of the crystal field anisotropy is the c axis when the excited levels are populated

at high temperatures and high magnetic fields. On the other hand, the magnetism at low temperatures and low
magnetic fields, where only the ground doublet is populated, is described by an easy-plane anisotropy which may
be treated as an S = 1/2 system with an anisotropic g factor, gxy = 3.02 and gz = 1.14. An orbital-dependent
exchange interaction is also discussed to explain the temperature dependence of the magnetic susceptibility based
on this level scheme.
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I. INTRODUCTION

In chiral magnets with neither a space inversion center
nor a mirror reflection plane, Dzyaloshinskii-Moriya antisym-
metric interaction arises in addition to the normal symmetric
exchange interaction, resulting in a helimagnetic structure
with a unique sense of rotation. This effect gives rise to
a nontrivial magnetic structure in magnetic fields applied
perpendicular to the helical propagation vector q in uniax-
ial helimagnets, where q is parallel to the principal axis in
the tetragonal, hexagonal, or trigonal crystal systems. This
is called a chiral magnetic soliton lattice, a periodic array
of helimagnetic kinks in a ferromagnetic background [1–3].
YbNi3Al9, belonging to a rhombohedral space group R32, has
been attracting interest as a rare-earth helimagnet exhibiting
such nontrivial magnetic structures. However, the 4 f electron
state of the Yb3+ ion (L = 3, S = 1/2, J = 7/2, g = 8/7) in
the crystalline electric field (CEF) of YbNi3Al9 has not been
understood well.

YbNi3Al9 exhibits a helical magnetic order below TN =
3.4 K with q = (0, 0, 0.82), with its magnetic moments lying
in the ab plane and propagating along the c axis [4–10]. When
a magnetic field is applied perpendicular to the c axis, the
helical order jumps to a forced ferromagnetic state at 0.1 T. In
Cu-substituted systems Yb(Ni1−xCux )3Al9, the critical field
increases to 1.0 T and a chiral soliton lattice state is realized
before the transition to the ferromagnetic state [11–13]. For
H ‖ c, the magnetization curve M(H ) exhibits a monotonic
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increase without a detectable anomaly at the transition from
the expected conical state to the induced ferromagnetic state.
These properties may suggest an easy-plane anisotropy of
the CEF ground state. It is remarked, however, that although
H ‖ c is a hard axis at low temperatures and low fields, Mc(H )
overtakes Mab(H ) above ∼4 T [4,13,14]. To proceed with
further study on the chiral magnetism in this rare-earth sys-
tem, knowledge of the CEF level scheme is indispensable.
Although the energy levels have been estimated from the
Schottky anomaly in specific heat and possible CEF param-
eters are proposed by the analysis of the M(H ) curves [4,14],
the level scheme should be confirmed by inelastic neutron
scattering (INS), which is the most direct method to observe
the magnetic excitations.

This paper is organized as follows. After describing the
experimental procedure in Sec. II, we present in Sec. III
the results of the INS experiment and the analysis using
the single-ion CEF model. The INS spectrum consists of
well-defined magnetic excitations. The level scheme we con-
clude explains the intensity ratio between the peaks and
the temperature (T ) dependence fairly well. In Sec. IV A,
we apply the single-ion CEF model to explain the magne-
tization curves, T dependence of the lattice parameters of
c and a, and the Schottky anomaly in the magnetic spe-
cific heat. In Sec. IV B, we discuss the detailed properties
of magnetic susceptibility that cannot be explained by the
single-ion model only. It is necessary to consider that the
exchange interaction between the CEF ground states is ferro-
magnetic, whereas the interaction involving the excited state
is antiferromagnetic. We discuss this model as an orbital-
dependent exchange interaction, which is also associated
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FIG. 1. Inelastic neutron scattering spectra of polycrystalline
YbNi3Al9 at 10, 30, and 50 K. The solid lines are the fitting results in
which the peak intensities, fi j in Eq. (5), were fixed to the calculated
values for the single-ion CEF model after taking the powder average.
The dashed and the dotted lines are the profiles of the constituent
peaks. The horizontal bars represent the instrumental energy resolu-
tion (full width at half maximum).

with the T dependence of the CEF excitation in the INS
intensity.

