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Accurate finite-difference micromagnetics of magnets including RKKY interaction:
Analytical solution and comparison to standard micromagnetic codes
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Within this paper we show the importance of accurate implementations of the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions for antiferromagnetically coupled ferromagnetic layers with thicknesses exceeding
the exchange length. In order to evaluate the performance of different implementations of RKKY interaction,
we develop a benchmark problem by deriving the analytical formula for the saturation field of two infinitely
thick magnetic layers that are antiparallelly coupled. This benchmark problem shows that state of the art
implementations in commonly used finite-difference codes lead to errors of the saturation field that amount
to more than 20% for mesh sizes of 2 nm which is well below the exchange length of the material. In
order to improve the accuracy, we develop higher order cell-based and nodal-based finite-difference codes that
significantly reduce the error compared to state of the art implementations. For the second order cell-based
approach and first order nodal-based approach the error of the saturation field is reduced by about a factor of 10
(2% error) for the same mesh size of 2 nm.

DOI: 10.1103/PhysRevB.107.104424

I. INTRODUCTION

Magnetic thin films build the backbone of various ap-
plications ranging from magnetic recording [1] to magnetic
sensors [2]. Magnetic tunnel magnetoresistance (TMR) and
giant magnetoresistance (GMR) sensors rely on antiferromag-
netic coupled films in the reference system of the magnetic
sensing system. In addition to the application of synthetic an-
tiferromagnets in sensors, magnetic hard disk devices exhibit
antiferromagnetically coupled soft magnetic underlayers, to
minimize the magnetic stray field. The coupling strength of
these magnetic layers can be well tuned via Ruderman-Kittel-
Kasuya-Yosida (RKKY) interactions as an indirect magnetic
exchange coupling through the 3d , 4d , and 5d transition met-
als, such as Ru or Cr [3,4]. Other magnetic systems where
antiferromagnetic coupling has to be described accurately are
ferrimagnetic structures that may exhibit antiparallel coupling
between the net magnetization of the ferrimagnet and an adja-
cent ferromagnetic layer [5].

Due to the importance of antiferromagnetic coupling, mi-
cromagnetic codes usually offer the possibility to describe
RKKY interaction. Commonly this is achieved by scaling the
bulk exchange interaction to represent the RKKY interaction
[6,7].

The finite-difference method usually assumes a homo-
geneous magnetization in each simulation cell with the
finite-difference sampling points chosen in the cell centers
[6–9]. In contrast, finite-element micromagnetic codes dis-
cretize the magnetization with an affine basis function with the
unknown coefficients of the magnetization at the node points
of the finite-element mesh. In between these node points the
magnetization is commonly linearly interpolated [10]. The
RKKY interaction can be implemented by adding a surface
energy to the total energy, taking into account the RKKY
interaction energy.

In Sec. II the micromagnetic theory including the RKKY
interaction is reviewed. It is shown that the RKKY interac-
tion alters the boundary condition for the magnetization. In
Sec. III two analytical test cases are presented. The first test
case consists of infinitely thin antiferromagnetically coupled
ferromagnetic layers. The second test case is the opposing
limit of infinitely thick antiferromagnetically coupled ferro-
magnetic layers. As we show in this paper, commonly used
finite-difference micromagnetic codes are able to accurately
describe thin antiferromagnetic coupled layers. However,
these codes introduce significant errors both in the equilibrium
magnetization as well as in critical fields if domain walls
or partial domain walls are formed across the RKKY inter-
face. In order to reduce these errors, we derive higher order
implementations of the RKKY interaction of cell-centered
finite-difference codes. In Sec. IV the higher order cell-based
implementations and the node-based implementation are re-
viewed and compared to the result of the analytical benchmark
problems of Sec. III.

II. GENERAL MICROMAGNETIC DESCRIPTION
OF MAGNETIC REGIONS COUPLED

VIA RKKY INTERACTION

In the following, we derive the differential equation for
the magnetization in equilibrium from the total energy of the
magnet as shown in Fig. 1. Here we assume the magnetic
region �1 and �2. Within the domains �1 and �2 the mag-
netization m1(x) and m2(x) are continuous functions in space.
At the common interface ∂�1 ∩ ∂�2 the magnetization m1(x)
is not equal to m2(x) in general. At this interface we assume a
RKKY interaction.

For the considered general domain we start from the total
energy Etot that includes the exchange energy Eex, anisotropy
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FIG. 1. Considered domain of a magnet with regions �1 and �2

that are coupled via the common interface ∂�1 ∩ ∂�2.

energy Eani, Zeeman energy Eext, and RKKY surface interac-
tion Erkky:

Eani(m1, m2) = −
∫

�1

K1,1[m1 · k1]2dV

−
∫

�2

K1,2[m2 · k2]2dV, (2.1)

Eext (m1, m2) = −
∫

�1

Js,1m1 · HextdV

−
∫

�2

Js,2m2 · HextdV, (2.2)

Eex(m1, m2) =
∫

�1

[A1,x[∇mx,1]2 + A1,y[∇my,1]2

+ A1,z[∇mz,1]2]dV

+
∫

�2

[A2,x[∇mx,2]2 + A2,y[∇my,2]2

+ A2,z[∇mz,2]2]dV, (2.3)

Erkky(m1, m2) = −
∫

∂�1∩∂�2

Jrkkym1 · m2dA. (2.4)

In these equations K1,i is the anisotropy constant in material
i (i = 1 or 2); ki the direction of the uniaxial easy axis; Js,i

is the saturation magnetization; Ai,x, Ai,y, and Ai,z are the ex-
change constants in the x, y, and z directions [11], respectively.
Hext is the external field and Jrkky the RKKY constant between
the two materials.

The total energy is the sum of all energy terms:

Etot (m1, m2) = Eex(m1, m2) + Erkky(m1, m2)

+ Eext (m1, m2) + Eani(m1, m2). (2.5)

Here, we ignore the stray-field energy, since the analytic
benchmark problems that are constructed are without this
long range interaction. The stray field does not change the
boundary condition of the magnetization at interfaces.

The functional variation of the total energy according to
Eq. (2.5) with respect to the magnetization m1 and m2 and the
constraint |mi| = 1 is derived in detail in Appendix A. It leads
to Brown’s equation within the volumes �i for the equilibrium
magnetization mi:

mi × [2∇ · (Ai∇mi ) + Js,iHext + 2K1,i(mi · ki )ki] = 0.