II. EXPERIMENT

Single crystals of YbNi3Al9 were prepared by an Al-flux
method following the procedure described in the literature
[11]. An INS experiment has been performed using the triple-
axis thermal neutron spectrometer TOPAN installed at the
research reactor JRR-3, Japan Atomic Energy Agency, Tokai,
Japan. A monochromatic incident beam was obtained by using
the 002 Bragg reflection of pyrolytic graphite (PG) crystals.
The energy of the scattered neutrons was analyzed using a
PG-002 analyzer at a constant final energy E f = 13.5 meV.
A PG filter was placed before the third collimator to cut
the higher harmonic neutrons. A sapphire filter was inserted
before the second collimator to reduce the background. The
collimator setting was open-30′-30′-60′. The measurement
was performed using a collection of small pieces of single
crystals with a total mass of 5.59 g consisting of more than
1000 pieces, which was wrapped in aluminum foil and sealed
in an aluminum cell with helium exchange gas. The sample
was cooled by using a closed-cycle refrigerator. The scattering
vector was fixed at Q = 1.94 Å−1 so that no Bragg diffraction
was superimposed at the elastic position.

III. RESULTS AND ANALYSIS

Figure 1 shows the inelastic neutron scattering function
S(E ), where E represents the energy transfer E = Ei − E f .
The observed intensity I (E ) has been converted to S(E ) by
correcting for the Ei-dependent monitor efficiency. The back-
ground intensity from the empty cell has been subtracted,
which was measured under the same experimental condition.
At the lowest temperature of 10 K, two inelastic peaks are
clearly observed at 3.8 and 5.9 meV. The widths are almost
resolution limited, suggesting an almost dispersionless mode.
At elevated temperatures of 30 and 50 K, the intensities of
the two peaks decrease and that around 2 meV increases,
indicating that the two former peaks are the CEF excitations
from the ground state to the excited states and the latter is
due to the excitation from the 3.8 meV state to the 5.9 meV
state. No significant signal was observed above 10 meV up
to 22 meV. From the analysis of the specific heat of a non-
magnetic reference compound LuNi3Al9, the phonon Debye
energy is estimated to be ∼16 meV and the density of states is
expected to extend up to approximately 50 meV. Therefore,
the negligibly small signal above 10 meV shows that the
phonon contribution is small and the inelastic signals below
10 meV can be ascribed to the magnetic excitations between
the CEF levels. More detailed estimation of the phonon con-
tribution to the intensity, using the data at 250 K, is described
in the Supplemental Material (SM) [15].

Let us analyze the scattering function S(E ) using the
single-ion CEF model. As proposed in Ref. [14], we assume
the following CEF Hamiltonian:

HCEF = B20O20 + B40O40 + B60O60 + B66O66

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a7 0 0 0 0 0 a75 0
0 a5 0 0 0 0 0 a75

0 0 a3 0 0 0 0 0
0 0 0 a1 0 0 0 0
0 0 0 0 a1 0 0 0
0 0 0 0 0 a3 0 0

a75 0 0 0 0 0 a5 0
0 a75 0 0 0 0 0 a7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(1)

where Blm are the CEF parameters and Olm are the Stevens
operator equivalents [16,17]. We neglect the B43 and B63

terms, as explained later. The diagonal elements in (1) are
represented by an = 〈± n