(2.6)

For the interface to air, ∂�1 ∪ ∂�2\∂�1 ∩ ∂�2, the well-
known exchange boundary condition [12] applies:

(∇mi )n = 0. (2.7)

Here, n is the normal vector at the boundary.
At the interface ∂�1 ∩ ∂�2 where we assume RKKY

interaction the following Robin boundary condition [13] is
obtained:

2A1(∇m1)n = −Jrkky(m1 · m2)m1 + Jrkkym2. (2.8)

For Robin boundary conditions, the normal derivate of m1

is related to the value of m1 at the boundary. An equivalent
boundary condition is obtained for the magnetization m2 for
the common boundary ∂�1 ∩ ∂�2.

For the case of Jrkky = 0 the boundary condition Eq. (2.8)
reduces to the boundary condition of Eq. (2.7). For the case
of Jrkky = ∞ it follows that m1 = m2 on ∂�1 ∩ ∂�2. Hence,
we obtain from Eq. (2.8) and the equivalent equation for the
region �2 the boundary condition between two magnets with
different exchange constants [14]:

2A1(∇m1)n − 2A2(∇m2)n = 0. (2.9)

How a jump in the exchange constant can be correctly im-
plemented in finite-difference micromagnetic codes is shown
in Appendix C as well as with an alternative derivation in
Ref. [9].

III. ANALYTIC SOLUTIONS FOR RKKY
COUPLED LAYERS

A. Limit for thin layers—homogeneous
magnetization within the layers

Here we consider the two antiparallelly coupled layers (i.e.,
Jrkky < 0) to be sufficiently thin so that the magnetization re-
mains homogeneous within each layer. The thickness of each
layer is t . The total energy for a system without anisotropy
energy and demagnetizing energy is

Etot = − Jrkky

∫
F

m1 · m2dA

− Js

∫
�1

H · m1dV − Js

∫
�2

H · m2dV. (3.1)

We obtain for the total energy Etot divided by the surface
area F = ∂�1 ∩ ∂�2 between the two layers,

Etot/F = −Jrkky cos (2ϕ) − 2tJsHx cos (ϕ). (3.2)

Here the field is applied in the x direction and ϕ is the angle
between the x axis and magnetization.

The equilibrium angle is obtained from the solution of

1

2F

∂Etot

∂ϕ
= Jrkky sin (2ϕ) + tJsHx sin (ϕ)

= Jrkky2 sin (ϕ) cos (ϕ) + tJsHx sin (ϕ)

= 0, (3.3)

which leads to the nontrivial solution:

cos(ϕ) = m1,x = − tJsHx

2Jrkky
. (3.4)
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FIG. 2. Considered domain of the one-dimensional (1D) exam-
ple. The region �1 is from −∞ < z � 0 and �2 is from 0 � z < ∞.
At the center at z = 0 the spins are antiferromagnetically coupled.
Without external field the magnetization points parallel to the y axis
which is parallel to the anisotropy axis. A field is applied in the +x
direction.

Obviously, the magnetization gets saturated for fields

Hx,sat = −2Jrkky

tJs
. (3.5)

B. Limit for infinitely thick layers—inhomogeneous
magnetization within the layers

In order to test also RKKY implementations for the more
complicated case, where inhomogeneous states are formed
within the magnetic layers, we design a benchmark problem
with an analytical solution. We consider an infinite one-
dimensional (1D) magnet as shown in Fig. 2. At z = 0 the
spins are coupled antiferromagnetically due to RKKY inter-
action. We assume the anisotropy direction k = (0, 1, 0) and
Hext = (Hx, 0, 0). As initial conditions we set the magneti-
zation for z > 0 to my = 1 and for z < 0 to my = –1. For
vanishing external field this initial configuration is a stable
state. For increasing Hx the magnetization tends to align in
the x direction while the anisotropy and RKKY interaction act
against this alignment leading to inhomogeneous magnetiza-
tion configurations within the ferromagnetic layers; see Fig. 2.
Due to symmetry the magnetization for z > 0 can be written
as

m(z) =

⎛
⎜⎝cos [ϕ(z)]

sin [ϕ(z)]

0

⎞
⎟⎠, (3.6)

where ϕ(z) is the angle between the x axis and the magnetiza-
tion. At z = 0 the angle ϕ(z) shows, in general, a jump and it
holds as

ϕ(−z) = −ϕ(z). (3.7)

As derived in Appendix B one obtains the relation between
the angle ϕ0 = ϕ(z = 0) at one side of the RKKY interface

FIG. 3. Angle at the interface ϕ0 as function of the external field
Hx for different values of jred obtained from the solution of Eq. (3.8).

and the applied field:

Hx = 2K1

Js
hx = 2K1

Js

1

4

cos (2ϕ0) − 1 −
jred︷︸︸︷

J2
rkky

2AK1
sin2(2ϕ0)

cos (ϕ0) − 1
.

(3.8)

Here, we introduced the dimensionless exchange and ex-
ternal field parameter:

jred = J2
rkky

2AK1
, (3.9)

hx = JsHx

2K1
. (3.10)

The angle at the interface ϕ0 as a function of the external
field Hx for different values of jred obtained from the solution
of Eq. (3.8) is shown in Fig. 3.

After calculating the angle ϕ0 for a particular field Hx, also
the entire domain wall profile ϕ(z) can be obtained using
Eq. (B19). The analytic solution agrees very well with the
finite-element solution of MAGNUM.FE as shown in Fig. 4.
A discrepancy between the MUMAX3 [6] solution and the
analytic solution can be seen in Fig. 4.

The critical field hx,sat, where the entire structure is per-
fectly saturated, is derived in Appendix B as

Hx,sat = 2K1

Js
hx,sat = 2K1

Js

(
1 + J2

rkky

AK1

)
. (3.11)

In the following this saturation field will be used to test
various micromagnetic RKKY implementations.

IV. FINITE-DIFFERENCE (FD) DISCRETIZATION
OF RKKY INTERFACES

A. Cell-based FD approach

Here, we will show how RKKY interactions can be
implemented in cell-based finite-difference codes. RKKY

104424-3



SUESS, KORALTAN, SLANOVC, BRUCKNER, AND ABERT PHYSICAL REVIEW B 107, 104424 (2023)

FIG. 4. Spin angle ϕ as a function of the z coordinate for hx = 4,
jred = 2, and a mesh size of �z = 0.5 nm for (MAGNUM.FE) finite-
element code and (MUMAX3), a finite-difference code. The analytical
solution is according to Eqs. (3.8) and (B19).

interactions might lead to antiparallel or weak coupling be-
tween these coupled layers [4,15]. In the following we will
derive a zero, first, and second order method to treat these
interactions.

We assume an infinitely thin spacer layer at z = 0 as shown
in Fig. 5. The exchange field at the left side of the interface

FIG. 5. Finite-difference discretization for cell-based finite-
difference method. The discretization points for the magnetization
are located at the cell centers. The spacer layer which couples the
magnetization m (–�z/2) and the magnetization m (�z/2) is as-
sumed to be infinitely thin. The thickness of the two magnets is, in
this example, 3�z each.

(z = �z/2) is given by Eq. (A14) as

Hex

(
−�z

2

)
= 2A

Js
m′′

1

(
−�z

2

)
, (4.1)

where we approximate

m′′
1

(
−�z

2

)
= m′

1(0) − m′
1(−�z)

�z
+ O(�z2), (4.2)

with a truncation error O(�z2).
The boundary condition at z = 0 is given by

m′
1(0) = −Jrkky

2A1
[m1(0) · m2(0)]m1(0) + Jrkky

2A1
m2(0). (4.3)

Here it is important to note that it is relevant to consider
the first term on the right-hand side of Eq. (4.3). If this term
is neglected, significant deviations of the correct interpolation
are obtained for the higher order methods. Only for the inter-
polation order O(0) does this term cancel out and hence need
not be considered.

One obtains the following:

Hex

(
−�z

2

)

= Jrkky{m2(0) − [m1(0) · m2(0)]m1(0)} − 2Am′
1(−�z)

Js�z

+ O(�z2). (4.4)

The second term on the right-hand side of Eq. (4.2) is
simply obtained by a central finite-difference approximation
with a truncation error O(�z2):

m′
1(−�z) = m1

(−�z
2

)− m1
(− 3�z

2

)
�z

+ O(�z2). (4.5)

For the evaluation of m1(0) and m2(0) different interpola-
tion orders can be used:

Order (0). The magnetization in �1 and �2 is simply
approximated as

m1(0) = m1

(
−�z

2

)
+ O(�z), (4.6)

m2(0) = m2

(
�z

2

)
+ O(�z), (4.7)

with truncation errors O(�z) that are linear in �z.
By neglecting all terms parallel to m1(−�z

2 ) [hence the
second term on the right-hand side of Eq. (4.3) cancels out,
which is a commonly used interpolation in O(0) codes] we
get

Hex

(
−�z

2

)
= 1

Js�z2

[
Jrkky�zm2

(
�z

2

)

+ 2A1m1

(
−3�z

2

)]
. (4.8)

Order (1). We approximate the magnetization in �1 and �2

with a series expansion up to truncation errors of order

m1(0) = m1

(
−�z

2

)
+ �z

2
m′

1

(
−�z

2

)
+ O(�z2). (4.9)
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Using the backward difference approximation [16,17] of
the first derivative leads to

m′
1

(
−�z

2

)
= 1

�z

[
m1

(
−�z

2

)
− m1

(
−3�z

2

)]
+ O(�z),

(4.10)

m1(0) = m1

(
−�z

2

)
+ 1

2

[
m1

(
−�z

2

)
− m1

(
−3�z

2

)]
+ O(�z2). (4.11)

This extrapolation and the extrapolation of m2(0) that can
be done in an analog fashion is used within Eq. (4.4) for the
calculation of the effective field at the boundary cells.

Order (2). Increasing the interpolation order of the first and
second derivatives using the backward difference approxima-
tion of m′

1(−�z/2) and m′′
1(−�z/2) leads to

m1(0) = m1

(
−�z

2

)
+ �z

2
m′

1

(
−�z

2

)

+ 1

2

(
�z

2

)2

m′′
1

(
−�z

2

)
+ O(�z3). (4.12)

Using the backward difference approximation [16,17] of
the first derivative up to O(�z2) and the second derivative up
to O(�z), we obtain

m′
1

(
−�z

2

)
= 1

2�z

[
3m1

(
−�z

2

)
− 4m1

(
−3�z

2

)

+m1

(
−5�z

2

)]
+ O(�z2),

m′′
1

(
−�z

2

)
= 1

�z2

[
m1

(
−�z

2

)
− 2m1

(
−3�z

2

)

+ m1

(
−5�z

2

)]
+ O(�z), (4.13)

leading to

m1(0) ≈ 15

8
m1

(
−�z

2

)
− 5

4
m1

(
−3�z

2

)
+ 3

8
m1

(
−5�z

2

)
+ O(�z3). (4.14)

These zero, first, and second order interpolations can be
found in the code used for this paper [18]; we also im-
plemented it in the latest release of the finite-difference
code MAGNUM.NP release [19]. For the interpolation of
m′

1(−�z/2) we evaluated the O(�z) implementation accord-
ing to Eq. (4.5) as well as a higher order interpolation O(�z2).
For the investigated example the O(�z2) interpolation of
m′

1(−�z/2) did not show considerable improvement of the
results.

It is worth noting that for the cell-based finite-difference
method the ghost cell has to be set on the left boundary as fol-
lows (an equivalent condition is used for the right boundary):

m−7�z/2 = m−5�z/2. (4.15)

If

m−7�z/2 = m−3�z/2 (4.16)

FIG. 6. Finite-difference discretization for node-based finite-
difference method. The magnetization is given on the mesh nodes.
The spacer layer which couples the magnetization m (–�z/2) and
the magnetization m (�z/2) has a thickness of �z. The thickness of
the two magnets is, in this example, 2�z each.

is used as the boundary condition (as it is done for node-based
finite-difference codes) a significant deviation of the results is
obtained as shown in Fig. 7 (cell O1, low order BC), where
BC stands for boundary condition.

B. Node-based FD approach

Since the inclusion of RKKY interactions is more naturally
possible within a node-based finite-difference scheme, we
also show this approach here.

We assume a spacer layer between the nodes at z = –�z/2
and z = �z/2 as shown in Fig. 6. The coupling between
the nodes is given by Eq. (2.4) which leads to the boundary
condition given by Eq. (2.8). In order to derive the exchange
field at z = –�z/2 we again start from

Hex

(
−�z

2

)
= 2A

Js
m′

1

(
−�z

2

)
, (4.17)

where we approximate

m′′
1

(
−�z

2

)
= m′

1
(−�z

2

)− m′
1(−�z)

�z/2
. (4.18)

From the boundary condition Eq. (2.8) at z = −�z/2 fol-
lows by neglecting again all terms parallel to m1(−�z

2 ) (since
it does not change the dynamics of the system):

m′
1

(
−�z

2

)
= Jrkky

2A1
m2

(
�z

2

)
. (4.19)

Hence,

Hex

(
−�z

2

)
= 2

Js�z

[
Jrkkym2

(
�z

2

)
− 2Am′

1(−�z)

]
.