2 |HCEF|± n
2 〉. The B66 term gives

the off-diagonal elements, which are represented by a75 =
〈± 7

2 |HCEF|∓ 5
2 〉. The CEF eigenstates are given by

|ϕ1±〉 = α
∣∣± 7

2

〉 − β
∣∣∓ 5

2

〉
,

|ϕ2±〉 = β
∣∣± 7

2

〉 + α
∣∣∓ 5

2

〉
,

|ϕ3±〉 = ∣∣± 1
2

〉
,

|ϕ4±〉 = ∣∣± 3
2

〉
. (2)

From the analysis of M(H ), the ground state is expected to be
either |ϕ1〉 or |ϕ2〉 with nearly equal coefficients, α ≈ β [14].
The magnitudes of the nonzero off-diagonal elements for the
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magnetic dipole moment are

|〈ϕ1±|Jx,y|ϕ2∓〉| =
√

7|α2 − β2|/2,

|〈ϕ1±|Jz|ϕ2±〉| = 6|αβ|,
|〈ϕ1±|Jx,y|ϕ4∓〉| =

√
3|β|,

|〈ϕ2±|Jx,y|ϕ4∓〉| =
√

3|α|,
|〈ϕ3±|Jx,y|ϕ4±〉| =

√
15/2. (3)

A full description of the matrix elements is given in the SM
[15]. If we assume ϕ1 to be the ground state, two excitations
to ϕ2 and ϕ4 are allowed at the lowest temperature. Since
|〈ϕ1±|Jz|ϕ2±〉| is larger than |〈ϕ1±|Jx,y|ϕ4∓〉| when α ≈ β,
the intensity ratio at 10 K implies that ε2 − ε1 = 44 K and
ε4 − ε1 = 69 K. To know ε3, we need to observe the transition
between ϕ3 and ϕ4 at elevated temperatures.

Since no clear peak corresponding to this transition is
identified in the data at 30 and 50 K, we estimate ε3 from the
Schottky anomaly in specific heat [4]. By calculating Cmag(T ),
we see that ε3 should be located between 60 and 80 K so
that Cmag(T ) peaks at 20 K. If this is the case, ε3 and ε4 are
almost degenerate, and the inelastic peak corresponding to this
transition is expected to be less than 1 meV, which is hidden
in the elastic background in the present experiment.

An ideal case of α = β = 1/
√

2 is obtained when a7 = a5.
In this case, a75 = 22 K gives the splitting ε2 − ε1 = 44 K,
which is equivalent to B66 = 0.0231 K. By setting the un-
known energy ε3 − ε1, we obtain the other three parameters.
For example, when ε3 − ε1 = 64 K, then B20 = −1.393 K,
B40 = 0.0128 K, and B60 = 0.00128 K are deduced, which
give a7 = a5 = −22.25 K, a3 = 24.75 K, and a1 = 19.75 K.
Figure 2(a) shows the energy level scheme and the calculated
charge distribution [18].

The solid lines in Fig. 1 are the fits with the following
function:

S(E ) = CE

1 − e−E/kBT

∑
i, j

fi jP(E ; �i j, �), (4)

fi j = 2e−εi/kBT

Z

|〈ϕi|J⊥|ϕ j〉|2
ε j − εi

, (5)

where P(E ; �i j, �) represents the Lorentzian spectral func-
tion peaked at E = �i j with a half width at half maximum
(HWHM) �, which is assumed to be independent of the CEF
state. fi j is the theoretical intensity for the transition between
ϕi and ϕ j . J⊥ represents the magnetic dipole moment perpen-
dicular to the scattering vector. The fitting has been carried out
by using the calculated intensity for the ideal wave functions
with α = β = 1/