(4.20)
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The second term on the right-hand side of Eq. (4.20) is
again obtained by a finite-difference approximation:

m′
1(−�z) = m1

(−�z
2

)− m1
(− 3�z

2

)
�z

. (4.21)

Hence, we obtain the following for the exchange field:

Hex

(
−�z

2

)
= 2

Js�z2

[
Jrkky�zm2

(
�z

2

)

+ 2A1m1

(
−3�z

2

)]
. (4.22)

It is worth noting that this formula for the RKKY inter-
face contains a term 4A1, whereas the formula within the
bulk of the magnet contains a term of 2A as can be seen in
Eq. (C14). In Appendix D it is shown that in one-dimensional
(1D) systems the calculation of the effective field according to
Eq. (4.22) is equivalent to a 1D finite-element implementation
of RKKY interaction.

For this nodal-based finite-difference method, the ghost
cell has to be set on the left boundary following the central
difference approximation of Brown’s boundary condition (an
equivalent condition is used for the right boundary):

m−7�z/2 = m−3�z/2. (4.23)

If the one-sided finite difference

m−7�z/2 = m−5�z/2 (4.24)

is used as the boundary condition a significant deviation of the
results is obtained as shown in Fig. 7 (node, low order BC).

V. COMPARISON OF ANALYTICAL SOLUTION WITH
MICROMAGNETIC SIMULATIONS

A. Limit for thin layers—homogeneous
magnetization within the layers

All tested micromagnetic codes were able to accurately
reproduce the hysteresis loop of two antiferromagnetic thin
layers as shown in Fig. 7 (material parameters are listed in
the caption of Fig. 7). Here, the stray field is not considered.
This test case was primarily chosen to validate the different
definitions of the exchange implementations of the codes,
which correspond to

Erkky,OOMMF(m1, m2) = −2
∫

∂�1∩∂�2

Jrkkym1 · m2dA, (5.1)

Erkky,MUMAX(m1, m2) = −
∫

∂�1∩∂�2

Jrkkym1 · m2dA. (5.2)

It is interesting to note that the proper implementation of
the Neumann boundary condition at the air surface is impor-
tant for accurate results. Figure 7 (paper, node) shows the
node-based RKKY implementation according to Eq. (4.22)
and the correct boundary condition according to Eq. (4.23).
Here perfect agreement with the analytic result (3.5) is ob-
served. In contrast Fig. 7 (paper, node, low order BC) shows
the same node-based RKKY implementation according to
Eq. (4.22) but a different boundary condition according to

FIG. 7. Hysteresis loop of two antiferromagnetic coupled thin
films, where each layer has a thickness of t = 2 nm, A = 5 × 10−11

J/m, K1 = 0, Js = 1 T. The analytic result is obtained from
Eq. (3.5). Different finite-difference implementations are tested.
(OOMMF) Jrkky,oommf = –0.001 J/m2. (MUMAX3) Solution
Jrkky,mumax = –0.002 J/m2. (Paper, cell O1) Cell-based RKKY
implementation according to Eq. (4.6) and boundary condition
according to Eq. (4.15) and Jrkky,this paper = –0.002 J/m2. (Paper, cell
O1, low order BC) Cell-based RKKY implementation according to
Eq. (4.6) and boundary condition according to (4.16). (Paper, node)
Node-based RKKY implementation according to Eq. (4.22) and the
boundary condition according to Eq. (4.23). (Paper, node, low order
BC) Node-based RKKY implementation according to Eq. (4.22) and
the boundary condition according to Eq. (4.24).

Eq. (4.24). Here, a significant error occurs. An equivalent
situation can be observed with the cell-based implementation.

B. Limit for thick layers—inhomogeneous
magnetization within the layers

The test cases for thin magnetic layers, where no partial
domain walls arise within the magnetic layers can be well
reproduced by all micromagnetic codes. The situation is dif-
ferent if inhomogeneous states are formed within the magnetic
layers. To realize this situation we use the analytically de-
rived benchmark problem of the saturation field according to
Eq. (3.11).

In the following, we perform micromagnetic simulations
for the parameters A = 10−11 J/m, K1 = 105 J/m3, Js = 1
T, and Jrkky = −2 × 10−3 J/m2 using the finite-element code
MAGNUM.FE [20] and different state of the art finite-difference
codes (MUMAX and OOMMF) as well as different RKKY imple-
mentations according to this paper. The external field is slowly
increased within 500 ns from hx = 3.5 to hx = 5.5, where hx

is the field in units of 2K1/Js. The hysteresis loop close to the
saturation field is shown in Fig. 8. Excellent agreement be-
tween the finite-element solution obtained by MAGNUM.FE and
the analytic solution, which is hx,crit = 5, can be obtained for
various mesh sizes as shown in Fig. 9. The saturation field is
evaluated by calculating the second derivative of the Mx(Hx ).
The field where the second derivative has its minimum value
is evaluated as the saturation field Hx,sat, since it describes the

104424-6



ACCURATE FINITE-DIFFERENCE MICROMAGNETICS OF … PHYSICAL REVIEW B 107, 104424 (2023)

FIG. 8. (a) Micromagnetically obtained Mx (Hx ) loop for a struc-
ture with lateral dimensions −400 nm < z < 400 nm, –1 nm < x <

1 nm, –1 nm < y < 1 nm for different mesh sizes �z and dif-
ferent codes. (MUMAX) Finite-difference code with cell-centered
magnetization. (OOMMF) Finite-difference code with the same in-
terpolation as MUMAX. (Paper,node) nodal-based finite-difference
code according to Eq. (4.22) for the RKKY interaction. (Paper, cell
O2) cell-based finite-difference code according to Eq. (4.14) for
the RKKY interaction. The analytically obtained saturation field is
Hx,sat,analytic = 5 × 2K1/Js.

FIG. 9. Obtained saturation field Hx,sat for the same example as
Fig. 8 for different discretization lengths for different micromagnetic
methods. (MUMAX) Only in the limit of infinitely small mesh size is
good agreement with the analytic value obtained. MAGNUM.FE is a
finite-element code with linear shape functions for the magnetization
between the node points. The finite-element method shows a much
better convergence. (Paper,node) The finite-difference implementa-
tion according to Eq. (4.22), which is equivalent to the finite-element
1D case, shows similarly good convergence. (Paper, cell O0) the
cell-centered finite-difference method order zero of the interpolation
of m0 according to Eq. (4.8). (Paper, cell O1) the cell-centered finite-
difference method of order 1 according Eq. (4.11). (Paper, cell O2)
the cell-centered finite-difference method of order 2 according to
Eq. (4.14). The code of paper, node and paper, cell is available and
can be run online via COLAB [18] (code link).