√
2. Only the peak position �i j = ε j − εi,

the HWHM, and the scale factor C were treated as fitting
parameters. This means that the intensity of the three inelastic
peaks corresponding to (i, j)=(1,2), (1,4), and (2,4) is fixed at
the calculated values, which are obtained by taking the powder
average. The intensity of the quasielastic peak centered at
E = 0 was treated as a free parameter to fit the tail of the
elastic peak. The incoherent background at E = 0 was also
included in the fitting. The fitting was carried out by taking
the convolution with the instrumental resolution. The resultant
parameters are summarized in Table I. The uncertainty values

|ϕ1〉 |ϕ2〉

|ϕ3〉

1√
2

| ± 7
2

| ∓ 5
2

1√
2

| ± 7
2

+ | ∓ 5
2

| ± 1
2

| ± 3
2

|ϕ4〉

FIG. 2. (a) Crystal field level scheme of YbNi3Al9. The energy
level of the |± 1

2 〉 state remains uncertain, which should be between
60 and 80 K. The arrows between the doublets represent the allowed
magnetic transitions in INS. (b) Top view of the local environment of
Yb and the 4 f charge distribution of the ϕ1 wave function. (c) Local
structure around Yb constructed from the nearest-neighbor Ni and Al
atoms.

represent 3σ of the fit, where the experimental resolution was
assumed to be exact.

As shown by the solid lines in Fig. 1, the data are well ex-
plained by the calculated intensities based on the level scheme
and the wave functions shown in Fig. 2(a). The excitation
energy decreases and the HWHM increases with increasing
temperature. These results can be attributed to the exchange
interaction between the localized f electrons and the itinerant
conduction electrons [19–21]. The slight increase in the scale
factor C at elevated temperatures shows that the single-ion
CEF model is insufficient to explain the data. This point will
be discussed in Sec. IV B. Experimentally, the T dependence
of the total INS intensity is consistent with that of the static
magnetic susceptibility χ (T ). Since χ (T ) also deviates from
the single-ion CEF calculation, it is natural that the T depen-
dence of the INS intensity also deviates from the single-ion
CEF calculation. This will be explained by considering an
exchange interaction in a mean-field approximation.

It is noted that the sequence of ϕ1 and ϕ2 cannot be deter-
mined in the present experiment and analysis. It is associated
with the sign of B66 and the sequence in Fig. 2(a) is reversed
if we take a negative B66, which does not affect the INS

TABLE I. Parameters obtained from the fitting. The number
in parentheses represents the uncertainty in the last digits of the
parameter.

T (K) �12 (meV) �14 (meV) � (meV) C

10 3.76(2) 5.93(4) 0.21(2) 370(9)
30 3.60(2) 5.74(6) 0.34(3) 450(12)
50 3.48(3) 5.62(9) 0.48(3) 500(16)
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FIG. 3. Magnetization curves of YbNi3Al9 at 10 and 1.4 K for
H ‖ c and H ⊥ c. Solid lines are the calculations for the single-ion
CEF model (see text).

spectrum. The relation of the charge distribution of ϕ1 illus-
trated in Fig. 2(b) and the atomic positions of Ni and Al is
also schematic; the relation between the CEF x axis and the
crystallographic a axis is unknown and has an ambiguity of
30◦ rotation. To clarify these points, a precise measurement
of the magnetic anisotropy in the ab plane could provide
useful information. More directly, nonresonant inelastic x-ray
scattering may resolve the sign of B66 as has been applied
to determine the sign of B44 in tetragonal CeCu2Si2 and
CeCu2Ge2 [22,23]. Hard x-ray photoemission spectroscopy is
also a candidate method [24].

Since the local symmetry of Yb is C3 in a strict sense,
the B43 and B63 terms should be included. This is because
the almost equilateral-triangular-prism-shaped environment
of the Yb ion, as illustrated in Fig. 2(c), is actually not the
perfect one. The upper and lower triangles are different and
twisted, which gives rise to B43 and B63 [25,26]. If these
terms exist, other off-diagonal elements appear in Eq. (1), |M〉
and |M ± 3〉 states mix, and therefore all three peaks should
arise at 10 K. However, the additional peak is too small to
be detected, which guarantees our assumption of the CEF
Hamiltonian in Eq. (1).

IV. DISCUSSIONS

A. Comparison with the bulk properties

To show the validity of the above CEF model, we compare
in Fig. 3 the calculated and measured M(H ) curves at 10 and
1.4 K for H ‖ c and H ⊥ c. The solid lines are the calculations
for the single-ion CEF model for the ideal wave functions with
α = β = 1/

√
2 and ε3 − ε1 = 64 K. Note that the calculation

does not take into account the internal field due to the mag-
netic order and does not explain the low field region at 1.4 K.
The helical order in the ab plane is due to the larger diagonal
element of |〈ϕ1±|Jx,y|ϕ1∓〉| = 1.32 than |〈ϕ1±|Jz|ϕ1±〉| = 0.5
(see SM for the full description of the matrix elements [15]).
The saturation moment of 1.5 µB for H ⊥ c is also due to
these in-plane diagonal elements. The gradual increase at high
fields is caused by the mixing with the excited states. The
large off-diagonal element |〈ϕ1±|Jz|ϕ2±〉| = 3 gives rise to the
Van-Vleck-type magnetization for H ‖ c, which becomes im-
portant at high fields and at high temperatures. This causes the

FIG. 4. Temperature dependences of the relative change in the
lattice parameters c and a obtained from the (0 0 33) and (6 0 0)
reflection, respectively, by single-crystal x-ray diffraction. The solid
lines are the fitting results as explained in the text. The dashed and
dotted lines for �c/c represent the background lattice contribution
and the magnetic contribution, respectively, for YbNi3Al9.

overtaking in the M(H ) curve at around 4 T. It is remarked that
the c axis becomes the CEF easy axis at high fields and at high
temperatures when the excited levels are populated, whereas
the ab plane becomes the easy plane at low fields and at low
temperatures when only the ground doublet is populated. The
consistency with the data is improved compared to that in
Ref. [14].

Another CEF effect is observed in the T dependences of
the lattice parameter shown in Fig. 4, which were measured by
single-crystal x-ray diffraction using a laboratory-based Cu-
Kα source. �c/c takes a minimum at around 50 K. Although
this kind of minimum is often observed in valence fluctuating
Yb compounds [27], this case in YbNi3Al9 is more likely to
be associated with the CEF effect since Yb is almost trivalent
in the whole temperature range [7]. The lattice parameter c
shrinks when the excited CEF states are more populated.

The linear thermal expansion coefficient for a uniaxial
pressure p is expressed as α = (∂L/∂T )p/L = κγC/V , where
V = AL is the volume of the sample with the length L and
the cross section A, κ = −(∂L/∂ p)T /L is the isothermal
compressibility, γ the Grüneisen parameter, and C the heat
capacity. By treating κγ /V as a parameter for the c and a axes,
respectively, we can calculate �c/c and �a/a by modeling
the heat capacity. The background curves of the lattice part
were fit with the Debye and a constant density of states con-
tributions, which are shown by the solid lines for LuNi3Al9
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FIG. 5. Comparison of the magnetic specific-heat data at zero
field with the calculation assuming a single-ion CEF model described
in the text.

and the dashed line for YbNi3Al9. The 4 f contribution to
�c/c was treated as being proportional to the change in the
thermal average of the (3z2 − r2)-type quadrupole moment,
〈O20〉={3〈J 2

z 〉 − J (J + 1)}/2, i.e.,

(�c/c)4 f = K (〈O20〉T − 〈O20〉T =0). (6)

Since the diagonal elements for the four CEF doublet states
are 〈O20〉1 = 〈O20〉2 = 6, 〈O20〉3 = −4.5, 〈O20〉4 = −7.5, and
the second-order Stevens factor for Yb3+ is positive, the
charge distributions of f electrons of ϕ1 and ϕ2 are elongated
along the c axis and those of ϕ3 and ϕ4 are extended in the ab
plane. This leads to the decrease in c when the excited levels
are more populated at elevated temperatures. We obtained
K = 2.91 × 10−5 for YbNi3Al9. The result of the fit is shown
by the solid and dotted lines in Fig. 4. In contrast to �c/c,
�a/a does not exhibit such a minimum. This is explained
by the fact that the (x2 − y2)-type quadrupole moment, O22 =√