FIG. 10. MAGNUM.FE solution for hx = 3.9 and �z = 0.5 nm.
For this field value where the MUMAX solution for �z = 2.0 nm,
the magnetization already points everywhere in the Mz = 1 direction.

field where the curvature of the Mx(Hx ) loop is largest. Hence,
it describes the position of the kink of the Mx(Hx ) loop.

The (paper, node) implementation shows a good con-
vergence toward to the analytic solution. Since we show
in Appendix D that the (paper, node) implementation is
equivalent to a 1D finite-element implementation the simi-
lar behavior to the three-dimensional 3D finite-element code
MAGNUM.FE is not surprising.

Interestingly the MUMAX result, which is equivalent to the
OOMMF result shows that the analytic solution is only obtained
for infinitely small mesh sizes. For a discretization length of
2 nm, which is already a fine mesh size for common mi-
cromagnetic simulations, a significant error is obtained. The
exchange length which is usually the criterion for the required
discretization length amounts to lex = √

A/K1 = 10 nm in this
example. Hence, the discretization length of 2 nm is five
times smaller than the exchange length but still leads to an
error in the saturation field of more than 20% in standard
FD codes. It is worth noting that this error also occurs for
small magnetization inhomogeneities formed as shown in
Fig. 10.

This large error is reduced successfully for the proposed
first order and even better for the second order cell-based
finite-difference codes. It is important to note that in this
proposed implementation, the first term on the right-hand side
of Eq. (4.3) has to be considered, which contains m1(0) and
m2(0) in the Robin boundary condition.

VI. CONCLUSION

In this paper we investigate different implementations of
RKKY interaction in finite-difference micromagnetic codes.
The code is available and can be run online via the link
in Ref. [18] and is used in the latest release of our finite-
difference code MAGNUM.NP [19]. While all codes deliver
reliable results for the case that the RKKY coupling acts
between thin ferromagnetic layers, significant errors occur if
partial domain walls are formed in the coupled ferromagnetic
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layers. Partial domain walls are commonly formed in
ferrimagnetic materials that are coupled antiferromagnetically
to ferromagnetic layers such as in the systems of Ref. [5].
Finite-element codes show good convergence to the correct
solutions. Similarly, nodal-based finite-difference codes can
properly describe these antiferromagnetically coupled thick
layers. If cell-based finite-difference codes are used, the most
commonly used codes exhibit significant errors. The reason
is that the boundary condition due to RKKY interaction is
not imposed at the surface of the magnet, where it has to be
imposed, but on the cell center of the finite-difference cell
at the boundary. We show by using first and second order
interpolation how the boundary condition can be correctly
imposed at the surface of the domain. The second order
cell-based scheme gives similar results as the first order
nodal-based scheme.
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APPENDIX A: VARIATION OF THE TOTAL ENERGY
TO OBTAIN THE EQUILIBRIUM

MIROMAGNETIC EQUATION

In order to obtain the equilibrium equation for the magne-
tization at the surface and volume of the magnet we calculate
the variation of the total energy Etot given by Eq. (2.5) under
the constraint that the norm of the magnetization is

|mi| = 1. (A1)

The constraint of the magnetization is included in the vari-
ation of the total energy by introducing Lagrange multipliers
λ1 and λ2 within the volumes and λs,1 and λs,2 at the surfaces.
The energy functional with the Lagrange multipliers is

Ẽtot (m1, m2, λ1, λs,1, λ2, λs,2,)

= Etot (m1, m2) +
∫

�2

λ1
(
1 − m2

x,1 − m2
y,1 − m2

z,1

)
dV

+
∫

∂�1
λs,1

(
1 − m2

x,1 − m2
y,1 − m2

z,1

)
dA

+
∫

�2

λ2
(
1 − m2

x,2 − m2
y,2 − m2

z,2

)
dV

+
∫

∂�1
λs,2

(
1 − m2

x,2 − m2
y,2 − m2

z,2

)
dA. (A2)

Here, the magnetization vector within the volume �1 (ac-
cordingly for �2) is

m1 =
⎛
⎝mx,1

my,1

mz,1

⎞
⎠. (A3)

For the variation of the x component of the normalized
magnetization m1 we get

Ẽtot (mx,1 + δmx,1, my,1, mz,1, m2, λ1, λs,1, λ2, λs,2)

= Etot (mx,1 + δmx,1, my,1, mz,1, m2) −
∫

�1

2λ1mx,1δmx,1dV

−
∫

∂�1

2λs,1mx,1δmx,1dA + nonlinear terms in δmx,1.

(A4)

For the variation of the term Etot (mx,1 + δmx,1, my,1, mz,1,

m2) we get for the terms containing δmx,1 from the exchange
energy

Eex =
∫

�

Ax,1[(˜∇mx,1 + ∇δmx,1)(˜∇mx,1 + ∇δmx,1)˜]dV

=
∫

�1

Ax,1[(∇mx,1)2 + 2∇mx,1∇δmx,1 + (∇δmx,1)2˜]dV.

(A5)

Applying Green’s first identity to transform the term
2∇mx,1∇δmx,1 to a linear term in δmx,1 and keeping only the
linear terms in δmx,1 we obtain

Eex = −
∫

�1

2∇ · (Ax,1∇mx,1)δmx,1dV

+
∫

∂�1

Ax,1[2∇mx,1δmx,1]ndA. (A6)

For the totaI energy we consider here all terms that lead
to surface contributions, which are the exchange energy and
the RKKY interaction. If we consider only the linear terms in
δmx,1 we obtain

Ẽtot (mx,1 + δmx,1, my,1, mz,1, m2, λ1, λs,1, λ2, λs,2)

= −
∫

�1

2∇ · (Ax,1∇mx,1)δmx,1dV

+
∫

∂�1

Ax,1[2∇mx,1δmx,1 ]ndA

−
∫

∂�1∩∂�2

Jrkkyδmx,1m2,xdA −
∫

�1

2λ1mx,1δmx,1dV

−
∫

∂�1

2λs,1mx,1δmx,1dA. (A7)

From Eq. (A7) we get within the volume �1 of the magnet

−2λ1mx,1 − 2∇ · (Ax,1∇mx,1) = 0, (A8)

−2λ1my,1 − 2∇ · (Ay,1∇my,1) = 0, (A9)

−2λ1mz,1 − 2∇ · (Az,1∇mz,1) = 0, (A10)

m2
x,1 + m2

y,1 + m2
z,1 = 1.