3(J 2
x − J 2

y )/2, and the xy-type quadrupole moment, Oxy =√
3(JxJy + JyJx )/2, do not possess any diagonal element.
The calculated Cmag(T ) for the above level scheme with

ε3 = 64 K is compared with the data in Fig. 5. The smaller
peak height of the data is probably due to the Kondo effect
[28]. In a Cu-substituted system with x = 0.06, the peak of
Cmag(T ) shifts to the higher temperature and the magneti-
zation decreases [11,13]. These results show that the total
energy splitting increases and that α and β deviate from
1/

√
2. For example, if we assume B20 = −1.5, B40 = 0.022,

B60 = 0.0022, and B66 = 0.024 K, the CEF level scheme be-
comes ε1 = 0, ε2 = 48.4, ε3 = 72.2, and ε4 = 86.2 K, where
α = 0.578 and β = 0.816. As shown by the dashed line in
Fig. 5, the tendency of the change in Cmag(T ) for x = 0.06 can
partly be explained. The decreasing tendency in M(H ) at high
fields by the Ni substitution is also partly explained as shown
in the SM [15]. In any case, the CEF level scheme for x = 0.06
needs to be studied in more detail. It is also necessary to take
into account the stronger exchange interaction for x = 0.06
with higher TN (= 6.5 K) and HC (= 1.0 T) than those for
x = 0. The solid line for �c/c of Yb(Ni0.94Cu0.06)3Al9 in
Fig. 4 is the same as that for YbNi3Al9. This is because the
T dependence of �c/c is not as sensitive to this level scheme
as Cmag(T ).

FIG. 6. Temperature dependences of magnetic susceptibility
measured at 0.1 T. The data are taken from the literature [4]. The
dashed lines are the calculations for the single-ion CEF model. The
solid lines consider an orbital-dependent exchange interaction in a
mean-field approximation.

The almost ideal CEF states with α = β = 1/
√

2 in
YbNi3Al9 are, of course, considered to be accidental. First,
the negative B20 prefers the |±7/2〉 state to be the ground
state, which makes the c axis the easy axis. Second, the B40

and B60 terms lower the energy level of the |±5/2〉 state
and accidentally make them almost degenerate. Third, the
off-diagonal element due to the B66 term mixes these states
and lifts the degeneracy, and thereby allows the in-plane Jx,y

moment to have a large diagonal element. The ground doublet
can therefore be treated as an S = 1/2 spin system with an
anisotropic g factor, where gxy = 3.02 and gz = 1.14.

B. Orbital-dependent exchange interaction

Although the CEF level scheme deduced from the INS
data analysis generally explains the bulk properties well,
the single-ion CEF model is insufficient to explain the T
dependence of the INS intensity in detail as shown by the
T -dependent scale factor, which should, in principle, be a
constant. This is a natural consequence because the single-ion
CEF model itself is insufficient to explain the static mag-
netic susceptibility in detail, especially at low temperatures
where the exchange interaction plays an important role. In
Fig. 6, we compare the inverse magnetic susceptibility with
the calculation for the single-ion model with ε3 = 64 K and
α = β = 1/

√
2 as assumed in this paper. For H ‖ c, the data

are well reproduced by the single-ion model in the whole
temperature range. For H ‖ a, the data at high temperatures
above 50 K, where the CEF excited levels are populated,
can be explained by vertically shifting the calculated curve,
i.e., by considering a uniform antiferromagnetic exchange
interaction in a normal mean-field approximation. However,
with decreasing temperature, especially below 30 K where
the population of the ground state increases, the downward
curvature of the 1/χ data is enhanced, suggesting an increase
in the ferromagnetic interaction. These features suggest that
the exchange interaction is not uniform and is dependent on
the CEF states. It is necessary to consider an orbital-dependent
exchange interaction [14].

104425-5



MITSURU TSUKAGOSHI et al. PHYSICAL REVIEW B 107, 104425 (2023)

We assume that the molecular fields originating from
different CEF states have different effects [29]. The total
magnetic moment 〈μ〉 in a weak magnetic field H is expressed
as the sum of the diagonal (Curie) and the off-diagonal (Van
Vleck) contributions,

〈μ〉 =
∑

i

〈μi〉 +
∑
i, j

〈μ[i j]〉, (7)

where 〈μi〉 represents the diagonal moment of the CEF state
|ϕi〉 and 〈μ[i j]〉 is the Van Vleck moment induced between the
states |ϕi〉 and |ϕ j〉. These moments are expressed as

〈μi〉 = χ
(0)
i

⎛
⎝H +

∑
j

λi j〈μ j〉 +
∑

j,k

λi[ jk]〈μ[ jk]〉
⎞
⎠, (8)

〈μ[i j]〉 = χ
(0)
[i j]

⎛
⎝H +

∑
k

λk[i j]〈μk〉 +
∑
k,l

λ[i j][kl]〈μ[kl]〉
⎞
⎠, (9)

where χ
(0)
i is the Curie susceptibility of the CEF state |ϕi〉 and

χ
(0)
[i j] is the Van Vleck susceptibility between the states |ϕi〉 and

|ϕ j〉 in the single-ion calculation. λi j , λi[ jk], and λ[i j][kl] are the
mean-field exchange parameter between 〈μi〉 and 〈μ j〉, 〈μi〉
and 〈μ[ jk]〉, and 〈μ[i j]〉 and 〈μ[ jk]〉, respectively. In the present
case with four CEF levels, we have 10 exchange parameters
(four Curie and six Van Vleck) in total. Then, to reduce
the number of parameters for simplicity, we approximate the
above equations as follows:

〈μ〉 = 〈μc〉 + 〈μv〉, (10)

〈μc〉 = χ (0)
c (H + λcc〈μc〉 + λcv〈μv〉), (11)

〈μv〉 = χ (0)
v (H + λcv〈μc〉 + λvv〈μv〉), (12)

where 〈μc〉 and 〈μv〉 are the Curie and the Van Vleck
moments, respectively. When λcc = λcv = λvv (uniform ex-
change), we have a normal mean-field model.

The solid lines in Fig. 6 show the calculated 1/χ curves ob-
tained by assuming λ(a)

cc = λ(c)
cc = 5, λ(a)

cv = λ(c)
cv = −3, λ(a)

vv =
−20, and λ(c)

vv = 0. Note that these parameters are renewed
from those in Ref. [14] by using the renewed CEF level
scheme in this paper. By introducing a ferromagnetic ex-
change between the Curie moments and an antiferromagnetic
exchange between the Van Vleck moments, the increase in
the ferromagnetic response in χa for H ‖ a below 30 K is well
reproduced. This is due to the increasing contribution from the
Curie-term susceptibility of 〈ϕ1±|Jx|ϕ1∓〉 with ferromagnetic
interaction. The ferromagnetic interaction of the ground state
is also a key parameter in determining the long-range ordering
temperature [30]. At high temperatures where the excited lev-
els are populated, the antiferromagnetic interaction becomes
more important.