Equations (A8)–(A10) can be written in the form

m1 × 2∇ · (A1∇m1) = 0, (A11)
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where

A1 =

⎛
⎜⎝Ax,1 0 0

0 Ay,1 0

0 0 Az,1

⎞
⎟⎠. (A12)

The other energy contributing terms that do not contain
derivates in the energy are trivially included and only lead
to contributions to the volume equilibrium condition. One
obtains for the volume �i,

mi × [2∇ · (Ai∇mi ) + Js,iHext + 2K1,i(mi · ki )ki] = 0,

(A13)
Which is convenient to write as

mi ×
[

2∇ · (Ai∇mi )

Js,i
+ Hext + 2K1,i

Js,i
(mi · ki )ki

]
︸ ︷︷ ︸

Heff

= 0.

(A14)

1. Surface

From Eq. (A7) we get on the surface of the magnet ∂�1,

Etot =
∫

∂�1

A1,x[2∇mx,1δmx,1 ]ndA

−
∫

∂�1∩∂�2

Jrkkyδmx,1mx,2dA −
∫

∂�1

2λs,1mx,1δmx,1dA.

(A15)

Hence, we get the following boundary condition at ∂�1 ∩
∂�2:

2A1(∇m1)n − Jrkkym2 = −2λs,1m1, (A16)

which leads to

m1 × [2A1(∇m1)n − Jrkkym2] = 0, (A17)

and for the boundary ∂�1\(∂�1 ∩ ∂�2), we get

m1 × [2A1(∇m1)n] = 0. (A18)

We can rewrite (A18) by building the cross product with
m1:

m1 × [m1 × [2A1(∇m1)n − Jrkkym2]] = 0, (A19)[
2A1m1(∇m1)n︸ ︷︷ ︸

nA1∇ m2
1︸︷︷︸

1

]

︸ ︷︷ ︸
0

m1 − (m1m1)︸ ︷︷ ︸
1

2A1(∇m1)n

− Jrkky(m1 · m2)m1 + (m1m1)︸ ︷︷ ︸
1

Jrkkym2

= 0. (A20)

Hence, one obtains the following Robin boundary condi-
tions at the common surface ∂�1 ∩ ∂�2:

2A1(∇m1)n = −Jrkky(m1 · m2)m1 + Jrkkym2. (A21)

The same calculation can be applied for the second region
described my m2.

APPENDIX B: DERIVATION OF ANALYTIC SOLUTION
OF RKKY COUPLED 1D WIRE

In order to obtain the analytical solution for the 1D wire
of Sec. III (Fig. 1) we start from the effective field within the
volume and use, for the magnetization, Eq. (3.6).

Heff = 2A

Js

⎛
⎜⎜⎝

∂2

∂2z cos [ϕ(z)]
∂2

∂2z sin [ϕ(z)]

0

⎞
⎟⎟⎠+

⎛
⎜⎝Hx

0

0

⎞
⎟⎠+ 2K1

Js

⎛
⎜⎝ 0

sin [ϕ(z)]

0

⎞
⎟⎠.

(B1)

Using the notation ϕ = ϕ(z) and using the equilibrium
condition

m × Heff =
⎛
⎝cos (ϕ)

sin (ϕ)
0

⎞
⎠× Heff = 0, (B2)

we see that all components of Eq. (B2) are zero except the z
component for which we obtain

2A

Js

∂2ϕ

∂2z
− Hx sin (ϕ) + K1

Js
sin (2ϕ) = 0. (B3)

We multiply Eq. (B3) with ∂ϕ

∂z and obtain

2A

Js

∂2ϕ

∂2z

∂ϕ

∂z︸ ︷︷ ︸
1
2

∂
∂z [

∂ϕ

∂z ]2

−Hx sin (ϕ)︸ ︷︷ ︸
− ∂ cos (ϕ)

∂ϕ

∂ϕ

∂z
+ K1

Js
sin (2ϕ)︸ ︷︷ ︸
− 1

2
∂ cos (2ϕ)

∂ϕ

∂ϕ

∂z
= 0. (B4)

We integrate Eq. (B4) from −∞ to z,∫ z

−∞

A

Js

∂

∂z

[
∂ϕ

∂z

]2

+ Hx
∂ cos (ϕ)

∂z
− K1

2Js

∂ cos (2ϕ)

∂z
dz = 0,

(B5)

and obtain

A

Js

(
∂ϕ(z)

∂z

)2

− A

Js

(
∂ϕ(−∞)

∂z

)
︸ ︷︷ ︸

0

2

+ Hx cos [ϕ(z)] − Hx cos [ϕ(−∞)]

− K1

2Js
cos [2ϕ(z)] + K1

2Js
cos [2ϕ(−∞)]

= 0. (B6)

For fields Hx 	 2K1
Js

it follows that ϕ(−∞) = 0. Hence, we
obtain the following differential equation:

A

Js

(
∂ϕ

∂z

)2

+ Hx cos [ϕ(z)] − Hx − K1

2Js
cos [2ϕ(z)] + K1

2Js

= 0. (B7)

In order to solve Eq. (B7) we have to take care of the
boundary condition according to Eq. (A17). Due to symmetry
we obtain an odd function of the angle ϕ(z) [Eq. (3.7)], which
is equivalent to

mx,1 = mx,2,

my,1 = −my,2.
(B8)
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Hence, we obtain for the general boundary condition at
z = 0,⎛

⎜⎝cos ϕ

sin ϕ

0

⎞
⎟⎠×

⎡
⎢⎣2A

⎛
⎜⎝

∂
∂z cos ϕ
∂
∂z sin ϕ

0

⎞
⎟⎠− Jrkky

⎛
⎜⎝ cos ϕ

− sin ϕ

0

⎞
⎟⎠
⎤
⎥⎦ = 0,

(B9)

which leads to

2A
∂ϕ

∂z
= −Jrkky sin (2ϕ). (B10)

We multiply Eq. (B7) with A and evaluate it at the position
z = –0, of the interface, where we can insert Eq. (B10):(

A
∂ϕ

∂z

)
︸ ︷︷ ︸

− 1
2 Jrkky sin (2ϕ0 )

2

+ AHxJs cos (ϕ0) − AHxJs

− AK1Js

2Js
cos (2ϕ0) + AK1Js

2Js

= 0. (B11)

Hence in the limit of Hx > 2K1
Js

we obtain this closed form
for the angle ϕ0:[

1

2
Jrkky sin (2ϕ0)

]2

+ AHxJs cos (ϕ0) − AHxJs

− AK1

2
cos (2ϕ0) + AK1

2

= 0. (B12)

Using Hx = hx
2K1
Js

one obtains

J2
rkky

4AK1
sin2(2ϕ0) + 2hx cos (ϕ0) − 2hx − 1

2
cos (2ϕ0) + 1

2
= 0.

(B13)

We express for a given angle ϕ0 the corresponding field hx,

Hx = 2K1

Js
hx = 2K1

Js

1

4

cos (2ϕ0) − 1 −
jred︷︸︸︷

J2
rkky

2AK1
sin2(2ϕ0)

cos (ϕ0) − 1
,

(B14)

where we have introduced the dimensionless coupling param-
eter,

jred = J2
rkky

2AK1
. (B15)

The angle at the interface ϕ0 as function of the external
field Hx for different values of jred that is obtained from the
numerical solution of Eq. (B14) is shown in Fig. 3.

For sufficiently strong hx the angle at the interface is
exactly ϕ0 = 0. If we start from this large field and de-
crease the field the critical field is reached if this angle
starts to deviate from zero, that is, if ϕ0 > 0 in Eq. (B14).
Calculating the limit yields, for the nucleation field of

the domain,

Hx,sat = 2K1

Js
hx,sat

= 2K1

Js
lim
ϕ0→0

1

4

cos (2ϕ0) − 1 − J2
rkky

2AK1
sin2(2ϕ0)

cos (ϕ0) − 1

= 2K1

Js

(
1 + J2

rkky

AK1

)
. (B16)

The field hx,sat can also be interpreted as the saturation
field. After calculating the angle ϕ0 for a particular field hx,
also the entire domain wall profile ϕ(z) can be obtained.
For the sake of an analytical solution, not ϕ(z) but z(ϕ) is
calculated. From Eq. (B7) it follows that

∂z

∂ϕ
= ±

√
1

− JsHx
A cos [ϕ(z)] + JsHx

A + K1
2A cos [2ϕ(z)] − K1

2A

.

(B17)

The indefinite integral of Eq. (B17) is

z̃(ϕ) =
∫

∂z

∂ϕ
dϕ

=
√

K1 cos (ϕ) + K1 − HextJs

(K1 − HextJs/2)[HextJs − K1 cos (ϕ) − K1]

× sin (ϕ/2)

|sin (ϕ/2)|
√

Atanh−1

×
⎡
⎣cos (ϕ/2)

√
2K1 − HextJs

K1 cos (ϕ) + K1 − HextJs

⎤
⎦. (B18)

Hence, the relation between the angle ϕ and the position z
is given by

z(ϕ) =
∫ ϕ

ϕ0

∂z

∂ϕ
dϕ = z̃(ϕ) − z̃(ϕ0). (B19)

APPENDIX C: DERIVATION OF FINITE-DIFFERENCE
EXPRESSIONS FOR A JUMP OF THE EXCHANGE

CONSTANT AT MATERIAL INTERFACES

In the following we will derive expressions for the ex-
change field at material interfaces. We start from the general
expression for the exchange field that is given according to
Eq. (A14) by

Hex = 2

Js(x)
∇ · [A(x)∇m]. (C1)

In the following we assume that in �1 and �2 differ-
ent magnetic materials with different exchange constants are
present, as shown in Fig. 1. Within each region the exchange
constant is assumed to be constant. Hence, within �1 the
following holds:

Hex,1 = 2

Js(x)
∇ · [A(x)∇m] = 2A1

Js,1
�m. (C2)

In order to solve this problem for the entire domain, we
split the finite-difference solution into two parts. In the follow-
ing we consider a 1D problem, where the magnetization only
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FIG. 11. Cell-based finite-difference discretization when at the
interface at z = 0 the exchange constant exhibits a jump.

varies along the z axis (e.g., a situation as shown in Fig. 3).
Equation (C2) simplifies to

Hex,1(z) = 2A1

Js,1
m′′

1(z). (C3)

For all discretization points that are not located at the
boundary of the region a standard three-point stencil can be
used for the evaluation of the second derivative m′′

1(z).
The discretization point where the interface between the

two magnets comes into play is at z = −�z/2, which we
discuss in the following. To evaluate

Hex

(
−�z

2

)
= 2A1

Js,1
m′′

1

(
−�z

2

)
(C4)

we approximate the second derivative by the derivative of the
first derivative,

m′′
1

(
−�z

2

)
≈ m′

1(0) − m′
1(−�z)

�z
. (C5)

The first derivative with the domain at z = −�z can be
simply approximate:

m′
1(−�z) ≈ m1

(−�z
2

)− m1
(− 3�z

2

)
�z

. (C6)

In order to calculate m′
1(0) at the interface, we introduce

the unknown ghost point m0 = m1(0) and write

m′
1(0) ≈ m0 − m1

(−�z
2

)
�z/2

. (C7)

1. Jump in the exchange constant A—cell-based FD

All commonly used finite-difference codes use a cell-based
approach [6–8,21]. Special care has to be taken if jumps in the
material parameters within the computed domain occur [9]. In
the following we assume that the material parameter A jumps
at z = 0 as shown in Fig. 11. Hence the magnetization is
not differentiable at z = 0. According to Eq. (2.9) the normal
derivative of the magnetization shows a jump of

2A1(∇m1)n = 2A2(∇m2)n, (C8)

since

m0 :− m1(0) = m2(0), (C9)

where m0 denotes the magnetization at the boundary between
the two materials.

We introduce the variable

m(z) = m1(z) for z � 0,

m(z) = m2(z) for z � 0.
(C10)

With Eqs. (C8) and (C9) we can calculate the unknown
m1(0) and m2(0). From Eq. (C8) it follows for the x compo-
nent that

A1
m0 − m

(−�z
2

)
�z/2

= A2
m
(

�z
2

)− m0

�z/2
. (C11)

From Eq. (C11) m0 can be calculated:

m0 = A2m
(

�z
2

)+ A1m
(−�z

2

)
A1 + A2

. (C12)

Substituting m0 into Eqs. (C7) and (C4) and neglecting all
terms linear in m(−�z/2), one obtains

Hex

(
−�z

2

)
= 2A1

Js,1�z2

[
2A1m(−3�z/2)

A1 + A1
+ 2A2m(�z/2)

A1 + A2

]
.

(C13)

Neglecting terms parallel to m(−�z/2) in the effective
field is justified by the fact that they do not change the dynam-
ics of the Landau-Lifshitz-Gilbert equation at d

dt m(−�z/2).
This can be simply understood since the right-hand side of the
Landau-Lifshitz-Gilbert only contains terms m(−�z/2) ×
Heff . Any contribution of Heff ∝ m(−�z/2) cancels, since
m(−�z/2) × m(−�z/2) = 0.