Let us finally come back to the INS intensity. In Fig. 7,
we compare the experimentally obtained INS intensities at 10,
30, and 50 K with the calculated intensities for the single-ion
model. The intensity is expressed by Ii j = C fi j in Eq. (4); as
for the experimental intensity, C includes the T dependence
as summarized in Table I, whereas for the calculation C is a
constant. The experimental intensities deviate from the calcu-
lations at high temperatures. On the other hand, if we compare

FIG. 7. Temperature dependences of the integrated intensities of
the 1–2 (I12), 1–4 (I14), 2–4 (I24), and 3–4 (I34) inelastic transitions
between the CEF levels (left axis). The experimental data at 10, 30,
and 50 K are represented by the marks. The calculated intensities
for the single-ion CEF model are represented by the dashed (I12 =
C f12), dot-dashed (I14 = C f14), double-dot-dashed (I24 = C f24), and
dotted (I34 = C f34) lines. The scale factor C for the calculation is
fixed to the value at 10 K. The intensities of the quasielastic (QE)
peak and the total intensities are also shown by the marks. The open
circles indicated by χexp (right axis) are the temperature dependence
of the static magnetic susceptibility (2χa + χc )/3 (powder average),
obtained from the data in the literature [4]. The solid line indicated
by χcalc represents the calculation for a mean-field model described
in the text. The constituent contributions from the Van Vleck and
the Curie terms are shown by the lines indicated by χ calc

VV and χ calc
C ,

respectively. The scales of the left and the right axes are proportional
to each other.

the total magnetic intensity, including the quasielastic one,
with the static magnetic susceptibility after taking the pow-
der average [χexp = (2χa + χc)/3], they are consistent. This
shows that the total intensity is properly estimated. There-
fore, it is necessary to take into account the aforementioned
orbital-dependent exchange interaction to calculate the INS
intensity. In other words, the experimental INS intensities
of I12, I14, and I24 include consequences of such exchange
interactions. In Fig. 7, the experimental I12 + I14 + I24 (not
including I34) is compared with χ calc

VV , the Van Vleck part of
χcalc (∝ I12 + I14 + I24 + I34). Also, the experimental IQE (in-
cluding I34) is compared with χ calc

C , the Curie part of χcalc (∝
I11 + I22 + I33 + I44). The T dependences of these intensities
are reasonably well reproduced by the mean-field calculation.

The T dependence of the intensity of the CEF excitation
is little affected by the exchange interaction between the lo-
calized f electrons and the conduction electrons when the
f electrons are well localized, as is the case in YbNi3Al9.
Although the peak width is broadened and the effective exci-
tation energy is weakly modified by the exchange interaction,
the T dependence of the peak intensity changes little from
that of the single-ion model without exchange interaction
[19,20]. The deviation of the intensity from the single-ion
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calculation as shown in Fig. 7, therefore, cannot be explained
by the Kondo effect, but should be attributed to the inte-
rionic exchange interaction between localized moments. To
confirm the orbital-dependent exchange interaction proposed
here, more precise measurement of the T dependence of the
intensities is necessary, especially the measurement of the
quasielastic peak intensity by using cold neutrons, and thereby
separately analyze the Curie term and the Van Vleck term
susceptibilities.

V. SUMMARY

In summary, we have performed an INS experiment on
a uniaxial chiral helimagnet YbNi3Al9 and determined the
CEF level scheme and the wave functions. The ground and
the first excited doublets are located at 0 and 44 K, re-
spectively, and are described approximately by (|±7/2〉 −
|∓5/2〉)/

√
2 or (|±7/2〉 + |∓5/2〉)/

√
2, which consistently

explain the easy-plane anisotropy of the ground state and the
helimagnetic ordering in the ab plane. It also explains the
easy-axis anisotropy along the c axis at high magnetic fields
and high temperatures where the excited levels are involved.
The |±3/2〉 state is at 69 K and the |±1/2〉 state is expected
to be between 60 and 80 K. We also analyzed the static
magnetic susceptibility by taking into account the orbital-

dependent exchange interaction. With respect to the magnetic
susceptibility in the ab plane, the ferromagnetic interaction
between the diagonal magnetic moments of the ground dou-
blet plays an important role at low temperatures, whereas at
high temperatures the antiferromagnetic interaction between
the off-diagonal moments becomes important, which is also
reflected in the INS intensity.
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