It is worth noting that Eq. (C13) can be used everywhere in
space. If in some region A :− A1 = A2 it reduces to the well
known equation for the exchange field [12]:

Hex

(
k
�z

2

)
= 2A

Js�z2
{m[(k − 1)�z/2] + m[(k + 1)�z/2]}.

(C14)

APPENDIX D: EQUIVALENCE OF 1D FINITE-ELEMENT
CODE AND NODAL-BASED FINITE-DIFFERENCE CODE

In contrast to finite-difference methods, where the deriva-
tives are approximated with finite differences, finite-element
methods use the basis function to interpolate the unknown
function at the domain. The domain is represented with fi-
nite elements. The micromagnetic effective field Heff can be
calculated from the total energy Etot by

−
∫

�

JsHeff · vdV = δEtot (m, v), (D1)

where the functions v are test functions that are 1 on the
finite-element node and zero at all other finite-element nodes.
Linear or higher order test functions can be used. The right-
hand side of Eq. (D1) is the Gâteaux derivative of the total
energy Etot (m) in the direction v, which can be calculated by
finite-element packages such as FENICS [22]. The integration
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over the test functions allows one to write Eq. (D1) in a
discrete form, using the magnetization m j at nodes points j,
as

Ai jHeff, j = Fi jm j . (D2)

Calculation of the effective field according to Eq. (D2)
would require the solution of a linear system of equations.
Hence, mass lumping can be used to approximate the matrix
Ai j with a diagonal form Ãi j = aiiδi j ≈ Ai j , that can be sim-

ply inverted,

Heff, j ≈ Ã−1Fi jm j . (D3)

Equation (D1) shows that the total energy entirely deter-
mines the effective field. In the following we will show that
the bulk exchange term of Eq. (D3) for a spacer layer (�s) is
equivalent to a surface energy of the form of Eq. (D6) with
proper scaling of the exchange constant.

The bulk exchange is given by

Eex(m) =
∫

�s

⎛
⎝Ax

[(
∂mx
∂x

)2 + ( ∂my

∂x

)2 + (
∂mz

∂x

)2]+ Ay
[(

∂mx
∂y

)2 + ( ∂my

∂y

)2 + (
∂mz

∂y

)2]
+Az

[(
∂mx
∂z

)2 + ( ∂my

∂z

)2 + (
∂mz

∂z

)2]
⎞
⎠dV. (D4)

Without loss of generality we assume that the spacer layer
is parallel to the x − y plane. Hence, we set Ax = 0, Ay = 0,
and assume no volume nodes in the spacer region. Since we
assume a linear basis function for the discretization of m , the
gradient of m is constant within each finite element. Hence,
we can replace the integral in the z direction just by �z. From
Eq. (D4) we obtain

Eex(m) = Eex(m1, m2)

=
∫

Vspacer

Az

�z2
[(mx,2 − mx,1)2

+ (my,2 − my,1)2 + (mz,2 − mz,1)2] �zdA︸ ︷︷ ︸
dV

, (D5)

where m1 is the magnetization as a function of space on one
side of the spacer and m2 on the opposing side (Fig. 12). We
aim to set the exchange parameters Ax, Ay, and Az in a way to
reach

Eex(m1, m2) = Erkky(m1, m2) = −
∫

Jrkkym1 · m2dA.

(D6)

Considering

m2
x,i + m2

y,i + m2
z,i = 1 (D7)

leads to

Eex(m) =
∫

F

Az

�z
[2 − 2m1 · m2]dA, (D8)

where F is the area of the space layer to the magnet on one
side.

Rescaling the energy leads to

E ′
ex(m) = −

∫
F

2Az

�z︸︷︷︸
Jrkky

m1 · m2dA. (D9)

Comparing (D6) and (D9) leads to

Jrkky = 2Az

�z
, (D10)

Az = Jrkky�z

2
. (D11)

In the following we use the bulk exchange of the spacer
layer and the derived condition, Eq. (D11), in order to calcu-
late the effective field at the node points of the spacer layer.
This discretization of the effective field at the interface is
compared with the nodal-based finite-difference method.

In order to simplify the notation, we introduce

mx,i−1 = mx(−3�z/2),

mx,i = mx(−�z/2),

mx,i+1 = mx(�z/2). (D12)

Since linear basis functions are used, the gradient within
the finite elements is constant. Hence, one can write for the

FIG. 12. Finite-element representation of RKKY coupling using
a spacer layer with properly chosen exchange constants. Here two
finite elements are shown: element e−1 and element e0. Within the
elements the magnetization is linearly interpolated (orange line).

104424-12



ACCURATE FINITE-DIFFERENCE MICROMAGNETICS OF … PHYSICAL REVIEW B 107, 104424 (2023)

total energy of all terms including the magnetization mx,i,

Eex = F
∫

e−1

A1

�z2
[(mx,i − mx,i−1)2

+ (my,i − my,i−1)2 + (mz,i − mz,i−1)2]dz

+ F
∫

e0

Arkky

�z2
[(mx,i+1 − mx,i )

2

+ (my,i+1 − my,i )
2 + (mz,i+1 − mz,i )

2]dz + · · · ,

(D13)

where F is the interface area between spacer and the magnet
(in the x and y directions). Here, we only include the energies
of the element e–1 and element e0 since we only want to derive
the effective field at the nodal point, mx,i = mx(−�z/2).

The mass lumped equation for the effective field according
to Eq. (D3) can be written in the form of the Box scheme [23]
with the corresponding volume Vi = F�z for each nodal point
i as

Hex,x(−�z/2) = − 1

ViJs,average

∂Eex

∂mx,i
= − 1

FJs�z/2

∂Eex

∂mx,i

= − 1

Js�z/2

∂

∂mx,i

{
Arkky

�z
[(mx,i+1 − mx,i )

2

+ (my,i+1 − my,i )
2 + (mz,i+1 − mz,i )

2]

}

− 1

Js�z/2

∂

∂mx,i

{
A1

�z
[(mx,i − mx,i−1)2

+ (my,i − my,i−1)2 + (mz,i − mz,i−1)2]

}
,

(D14)

since the saturation magnetization in the spacer layer is zero
Js,average = Js/2. For the exchange field one gets

Hex,x(−�z/2) = − 1

FJs�z/2

∂Eex

∂mx,i

= 2

Js�z2
(2Arkkymx,i+1 + 2A1mx,i−1). (D15)

Using the proper value of Arkky to represent Jrkky according
to Eq. (D11) one gets

Hex(−�z/2) = 2

Js�z2
(Jrkky�zmi+1 + 2A1mi−1), (D16)

which is equivalent to the derived equation for the nodal finite-
difference formula according to Eq. (4.22)
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